Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Media
2.2. Growth Under Solvent, Osmotic and Temperature Stress
2.3. Extraction of Membrane Lipids
2.4. Bioinformatic Analysis
3. Results and Discussion
3.1. Growth of Five Halopseudomonas Strains in Mineral Medium
3.2. Distribution of Cti Genes Among Halopseudomonas
3.3. Growth Under Solvent, Osmotic and Temperature Stress
3.4. Binding Motifs Comparison and Signal Peptides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Carvalho, C.C.C.R.; da Fonseca, M.M. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 2005, 51, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Molina, L.; Fillet, S.; Krell, T.; Bernal, P.; Munoz-Rojas, J.; Ramos, J.-L. Solvent tolerance in Gram-negative bacteria. Curr. Opin. Biotechnol. 2012, 23, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Muriel-Millan, L.F.; Millan-Lopez, S.; Pardo-Lopez, L. Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Appl. Microbiol. Biotechnol. 2021, 105, 7171–7185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Li, L.-Z.; Wu, Y.; Tian, W.; Zhang, L.-P.; Xu, L.; Shen, Q.-R.; Shen, B. Isolation of an alkane-degrading Alcanivorax sp. strain 2B5 and cloning of the alkB gene. Bioresour. Technol. 2010, 101, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, J.; Liang, R.; Liu, J. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS ONE 2014, 9, e105506. [Google Scholar] [CrossRef]
- Silby, M.W.; Winstanley, C.; Godfrey, S.A.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev. 2011, 35, 652–680. [Google Scholar] [CrossRef]
- Ma, C.; Mu, Q.; Xue, Y.; Xue, Y.; Yu, B.; Ma, Y. One major facilitator superfamily transporter is responsible for propionic acid tolerance in Pseudomonas putida KT2440. Microb. Biotechnol. 2021, 14, 386–391. [Google Scholar] [CrossRef]
- Verhoef, S.; Ballerstedt, H.; Volkers, R.J.; de Winde, J.H.; Ruijssenaars, H.J. Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: Novel responses and implications for strain improvement. Appl. Microbiol. Biot. 2010, 87, 679–690. [Google Scholar] [CrossRef]
- Kampers, L.F.C.; Volkers, R.J.M.; dos Santos, V.A.P.M. Pseudomonas putida KT2440 is HV1 certified, not GRAS. Microb. Biotechnol. 2019, 12, 845–848. [Google Scholar] [CrossRef]
- Keshavarz-Tohid, V.; Vacheron, J.; Dubost, A.; Prigent-Combaret, C.; Taheri, P.; Tarighi, S.; Taghavi, S.M.; Moënne-Loccoz, Y.; Muller, D. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst. Appl. Microbiol. 2019, 42, 468–480. [Google Scholar] [CrossRef]
- Bitzenhofer, N.L.; Kruse, L.; Thies, S.; Wynands, B.; Lechtenberg, T.; Rönitz, J.; Kozaeva, E.; Wirth, N.T.; Eberlein, C.; Jaeger, K.-E.; et al. Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem. 2021, 65, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Nikel, P.I.; de Lorenzo, V. Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. Metab. Eng. 2018, 50, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, A.; Thies, S.; Katzke, N.; Jaeger, K.E. The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microb. Biotechnol. 2018, 13, 19–31. [Google Scholar] [CrossRef]
- Rudra, B.; Gupta, R.S. Phylogenomic and comparative genomic analyses of species of the family Pseudomonadaceae: Proposals for the genera Halopseudomonas gen. nov. and Atopomonas gen. nov., merger of the genus Oblitimonas with the genus Thiopseudomonas and transfer of some misclassified species of the genus Pseudomonas into other genera. Int. J. Syst. Evol. Microbiol. 2021, 71, 005011. [Google Scholar] [CrossRef]
- Molitor, R.; Bollinger, A.; Kubicki, S.; Loeschcke, A.; Jaeger, K.E.; Thies, S. Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species. Microb. Biotechnol. 2020, 13, 274–284. [Google Scholar] [CrossRef]
- Zukic, E.; Mokos, D.; Weber, M.; Stix, N.; Ditrich, K.; Ferrario, V.; Müller, H.; Willrodt, C.; Gruber, K.; Daniel, B.; et al. Biocatalytic Heteroaromatic Amide Formation in Water Enabled by a Catalytic Tetrad and Two Access Tunnels. ACS Catal. 2024, 14, 8913–8921. [Google Scholar] [CrossRef]
- Villela, H.; Modolon, F.; Schultz, J.; Delgadillo-Ordoñez, N.; Carvalho, S.; Soriano, A.U.; Peixoto, R.S. Genome analysis of a coral-associated bacterial consortium highlights complementary hydrocarbon degradation ability and other beneficial mechanisms for the host. Sci. Rep. 2023, 13, 12273. [Google Scholar] [CrossRef]
- Gomila, M.; Mulet, M.; Lalucat, J.; Garcia-Valdes, E. Draft Genome Sequence of the Marine Bacterium Pseudomonas aestusnigri VGXO14(T). Genome Announc. 2017, 5, e00765-17. [Google Scholar] [CrossRef]
- de Witt, J.; Molitor, R.; Gätgens, J.; Northumberland, C.O.d.P.; Kruse, L.; Polen, T.; Wynands, B.; van Goethem, K.; Thies, S.; Jaeger, K.; et al. Biodegradation of poly(ester-urethane) coatings by Halopseudomonas formosensis. Microb. Biotechnol. 2024, 17, e14362. [Google Scholar] [CrossRef]
- Avilan, L.; Lichtenstein, B.R.; König, G.; Zahn, M.; Allen, M.D.; Oliveira, L.; Clark, M.; Bemmer, V.; Graham, R.; Austin, H.P.; et al. Concentration-Dependent Inhibition of Mesophilic PETases on Poly(ethylene terephthalate) Can Be Eliminated by Enzyme Engineering. ChemSusChem 2023, 16, e202202277. [Google Scholar] [CrossRef]
- Kruse, L.; Loeschcke, A.; de Witt, J.; Wierckx, N.; Jaeger, K.E.; Thies, S. Halopseudomonas species: Cultivation and molecular genetic tools. Microb. Biotechnol. 2024, 17, e14369. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, M.J.C.; Schmidgall, T.; Pohl, J.; Wagner, G.; Wynands, B.; Wierckx, N.; Heipieper, H.J.; Eberlein, C. Assessment of New and Genome-Reduced Strains Regarding Their Robustness as Chassis in Biotechnological Applications. Microorganisms 2023, 11, 837. [Google Scholar] [CrossRef] [PubMed]
- Eberlein, C.; Baumgarten, T.; Starke, S.; Heipieper, H.J. Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: Isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl. Microbiol. Biotechnol. 2018, 102, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- von Wallbrunn, A.; Richnow, H.H.; Neumann, G.; Meinhardt, F.; Heipieper, H.J. Mechanism of cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. J. Bacteriol. 2003, 185, 1730–1733. [Google Scholar] [CrossRef]
- Hartmans, S.; Smits, J.P.; van der Werf, M.J.; Volkering, F.; de Bont, J.A.M. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124x. Appl. Environ. Microbiol. 1989, 55, 2850–2855. [Google Scholar] [CrossRef]
- Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 1987, 30, 81–87. [Google Scholar] [CrossRef]
- Heipieper, H.J.; Loffeld, B.; Keweloh, H.; de Bont, J.A.M. The Cis/Trans Isomerization of Unsaturated Fatty-Acids in Pseudomonas putida S12—An Indicator for Environmental-Stress Due to Organic-Compounds. Chemosphere 1995, 30, 1041–1051. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Phys. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Morrison, W.R.; Smith, L.M. Preparation of Fatty Acid Methyl Esters + Dimethylacetals from Lipids with Boron Fluoride-Methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Teufel, F.; Armenteros, J.J.A.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef]
- Wang, M.Q.; Sun, L. Pseudomonas oceani sp. nov., isolated from deep seawater. Int. J. Syst. Evol. Microbiol. 2016, 66, 4250–4255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.C.; Liu, H.C.; Zhou, Y.G.; Schinner, F.; Margesin, R. Pseudomonas bauzanensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 2333–2337. [Google Scholar] [CrossRef] [PubMed]
- Sánchez , D.; Mulet, M.; Rodríguez, A.C.; David, Z.; Lalucat, J.; García-Valdés, E. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill. Syst. Appl. Microbiol. 2014, 37, 89–94. [Google Scholar] [CrossRef]
- Romanenko, L.A.; Uchino, M.; Falsen, E.; Frolova, G.M.; Zhukova, N.V.; Mikhailov, V.V. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int. J. Syst. Evol. Microbiol. 2005, 55, 919–924. [Google Scholar] [CrossRef]
- Pascual, J.; Lucena, T.; Ruvira, M.A.; Giordano, A.; Gambacorta, A.; Garay, E.; Arahal, D.R.; Pujalte, M.J.; Macián, M.C. Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int. J. Syst. Evol. Microbiol. 2012, 62, 438–444. [Google Scholar] [CrossRef]
- Heipieper, H.J.; de Bont, J.A.M. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol. 1994, 60, 4440–4444. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.M.; Poolman, B. Mechanisms of Membrane Toxicity of Hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Weber, F.J.; de Bont, J.A.M. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta 1996, 1286, 225–245. [Google Scholar] [CrossRef]
- Guckert, J.B.; Hood, M.A.; White, D.C. Phospholipid Ester-Linked Fatty-Acid Profile Changes during Nutrient Deprivation of Vibrio cholerae Increases in the Trans Cis Ratio and Proportions of Cyclopropyl Fatty-Acids. Appl. Environ. Microbiol. 1986, 52, 794–801. [Google Scholar] [CrossRef]
- Naether, D.J.; Slawtschew, S.; Stasik, S.; Engel, M.; Olzog, M.; Wick, L.Y.; Timmis, K.N.; Heipieper, H.J. Adaptation of the Hydrocarbonoclastic Bacterium Alcanivorax borkumensis SK2 to Alkanes and Toxic Organic Compounds: A Physiological and Transcriptomic Approach. Appl. Environ. Microbiol. 2013, 79, 4282–4293. [Google Scholar] [CrossRef]
- Loeffler, C.; Eberlein, C.; Mausezahl, I.; Kappelmeyer, U.; Heipieper, H.J. Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds. FEMS Microbiol. Lett. 2010, 308, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Heipieper, H.J.; Meulenbeld, G.; van Oirschot, Q.; de Bont, J.A.M. Effect of Environmental Factors on the trans/cis Ratio of Unsaturated Fatty Acids in Pseudomonas putida S12. Appl. Environ. Microbiol. 1996, 62, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Mauger, M.; Ferreri, C.; Chatgilialoglu, C.; Seemann, M. The bacterial protective armor against stress: The isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. J. Inorg. Biochem. 2021, 224, 111564. [Google Scholar] [CrossRef] [PubMed]
- Holtwick, R.; Keweloh, H.; Meinhardt, F. cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8:: Evidence for a heme protein of the cytochrome c Type. Appl. Environ. Microbiol. 1999, 65, 2644–2649. [Google Scholar] [CrossRef]
- Espinosa, M.J.C.; Blanco, A.C.; Schmidgall, T.; Atanasoff-Kardjalieff, A.K.; Kappelmeyer, U.; Tischler, D.; Pieper, D.H.; Heipieper, H.J.; Eberlein, C. Toward Biorecycling: Isolation of a Soil Bacterium That Grows on a polyurethane Oligomer and Monomer. Front. Microbiol. 2020, 11, 404. [Google Scholar] [CrossRef]
- Buddelmeijer, N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol. Rev. 2015, 39, 246–261. [Google Scholar] [CrossRef]
Organism | Growth Rate µ [h−1] | Standard Deviation |
---|---|---|
H. aestusnigri VGXO14R | 0.47 | ±0.016 |
H. litoralis 2SM5R | 0.29 | ±0.005 |
H. oceani KX20R | 0.32 | ±0.018 |
H. bauzanensis BZ93R | 0.27 | ±0.031 |
H. pachastrellae JCM 12285 | 0.22 | n.d. |
Organism | Accession Number | Cti-Gene Present | Cti Accession Number | Stress Tolerance Tested |
---|---|---|---|---|
H. litoralis 2SM5R | NZ_LT629748 | - | - | + |
H. bauzanensis BZ93R | NZ_FOGN01000016 | - | - | + |
H. aestusnigri VGXO14R | NZ_NBYK01000004 | + | WP_088275311 | + |
H. oceani KX20R | NZ_PPSK01000004 | + | WP_229744351 | + |
H. pachastrellae JCM 12285 | NZ_FOUD01000015 | + | WP_083727452 | + |
P. abyssi MT5 | NZ_NTMR00000000 | + | WP_096004757 | - |
H. gallaeciensis V113 | NZ_LMAZ00000000 | + | WP_118129608 | - |
H. pelagia CL-AP6 | NZ_AROI00000000 | + | WP_235801961 | - |
H. sabulinigri JCM 13963 | NZ_LT629763 | + | WP_092284319 | - |
Halopseudomonas sp. RR6 | NZ_CP079801 | + | WP_238871345 | - |
Organism | C4 | C6 | C8 | C10 |
---|---|---|---|---|
Pseudomonas taiwanensis VBL120 | 111.3 | 6.0 | 1.4 | 0.3 |
Halopseudomonas aestusnigri VGXO14R | 77.0 | 3.8 | 0.5 | 0.1 |
Halopseudomonas litoralis 2SM5R | 35.0 | 2.2 | 0.3 | 0.1 |
Halopseudomonas oceani KX20R | 45.9 | 5.1 | 0.3 | 0.2 |
Halopseudomonas bauzanensis BZ93R | 30.4 | 2.7 | 0.2 | 0.0 |
Halopseudomonas pachastrellae JCM 12285 | 73.8 | 9.5 | 0.5 | 0.1 |
Strain | Control | C4 | C6 | C8 | C10 | 1 M NaCl | 45 °C |
---|---|---|---|---|---|---|---|
Pseudomonas taiwanensis VBL120 | 0.39 | 0.72 | 1.16 | 1.5 | 1.49 | n.d. | n.d. |
Halopseudomonas aestusnigri VGXO14R | 0.05 | 0.02 | 0.04 | 0.02 | 0.06 | 0.08 | 0.02 |
Halopseudomonas litoralis 2SM5R | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Halopseudomonas oceani KX20R | 0.001 | 0.01 | 0.01 | 0.00 | 0.03 | 0.00 | 0.01 |
Halopseudomonas bauzanensis BZ93R | 0.02 | 0.01 | 0.02 | 0.01 | 0.04 | 0.13 | 0.00 |
Organism | Output SignalP 6.0 | Probability | Assumed Protein Location |
---|---|---|---|
P. aeruginosa PAO1 | Sec/SPI | 0.9992 | Periplasmic |
P. capeferrum TDA1 | Sec/SPI | 0.9991 | Periplasmic |
H. aestusnigri VGXO14R | Sec/SPII | 0.7513 | Periplasmic and membrane-anchored |
H. oceani KX20R | Sec/SPI | 0.9987 | Periplasmic |
H. pachastrellae JCM 12285 | Sec/SPII | 0.9996 | Periplasmic and membrane-anchored |
P. abyssi MT5 | Sec/SPII | 0.9996 | Periplasmic and membrane-anchored |
H. gallaeciensis V113 | Sec/SPII | 0.9989 | Periplasmic and membrane-anchored |
H. pelagia CL-AP6 | Sec/SPI | 0.9952 | Periplasmic |
H. sabulinigri JCM 13963 | Sec/SPII | 0.9997 | Periplasmic and membrane-anchored |
Halopseudomonas sp. RR6 | Sec/SPII | 0.9962 | Periplasmic and membrane-anchored |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertoldi, S.; Mattos, P.D.M.A.S.; de Carvalho, C.C.C.R.; Kruse, L.; Thies, S.; Heipieper, H.J.; Eberlein, C. Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas. Microorganisms 2024, 12, 2116. https://doi.org/10.3390/microorganisms12112116
Bertoldi S, Mattos PDMAS, de Carvalho CCCR, Kruse L, Thies S, Heipieper HJ, Eberlein C. Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas. Microorganisms. 2024; 12(11):2116. https://doi.org/10.3390/microorganisms12112116
Chicago/Turabian StyleBertoldi, Simone, Pedro D. M. A. S. Mattos, Carla C. C. R. de Carvalho, Luzie Kruse, Stephan Thies, Hermann J. Heipieper, and Christian Eberlein. 2024. "Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas" Microorganisms 12, no. 11: 2116. https://doi.org/10.3390/microorganisms12112116