Usefulness of the CHA2DS2-VASc Score in Predicting the Outcome in Subjects Hospitalized with COVID-19—A Subanalysis of the COLOS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical Follow-Up and Outcomes
2.3. Study Groups—CHA2DS2-VASc Score Stratification
2.4. Statistical Analysis
3. Results
3.1. Patients’ Baseline Characteristics
3.2. Laboratory Assays
3.3. Drug Therapy and Applied Treatment during Hospitalization
3.3.1. Drug Therapy
3.3.2. Treatment Procedures
3.4. Clinical Outcome
3.4.1. CHA2DS2-VASc Score Results and Mortality
3.4.2. CHA2DS2-VASc Score and Secondary Outcome
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fraser, R.; Orta-Resendiz, A.; Dockrell, D.; Müller-Trutwin, M.; Mazein, A. Severe COVID-19 versus multisystem inflammatory syndrome: Comparing two critical outcomes of SARS-CoV-2 infection. Eur. Respir. Rev. 2023, 32, 220197. [Google Scholar] [CrossRef] [PubMed]
- Umakanthan, S.; Sahu, P.; Ranade, A.V.; Bukelo, M.M.; Rao, J.S.; Lf, A.-M.; Dahal, S.; Kumar, H.; Kv, D. Origin, transmission, diagnosis and management of coronavirus disease 2019 (COVID-19). Postgrad. Med. J. 2020, 96, 753–758. [Google Scholar] [PubMed]
- Okarska-Napierała, M.; Ludwikowska, K.M.; Szenborn, L.; Dudek, N.; Mania, A.; Buda, P.; Książyk, J.; Mazur-Malewska, K.; Figlerowicz, M.; Szczukocki, M.; et al. Pediatric Inflammatory Multisystem Syndrome (PIMS) Did Occur in Poland during Months with Low COVID-19 Prevalence, Preliminary Results of a Nationwide Register. J. Clin. Med. 2020, 9, 3386. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.-D.; Ding, M.; Dong, X.; Zhang, J.-J.; Azkur, A.K.; Azkur, D.; Gan, H.; Sun, Y.-L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef] [PubMed]
- Asakura, H.; Ogawa, H. COVID-19-associated coagulopathy and disseminated intravascular coagulation. Int. J. Hematol. 2021, 113, 45–57. [Google Scholar] [CrossRef]
- Gómez-Mesa, J.E.; Galindo-Coral, S.; Montes, M.C.; Martin, A.J.M. Thrombosis and Coagulopathy in COVID-19. Curr. Probl. Cardiol. 2021, 46, 100742. [Google Scholar] [CrossRef]
- Singh, P.; Schwartz, R.A. Disseminated intravascular coagulation: A devastating systemic disorder of special concern with COVID-19. Dermatol. Ther. 2020, 33, e14053. [Google Scholar] [CrossRef]
- Carpenter, J.; Combs, C.A.; Kahn, B.; Maurel, K.; Clark, R. Disseminated intravascular coagulation complicating mild or asymptomatic maternal COVID-19. AJOG Glob. Rep. 2022, 2, 100110. [Google Scholar] [CrossRef]
- Mori, H.; Ohkawara, H.; Togawa, R.; Rikimaru, M.; Shibata, Y.; Ikezoe, T. Diagnosis and treatment of disseminated intravascular coagulation in COVID-19 patients: A scoping review. Int. J. Hematol. 2021, 113, 320–329. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J.G.M. Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach: The Euro Heart Survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Arcari, L.; Luciani, M.; Cacciotti, L.; Musumeci, M.B.; Spuntarelli, V.; Bentivegna, E.; Camastra, G.; Ansalone, G.; Santini, C.; Martelletti, P.; et al. CHA2DS2-VASc score in patients with COVID-19 pneumonia and its relationship with biomarkers of thrombosis, inflammation and myocardial injury. Blood Coagul. Fibrinolysis 2022, 33, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.V.; Plácido, R.; Jorge, C.; Mendonça, C.; Urbano, M.L.; Rodrigues, T.; Brito, J.; da Silva, P.A.; Rigueira, J.; Pinto, F.J. Prognostic Accuracy of the Modified CHA2DS2-VASc Score in COVID-19 Patients Admitted to the Emergency Department Due to Clinical Worsening. Acta Med. Port. 2022, 35, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Genç, Ö.; Yildirim, A.; Genç, M.; Er, F.; Alici, G.; Quisi, A.; Harbalioğlu, H.; Allahverdiyev, S.; Kurt, I.H. Comparison of Thromboembolic Risk Scores for Evaluating In-Hospital Events of Covid-19 Patients. Biomark. Med. 2023, 17, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418. [Google Scholar] [CrossRef]
- Campbell, E.J. Respiratory failure. Definition, mechanisms and recent developments. Bull Eur. Physiopathol. Respir. 1979, 15, 1–13. [Google Scholar]
- Chakraborty, R.K.; Burns, B. Systemic Inflammatory Response Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3): For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef]
- Levey, A.S. Defining AKD: The Spectrum of AKI, AKD, and CKD. Nephron 2022, 146, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Therneau, T. Package for Survival Analysis in R. R Package Version 3.2-7. Available online: https://cran.r-project.org/web/packages/survival/index.html (accessed on 16 December 2021).
- Hothorn, T.; Hornik, K.; A van de Wiel, M.; Zeileis, A. A Lego System for Conditional Inference. Am. Stat. 2006, 60, 257–263. [Google Scholar] [CrossRef]
- Schratz, P. R Package ‘Oddsratio’: Odds Ratio Calculation for GAM(M)s & GLM(M)s. Version 1.0.2. 2017. Available online: https://zenodo.org/records/1095473 (accessed on 12 October 2024).
- Duca, A.; Piva, S.; Focà, E.; Latronico, N.; Rizzi, M. Calculated Decisions: Brescia-COVID Respiratory Severity Scale (BCRSS)/Algorithm. Emerg. Med. Pract. 2020, 22, CD1–CD2. [Google Scholar] [PubMed]
- King, J.T.; Yoon, J.S.; Rentsch, C.T.; Tate, J.P.; Park, L.S.; Kidwai-Khan, F.; Skanderson, M.; Hauser, R.G.; Jacobson, D.A.; Erdos, J.; et al. Development and validation of a 30-day mortality index based on pre-existing medical administrative data from 13,323 COVID-19 patients: The Veterans Health Administration COVID-19 (VACO) Index. PLoS ONE 2020, 15, e0241825. [Google Scholar] [CrossRef]
- Goodacre, S.; Thomas, B.; Sutton, L.; Burnsall, M.; Lee, E.; Bradburn, M.; Loban, A.; Waterhouse, S.; Simmonds, R.; Biggs, K.; et al. Derivation and validation of a clinical severity score for acutely ill adults with suspected COVID-19: The PRIEST observational cohort study. PLoS ONE 2021, 16, e0245840. [Google Scholar] [CrossRef]
- Quisi, A.; Alıcı, G.; Harbalıoğlu, H.; Genç, Ö.; Er, F.; Allahverdiyev, S.; Yıldırım, A.; Kurt, İ. The CHA2DS2-VASc Score and In-Hospital Mortality in Patients with COVID-19: A Multicentre Retrospective Cohort Study. Arch. Turk. Soc. Cardiol./Türk Kardiyoloji Derneği Arşivi 2020, 48, 656–663. [Google Scholar] [CrossRef]
- Caro-Codón, J.; Lip, G.Y.H.; Rey, J.R.; Iniesta, A.M.; O Rosillo, S.; Castrejon-Castrejon, S.; Rodriguez-Sotelo, L.; Garcia-Veas, J.M.; Marco, I.; A Martinez, L.; et al. Prediction of thromboembolic events and mortality by the CHADS2 and the CHA2DS2-VASc in COVID-19. EP Eur. 2021, 23, 937–947. [Google Scholar] [CrossRef]
- Gunduz, R.; Yildiz, B.S.; Ozdemir, I.H.; Cetin, N.; Ozen, M.B.; Bakir, E.O.; Ozgur, S.; Bayturan, O. CHA2DS2-VASc score and modified CHA2DS2-VASc score can predict mortality and intensive care unit hospitalization in COVID-19 patients. J. Thromb. Thrombolysis 2021, 52, 914–924. [Google Scholar] [CrossRef]
- Abacioglu, O.O.; Yildirim, A. The ATRIA score is superior to the m-CHA2DS2-Vasc score in predicting in-hospital mortality in COVID-19. Rev. Assoc. Med. Bras. 2021, 67, 443–448. [Google Scholar] [CrossRef]
- Katkat, F.; Karahan, S.; Varol, S.; Kalyoncuoglu, M.; Okuyan, E. Mortality prediction with CHA2DS2-VASc, CHA2DS2-VASc-HS and R2CHA2DS2-VASc score in patients hospitalized due to COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6767–6774. [Google Scholar] [CrossRef] [PubMed]
- Cetinkal, G.; Kocas, B.B.; Ser, O.S.; Kilci, H.; Keskin, K.; Ozcan, S.N.; Verdi, Y.; Zeren, M.I.; Demir, T.; Kilickesmez, K. Assessment of the Modified CHA2DS2VASc Risk Score in Predicting Mortality in Patients Hospitalized With COVID-19. Am. J. Cardiol. 2020, 135, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Levine, G.N.; Birnbaum, Y. The CHA 2 DS 2 -VASc score: Not as simple as it seems. Int. J. Cardiol. 2018, 257, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Shroff, G.R.; Solid, C.A.; Herzog, C.A. Atrial Fibrillation, Stroke, and Anticoagulation in Medicare Beneficiaries: Trends by Age, Sex, and Race, 1992–2010. J. Am. Heart Assoc. 2014, 3, e000756. [Google Scholar] [CrossRef]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Çiçek, V.; Çınar, T.; Hayıroglu, M.İ.; Kılıç, Ş.; Asal, S.; Yavuz, S.; Selçuk, M.; Orhan, A.L. Prognostic performance of CHA2DS2-VASc scores for predicting mortality among COVID-19 patients: A single pandemic center experience. Am. J. Emerg. Med. 2021, 45, 635–637. [Google Scholar] [CrossRef]
- Tavazzi, G.; Pellegrini, C.; Maurelli, M.; Belliato, M.; Sciutti, F.; Bottazzi, A.; Sepe, P.A.; Resasco, T.; Camporotondo, R.; Bruno, R.; et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur. J. Heart Fail. 2020, 22, 911–915. [Google Scholar] [CrossRef]
- Sonsoz, M.R.; Alp, M.E.; Guven, G.; Guler, A.; Unsel, M.; Aydin, O.A. Increasing modified CHA2DS2-VASc risk score is associated with acute cardiac injury in hospitalised COVID-19 patients. Acta Cardiol. 2021, 77, 1–7. [Google Scholar] [CrossRef]
- Xu, H.; Hou, K.; Xu, R.; Li, Z.; Fu, H.; Wen, L.; Xie, L.; Liu, H.; Selvanayagam, J.B.; Zhang, N.; et al. Clinical Characteristics and Risk Factors of Cardiac Involvement in COVID-19. J. Am. Hear. Assoc. 2020, 9, 16807. [Google Scholar] [CrossRef]
- Sadeghmousavi, S.; Rezaei, N. COVID-19 infection and stroke risk. Rev. Neurosci. 2020, 32, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Liu, X.; Bao, K.; Huang, C. Ischemic stroke associated with COVID-19: A systematic review and meta-analysis. J. Neurol. 2022, 269, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Di Mitri, C.; Arcoleo, G.; Mazzuca, E.; Camarda, G.; Farinella, E.M.; Soresi, M.; Carroccio, A.; Imusg, O.B.O.T. COVID-19 and non–COVID-19 pneumonia: A comparison. Ann. Med. 2021, 53, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, E.; Khatibi, S.M.H.; Soofiyani, S.R.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Vahed, S.Z. COVID-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev. Med. Virol. 2021, 31, e2176. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wang, X.; Ren, J.; Sun, Y.; Yu, R.; Li, K.; Zheng, L.; Yang, J. Risk factors and prognosis for COVID-19-induced acute kidney injury: A meta-analysis. BMJ Open 2020, 10, e042573. [Google Scholar] [CrossRef]
Variables, Units (N) | Low Risk | Medium Risk | High Risk | OMNIBUS p Value | p Value (for Post Hoc Analysis) |
---|---|---|---|---|---|
Demographics | |||||
Age, years mean ± SD min–max (N = 2181) | 52.05 ± 17.18 | 75.29 ± 9.95 | 78.94 ± 8.62 | <0.0001 | <0.0001 a,b |
17–99 | 65–100 | 47–94 | 0.0002 c | ||
(1449) | (611) | (121) | |||
Age ≥ 65 years n/N (% of risk category) (N = 2181) | 379/1449 (26.16%) | 550/611 (90.02%) | 116/121 (95.87%) | <0.0001 | <0.0001 a,b |
0.1806 c | |||||
Male gender n/N (% of risk category) (N = 2181) | 722/1449 (49.83%) | 292/611 (47.79%) | 67/121 (55.37%) | 0.295 | N/A |
BMI, kg/m2 mean ± SD min–max (N = 554) | 28.33 ± 5.28 | 28.37 ± 5.4 | 29.12 ± 4.61 | 0.7002 | N/A |
15.36–49.38 | 16.41–48.21 | 22.2–38.97 | |||
(398) | (129) | (27) | |||
Obesity (BMI ≥ 30 kg/m2) n/N (% of risk category) (N = 554) | 131/398 (32.91%) | 49/129 (37.98%) | 11/27 (40.74%) | 0.4924 | N/A |
Cigarette smoking n/N (% of risk category) never/previous/current (N = 2177) | 1358/1448 (93.78%) | 529/609 (86.86%) | 98/120 (81.67%) | <0.0001 | <0.0001 a,b |
55/1448 (3.8%) | 50/609 (8.21%) | 12/120 (10.0%) | 0.6624 c | ||
35/1448 (2.42%) | 30/609 (4.93%) | 10/120 (8.33%) | |||
Comorbidities | |||||
Hypertension n/N (% of risk category) (N = 2181) | 372/1449 (25.67%) | 531/611 (86.91%) | 116/121 (95.87%) | <0.0001 | <0.0001 a,b |
0.0237 c | |||||
DM n/N (% of risk category) (N = 2181) | 115/1449 (7.94%) | 272/611 (44.68%) | 84/121 (69.42%) | <0.0001 | <0.0001 a,b,c |
Dyslipidemia n/N (% of risk category) (N = 824) | 268/406 (66.01%) | 270/333 (81.08%) | 72/85 (84.71%) | <0.0001 | <0.0001 a |
0.0033 b | |||||
1.0 c | |||||
AF/AFL n/N (% of risk category) (N = 2181) | 47/1449 (3.24%) | 186/611 (30.44%) | 57/121 (47.11%) | <0.0001 | <0.0001 a,b |
0.0017 c | |||||
Previous coronary revascularization n/N (% of risk category) (N = 2181) | 10/1449 (0.69%) | 91/611 (14.89%) | 52/121 (42.98%) | <0.0001 | <0.0001 a,b,c |
Previous MI n/N (% of risk category) (N = 2181) | 22/1449 (1.52%) | 112/611 (18.33%) | 57/121 (47.11%) | <0.0001 | <0.0001 a,b,c |
HF n/N (% of risk category) (N = 2181) | 17/1449 (1.17%) | 155/611 (25.37%) | 82/121 (67.77%) | <0.0001 | <0.0001a,b,c |
Moderate or severe valvular heart disease or previous valve heart surgery n/N (% of risk category) (N = 2181) | 21/1449 (1.45%) | 51/611 (8.35%) | 24/121 (19.83%) | <0.0001 | <0.0001 a,b |
0.0008 c | |||||
PAD n/N (% of risk category) (N = 2181) | 11/1449 (0.76%) | 58/611 (9.49%) | 30/121 (24.79%) | <0.0001 | <0.0001 a,b,c |
Previous stroke/TIA n/N (% of risk category) (N = 2181) | 8/1449 (0.55%) | 78/611 (12.77%) | 77/121 (63.64%) | <0.0001 | <0.0001 a,b,c |
CKD n/N (% of risk category) (N = 2181) | 73/1449 (5.04%) | 111/611 (18.17%) | 47/121 (38.84%) | <0.0001 | <0.0001 a,b,c |
Hemodialysis n/N (% of risk category) (N = 2181) | 20/1449 (1.38%) | 26/611 (4.26%) | 12/121 (9.92%) | <0.0001 | 0.0004 a |
<0.0001 b | |||||
0.065 c | |||||
Asthma n/N (% of risk category) (N = 2181) | 54/1449 (3.73%) | 27/611 (4.42%) | 4/121 (3.31%) | 0.7231 | N/A |
COPD n/N (% of risk category) (N = 2181) | 21/1449 (1.45%) | 42/611 (6.87%) | 12/121 (9.92%) | <0.0001 | <0.0001 a,b |
0.7598 c | |||||
Thyroid disease, none/hypothyroidism/ hyperthyroidism n/N (% of risk category) (N = 2181) | 1316/1449 (90.82%) | 535/611 (87.56%) | 102/121 (84.3%) | 0.04 | 0.193 a |
122/1449 (8.42%) | 68/611 (11.13%) | 17/121 (14.05%) | 0.1307 b | ||
11/1449 (0.76%) | 8/611 (1.31%) | 2/121 (1.65%) | 1.0 c |
Variables, Units (N) | Low Risk | Medium Risk | High Risk | OMNIBUS p Value | p Value (for Post Hoc Analysis) |
---|---|---|---|---|---|
Patient-Reported Symptoms | |||||
Cough n/N (% of risk category) (N = 2181) | 482/1449 (33.26%) | 138/611 (22.59%) | 27/121 (22.31%) | <0.0001 | <0.0001 a |
0.0532 b | |||||
1.0 c | |||||
Dyspnea n/N (% of risk category) (N = 2181) | 604/1449 (41.68%) | 262/611 (42.88%) | 54/121 (44.63%) | 0.7533 | N/A |
Chest pain n/N (% of risk category) (N = 2181) | 110/1449 (7.59%) | 36/611 (5.89%) | 17/121 (14.05%) | 0.0074 | 0.6027 a |
0.0595 b | |||||
0.0089 c | |||||
Hemoptysis n/N (% of risk category) (N = 2181) | 10/1449 (0.69%) | 3/611 (0.49%) | 2/121 (1.65%) | 0.2843 | N/A |
Smell dysfunction n/N (% of risk category) (N = 2181) | 63/1449 (4.34%) | 11/611 (1.8%) | 2/121 (1.65%) | 0.0071 | 0.0121 a |
0.6906 b | |||||
1.0 c | |||||
Taste dysfunction n/N (% of risk category) (N = 2181) | 52/1449 (3.59%) | 12/611 (1.96%) | 2/121 (1.65%) | 0.1157 | N/A |
Abdominal pain n/N (% of risk category) (N = 2181) | 107/1449 (7.38%) | 31/611 (5.07%) | 8/121 (6.61%) | 0.1592 | N/A |
Diarrhea n/N (% of risk category) (N = 2181) | 74/1449 (5.11%) | 46/611 (7.53%) | 7/121 (5.79%) | 0.1004 | N/A |
Nausea and/or vomiting n/N (% of risk category) (N = 2181) | 60/1449 (4.14%) | 31/611 (5.07%) | 7/121 (5.76%) | 0.5042 | N/A |
Measured vital signs | |||||
Body temperature °C mean ± SD min–max (N = 1184) | 37.07 ± 0.89 | 36.9 ± 0.88 | 36.98 ± 0.88 | 0.0141 | 0.01 a |
34.4–40.5 | 35.0–40.0 | 35.9–40.0 | 0.667 b | ||
(818) | (301) | (65) | 0.799 c | ||
Heart rate beats/minute mean ± SD min–max (N = 1670) | 86.17 ± 15.59 | 84.58 ± 17.31 | 85.31 ± 18.82 | 0.2136 | N/A |
48–160 | 36–150 | 47–170 | |||
(1063) | (499) | (108) | |||
Respiratory rate breaths/minute mean ± SD min–max (N = 317) | 18.43 ± 5.64 | 18.6 ± 5.4 | 19.35 ± 7.84 | 0.8489 | N/A |
12–50 | 12–50 | 12–50 | |||
(207) | (87) | (23) | |||
PP mean ± SD min–max (N = 1658) | 52.26 ± 14.97 | 57.46 ± 18.98 | 59.96 ± 19.15 | <0.0001 | <0.0001 a |
11–115 | 15–136 | 20–120 | 0.0002 b | ||
(1046) | (500) | (112) | 0.425 c | ||
SBP mmHg mean ± SD min–max (N = 1667) | 130.42 ± 20.56 | 134.27 ± 25.7 | 137.25 ± 27.21 | 0.0012 | 0.009 a |
60–237 | 50–240 | 85–270 | 0.029 b | ||
(1050) | (505) | (112) | 0.54 c | ||
DBP mmHg mean ± SD min–max (N = 1659) | 78.35 ± 12.39 | 77.49 ± 14.9 | 77.29 ± 14.75 | 0.4505 | N/A |
40–150 | 40–157 | 50–150 | |||
(1047) | (500) | (112) | |||
SpO2 on room air, % (FiO2 = 21%) mean ± SD min–max (N = 1260) | 92.54 ± 7.44 | 90.37 ± 9.19 | 90.0 ± 8.27 | <0.0001 | 0.0004 a |
48–100 | 50–100 | 60–100 | 0.022 b | ||
(836) | (340) | (84) | 0.93 c | ||
Abnormalities detected during physical examination | |||||
Cracles n/N (% of risk category) (N = 2181) | 161/1449 (11.11%) | 127/611 (20.79%) | 31/121 (25.62%) | <0.0001 | <0.0001 a,b |
0.8675 c | |||||
Wheezing n/N (% of risk category) (N = 2181) | 101/1449 (6.97%) | 88/611 (14.4%) | 30/121 (24.79%) | <0.0001 | <0.0001 a,b |
0.0205 c | |||||
Pulmonary congestion n/N (% of risk category) (N = 2181) | 192/1449 (13.25%) | 140/611 (22.91%) | 34/121 (28.1%) | <0.0001 | <0.0001 a,b |
0.8043 c | |||||
Peripheral edema n/N (% of risk category) (N = 2181) | 88/1449 (6.07%) | 80/611 (13.09%) | 21/121 (17.36%) | <0.0001 | <0.0001 a,b |
0.817 c |
Variables, Units (N) | Low Risk | Medium Risk | High Risk | Overall Chi-Square Test p Value | p Value (for Post Hoc Analysis) |
---|---|---|---|---|---|
Applied Treatment and Procedures | |||||
Systemic corticosteroid n/N (% of risk category) (N = 2181) | 715/1449 (49.34%) | 325/611 (53.19%) | 56/121 (46.28%) | 0.1871 | N/A |
Convalescent plasma n/N (% of risk category) (N = 2181) | 158/1449 (10.9%) | 69/611 (11.29%) | 12/121 (9.92%) | 0.2008 | N/A |
Tocilizumab n/N (% of risk category) (N = 2181) | 21/1449 (1.45%) | 4/611 (0.65%) | 0/121 (0%) | 0.1955 | N/A |
Remdesivir n/N (% of risk category) (N = 2181) | 238/1449 (16.43%) | 87/611 (14.24%) | 18/121 (14.88%) | 0.4449 | N/A |
Antibiotic n/N (% of risk category) (N = 2181) | 756/1449 (52.17%) | 398/611 (65.14%) | 86/121 (71.07%) | <0.0001 | <0.0001 a |
0.0003 b | |||||
0.7441 c |
Variables, Units (N) | Low Risk | Medium Risk | High Risk | OMNIBUS p Value | p Value (for Post Hoc Analysis) |
---|---|---|---|---|---|
Applied Treatment and Procedures | |||||
The most advanced respiratory support applied during hospitalization n/N (% of risk category) (N = 2179) | <0.0001 | <0.0001 a,b | |||
No oxygen | 770/1447 (53.21%) | 227/611 (37.15%) | 34/121 (28.1%) | ||
High-flow nasal cannula (non-invasive ventilation) | 73/1447 (5.04%) | 44/611 (7.2%) | 14/121 (11.57%) | 0.2601 c | |
Invasive ventilation | 128/1447 (8.85%) | 71/611 (11.62%) | 13/121 (10.74%) | ||
Oxygenation parameters from the period of qualification for advanced respiratory support: mean ± SD min–max | |||||
SpO2 (N = 630) | 90.43 ± 7.98 | 86.76 ± 9.47 | 84.73 ± 11.28 | <0.0001 | <0.0001 a |
50–100 | 55–99 | 60–99 | |||
(420) | (168) | (42) | 0.007 b | ||
Respiratory rate, breaths/minute (N = 105) | 25.78 ± 8.55 | 30.89 ± 12.77 | 30.86 ± 17.32 | 0.1207 | |
13–50 | 14–72 | 15–60 | 0.534 c | ||
(60) | (38) | (7) | |||
Duration of mechanical ventilation, days mean ± SD min–max (N = 1386) | 1.86 ± 7.31 | 1.9 ± 6.14 | 1.09 ± 3.7 | 0.2342 | N/A |
0–91 | 0–51 | 0–20 | |||
−933 | −375 | −78 | |||
Therapy with catecholamines n/N (% of risk category) (N = 2181) | 123/1449 (8.49%) | 80/611 (13.09%) | 15/121 (12.4%) | 0.0042 | 0.0054 a |
0.5896 b | |||||
1.0 c | |||||
Coronary angiography n/N (% of risk category) (N = 2181) | 9/1449 (0.62%) | 11/611 (1.8%) | 10/121 (8.26%) | <0.0001 | 0.07 a |
<0.0001 b | |||||
0.0022 c | |||||
Coronary revascularization n/N (% of risk category) (N = 2181) | 8/1449 (0.55%) | 10/611 (1.64%) | 8/121 (6.61%) | <0.0001 | 0.1015 a |
<0.0001 b | |||||
0.0136 c | |||||
Hemodialysis n/N (% of risk category) (N = 2181) | 38/1449 (2.62%) | 25/611 (4.09%) | 8/121 (6.61%) | 0.0225 | 0.2758 a |
0.064 b | |||||
0.6909 c |
Variables, Units (N) | Low Risk | Medium Risk | High Risk | Overall Chi-Square Test p Value | p Value (for Post Hoc Analysis) |
---|---|---|---|---|---|
All-Cause Mortality Rate | |||||
In-hospital mortality n/N (% of risk category) (N = 2181) | 123/1449 (8.49%) | 160/611 (26.19%) | 43/121 (35.54%) | <0.0001 | <0.0001 a,b |
0.1404 c | |||||
3-month mortality n/N (% of risk category) (N = 2085) | 226/1371 (16.48%) | 254/594 (42.76%) | 66/120 (55.0%) | <0.0001 | <0.0001a,b |
0.0551 c | |||||
6-month mortality n/N (% of risk category) (N = 1113) | 238/606 (39.27%) | 267/412 (64.65%) | 72/95 (75.79%) | <0.0001 | <0.0001a,b |
0.151 c |
Variables, Units (N) | Low Risk | Medium Risk | High Risk | OMNIBUS p Value | p Value (for Post Hoc Analysis) |
---|---|---|---|---|---|
Hospitalization | |||||
Duration of hospitalization, days mean ± SD min–max (N = 2181) | 10.99 ± 13.3 | 15.11 ± 14.89 | 16.35 ± 15.37 | <0.0001 | <0.0001 a |
1–131 | 1–121 | 1–87 | 0.0009 b | ||
(1449) | (611) | (121) | 0.697 c | ||
Admission at ICU n/N (% of risk category) (N = 2181) | 135/1449 (9.32%) | 68/611 (11.13%) | 12/121 (9.92%) | 0.4517 | N/A |
End of hospitalization/N (% of risk category) (N = 2181) | <0.0001 | ||||
death | 125/1449 (8.49%) | 160/611 (26.19%) | 43/121 (35.54) | <0.0001 a,b | |
Discharge home—full recovery | 1000/1449 (69.01%) | 273/611 (44.68%) | 42/121 (34.71) | ||
Transfer to another hospital—worsening | 159/1449 (10.97%) | 100/611 (16.37%) | 20/121 (16.53%) | 0.4096 c | |
Transfer to another hospital—in recovery | 167/1449 (11.53) | 78/611 (12.77%) | 16/121 (13.22%) | ||
Clinical events | |||||
Aborted cardiac arrest n/N (% of risk category) (N = 2181) | 15/1449 (1.04%) | 5/611 (0.82%) | 4/121 (3.31%) | 0.0806 | N/A |
Shock n/N (% of risk category) (N = 2181) | 102/1449 (7.04) | 74/611 (12.11%) | 11/121 (9.09) | 0.0008 | 0.0007 a |
1.0 b,c | |||||
Hypovolemic shock | 20/1449 (1.38%) | 14/611 (2.29%) | 1/121 (0.83%) | 0.302 | N/A |
Cardiogenic shock | 10/1449 (0.69%) | 15/611 (2.45%) | 7/121 (5.79%) | <0.0001 | 0.0048 a |
0.0004 b | |||||
0.2192 c | |||||
Septic shock | 75/1449 (5.18%) | 57/611 (9.33%) | 8/121 (6.61%) | 0.0021 | 0.0019 a |
1.0 b,c | |||||
Venous thromboembolic disease n/N (% of risk category) (N = 2181) | 47/1449 (3.24%) | 19/611 (3.11%) | 3/121 (2.48%) | 1.00 | N/A |
Pulmonary embolism n/N (% of risk category) (N = 2181) | 38/1449 (2.62%) | 18/611 (2.95%) | 3/121 (2.48%) | 0.8603 | N/A |
Deep vein thrombosis n/N (% of risk category) (N = 2181) | 17/1449 (1.17%) | 4/611 (0.65%) | 0/121 (0%) | ||
MI n/N (% of risk category) (N = 2081) | 5/1449 (0.35%) | 14/611 (2.29%) | 7/121 (5.79%) | <0.0001 | 0.0003 a |
<0.0001 b | |||||
0.1946 c | |||||
Acute HF n/N (% of risk category) (N = 2181) | 14/1449 (0.97%) | 40/611 (6.55%) | 22/121 (18.18%) | <0.0001 | <0.0001a,b |
0.0004 c | |||||
Stroke/TIA n/N (% of risk category) (N = 2181) | 7/1449 (0.48%) | 24/611 (3.93%) | 12/121 (9.92%) | <0.0001 | <0.0001 a,b |
0.03 c | |||||
New cognitive signs and symptoms n/N (% of risk category) (N = 2181) | 36/1449 (2.48%) | 60/611 (9.82%) | 24/121 (19.83%) | <0.0001 | <0.0001a,b |
0.0081 c | |||||
Pneumonia n/N (% of risk category) (N = 2181) | 623/1449 (43.0%) | 360/611 (58.92%) | 77/121 (63.64%) | <0.0001 | <0.0001 a,b |
0.1 c | |||||
SIRS n/N (% of risk category) (N = 2112) | 147/1381 (10.64%) | 56/610 (9.18%) | 17/121 (14.05%) | 0.2482 | N/A |
Sepsis n/N (% of risk category) (N = 883) | 7/586 (1.19%) | 15/243 (6.17%) | 1/54 (1.85%) | 0.0004 | 0.0005 a |
1.0 b | |||||
0.9617 c | |||||
Acute kidney injury n/N (% of risk category) (N = 2181) | 102/1449 (7.04%) | 105/611 (17.18%) | 29/121 (23.97%) | <0.0001 | <0.0001 a,b |
0.3069 c | |||||
Acute liver dysfunction n/N (% of risk category) (N = 1972) | 30/1283 (2.34%) | 31/573 (5.41%) | 5/116 (4.31%) | 0.0024 | 0.0031 a |
0.6138 b | |||||
1.0 c | |||||
MODS n/N (% of risk category) (N = 2181) | 22/1449 (1.52%) | 11/611 (1.8%) | 4/121 (3.31%) | 0.2827 | N/A |
LA n/N (% of risk category) (N = 245) | 8/105 (7.62%) | 9/103 (8.74%) | 5/37 (13.51%) | 0.5431 | N/A |
Hyperlactemia n/N (% of risk category) (N = 245) | 81/105 (77.14%) | 61/103 (59.22%) | 25/37 (67.57%) | 0.0213 | 0.0258 a |
1.0 b,c | |||||
Bleedings n/N (% of risk category) (N = 2181) | 58/1449 (4.0%) | 46/611 (7.53%) | 10/121 (8.26%) | 0.0014 | 0.0037 a |
0.1431 b | |||||
1.0 c | |||||
Intracranial bleeding n/N (% of risk category) (N = 2181) | 7/1449 (0.45%) | 12/611 (1.96%) | 2/121 (1.65%) | 0.0049 | 0.0109 a |
0.4458 b | |||||
1.0 c | |||||
Respiratory tract bleeding n/N (% of risk category) (N = 2181) | 20/1449 (1.38%) | 11/611 (1.8%) | 3/121 (2.48%) | 0.4718 | N/A |
Gastrointestinal tract bleeding n/N (% of risk category) (N = 1047) | 20/1449 (1.38%) | 20/611 (3.27%) | 1/121 (0.83%) | 0.0082 | 0.015 a |
1.0 b | |||||
0.2092 c | |||||
Urinary tract bleeding n/N (% of risk category) (N = 1047) | 6/1449 (0.41%) | 8/611 (1.31%) | 4/121 (3.35%) | 0.0019 | 0.1083 a |
0.0147 b | |||||
0.3617 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resler, K.; Lubieniecki, P.; Zatonski, T.; Doroszko, A.; Trocha, M.; Skarupski, M.; Kujawa, K.; Rabczynski, M.; Kuznik, E.; Bednarska-Chabowska, D.; et al. Usefulness of the CHA2DS2-VASc Score in Predicting the Outcome in Subjects Hospitalized with COVID-19—A Subanalysis of the COLOS Study. Microorganisms 2024, 12, 2060. https://doi.org/10.3390/microorganisms12102060
Resler K, Lubieniecki P, Zatonski T, Doroszko A, Trocha M, Skarupski M, Kujawa K, Rabczynski M, Kuznik E, Bednarska-Chabowska D, et al. Usefulness of the CHA2DS2-VASc Score in Predicting the Outcome in Subjects Hospitalized with COVID-19—A Subanalysis of the COLOS Study. Microorganisms. 2024; 12(10):2060. https://doi.org/10.3390/microorganisms12102060
Chicago/Turabian StyleResler, Katarzyna, Pawel Lubieniecki, Tomasz Zatonski, Adrian Doroszko, Malgorzata Trocha, Marek Skarupski, Krzysztof Kujawa, Maciej Rabczynski, Edwin Kuznik, Dorota Bednarska-Chabowska, and et al. 2024. "Usefulness of the CHA2DS2-VASc Score in Predicting the Outcome in Subjects Hospitalized with COVID-19—A Subanalysis of the COLOS Study" Microorganisms 12, no. 10: 2060. https://doi.org/10.3390/microorganisms12102060
APA StyleResler, K., Lubieniecki, P., Zatonski, T., Doroszko, A., Trocha, M., Skarupski, M., Kujawa, K., Rabczynski, M., Kuznik, E., Bednarska-Chabowska, D., Madziarski, M., Trocha, T., Sokolowski, J., Jankowska, E. A., & Madziarska, K. (2024). Usefulness of the CHA2DS2-VASc Score in Predicting the Outcome in Subjects Hospitalized with COVID-19—A Subanalysis of the COLOS Study. Microorganisms, 12(10), 2060. https://doi.org/10.3390/microorganisms12102060