Comparative Genomics and In Vitro Experiments Provide Insight into the Adaptation and Probiotic Properties of Shouchella clausii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples and Isolates
2.2. Genomic DNA Extraction, 16S rRNA Gene Identification, and Genome Sequencing
2.3. Adaptation Assessment of pH, Temperature and Salinity
2.4. Phylogenomic Tree Construction
2.5. Degradation Ability Assays of Starch, Protein, and Cellulose
2.6. Hemolysis Test
2.7. Antibiotic Susceptibility Test
2.8. Data Availability
3. Results
3.1. Isolation and Identification of S. clausii
3.1.1. Sample Collection and Preliminary Identification
3.1.2. Genome and Phylogenetic Analysis
3.2. Environmental Adaptability of S. clausii
3.2.1. Adaptability to Temperature, pH, and Salinity
3.2.2. Homeostasis in Extreme Environments by Genome Analysis
3.2.3. Carbon and Nitrogen Source Utilization Capacity
3.3. Probiotic Properties Through Genome Analysis
3.3.1. Antibiotic Resistance in S. clausii
3.3.2. Bacteriocins in S. clausii
3.3.3. Folate Biosynthesis Pathways in S. clausii
3.3.4. Toxin Genes in S. clausii
3.3.5. Hemolysis Test Results
4. Discussion
4.1. Strain Distribution and Genomic Analysis of Adaptability
4.2. Probiotic Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Gupta, R.S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Thite, S.; Karodi, P.; Joseph, N.; Lodha, T. Alkalihalobacterium elongatum gen. nov. sp. nov.: An Antibiotic-Producing Bacterium Isolated From Lonar Lake and Reclassification of the Genus Alkalihalobacillus Into Seven Novel Genera. Front. Microbiol. 2021, 12, 722369. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, L.; Cao, X.; Wu, Y.; Lu, F.; Liu, F.; Li, Y.; Liu, Y. Improving the activity and stability of Bacillus clausii alkaline protease using directed evolution and molecular dynamics simulation. Enzym. Microb. Technol. 2021, 147, 109787. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Joshi, M.; Rath, S.; Singh, D.; Dwibedi, V. Isolation of Alpha Amylase-Producing Bacteria from Local Region of Ambala and Production of Amylase Under Optimized Factors Using Solid-State Fermentation. Curr. Microbiol. 2022, 79, 375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, T.; Miao, M.; Wei, Z.; Lv, H. Characterization of a recombinant endo-β-1,3-glucanase from Alkalihalobacillus Clausii KSM-K16 and its application in the production of curdlan oligosaccharides. Food Biosci. 2024, 57, 103566. [Google Scholar] [CrossRef]
- Nighat, F.; Mushtaq, Z. In Vitro Antimicrobial and Antioxidant Activities of Organic and Aqueous Extracts of Bacillus clausii KP10. J. Chem. Soc. Pak. 2019, 41, 161. [Google Scholar] [CrossRef]
- Hazra, C.; Kundu, D.; Chaudhari, A. Lipopeptide biosurfactant from Bacillus clausii BS02 using sunflower oil soapstock: Evaluation of high throughput screening methods, production, purification, characterization and its insecticidal activity. RSC Adv. 2015, 5, 2974–2982. [Google Scholar] [CrossRef]
- Ghadbane, M.; Harzallah, D.; Jaouadi, B.; Atef, I.L.; Belhadj, H. New Bacteriocin from Bacillus clausii Strain GM17: Purification, Characterization, and Biological Activity. Appl. Biochem. Biotechnol. 2013, 171, 2186–2200. [Google Scholar] [CrossRef]
- Kong, X.; Jiang, J.; Qiao, B.; Liu, H.; Cheng, J.; Yang, Y. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways. Sci. Total Environ. 2019, 651, 271–280. [Google Scholar] [CrossRef]
- Rochín-Medina, J.J.; Ramírez, K.; Rangel-Peraza, J.G.; Bustos-Terrones, Y.A. Increase of content and bioactivity of total phenolic compounds from spent coffee grounds through solid state fermentation by Bacillus clausii. J. Food Sci. Technol. 2018, 55, 915–923. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Q.-M.; Yu, S.-C.; Cheng, J.; Yang, Y. Bio-removal of tetracycline antibiotics under the consortium with probiotics Bacillus clausii T and Bacillus amylo-liquefaciens producing biosurfactants. Sci. Total Environ. 2020, 710, 136329. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Li, C.; Zhang, N.; He, X.; Yang, H.; Yan, Z.; Zhou, Y.; Tian, H.; Huang, K. A novel endophytic bacterial strain improves potato storage characteristics by degrading glycoalkaloids and regulating microbiota. Postharvest Biol. Technol. 2023, 196, 112176. [Google Scholar] [CrossRef]
- Ferreira da Silva, D.J.; da Silva Brabes, K.C.; Falcão, E.A. Evaluation of the biotransformation of alkali-silica reaction products by Alkalihalobacillus clausii and Bacillus thuringiensis. Cem. Concr. Compos. 2024, 146, 105399. [Google Scholar] [CrossRef]
- Ghelardi, E.; Abreu y Abreu, A.T.; Boggio Marzet, C.; Álvarez Calatayud, G.; Perez, M., III; Moschione Castro, A.P. Current Progress and Future Perspectives on the Use of Bacillus clausii. Microorganisms 2022, 10, 1246. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, G.L.; Tosca, M.; Cirillo, I.; Licari, A.; Leone, M.; Marseglia, A.; Castellazzi, A.M.; Ciprandi, G. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: A pilot study. Ther. Clin. Risk Manag. 2007, 3, 13–17. [Google Scholar] [CrossRef]
- Ianiro, G.; Rizzatti, G.; Plomer, M.; Lopetuso, L.R.; Scaldaferri, F.; Franceschi, F.; Cammarota, G.; Gasbarrini, A. Bacillus clausii for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2018, 10, 1074. [Google Scholar] [CrossRef]
- Paparo, L.; Tripodi, L.; Bruno, C.; Pisapia, L.; Damiano, C.; Pastore, L.; Berni Canani, R. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef]
- Dong, Z.-Y.; Rao, M.P.N.; Wang, H.; Fang, B.-Z.; Liu, Y.; Li, L.; Xiao, M.; Li, W. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci. Total Environ. 2019, 686, 107–117. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Kwon, S.-J.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 2012, 1, 18. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.F.; Rødland, E.A.; Stærfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef] [PubMed]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.R.; Chen, G.L.; LoCascio, P.F.; Land, M.; Larimer, F.W.; Hauser, L. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2016, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Lombard, V.; Ramulu, H.G.; Drula, É.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2013, 42, D490–D495. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.M.; Lim, J.; Kwon, S.-J.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Rao, M.P.N.; Dong, Z.-Y.; Yu, K.-T.; Dong, L.; Li, S.; Xiao, M.; Yang, K.; Zhang, K.; Li, W. Description of Paenibacillus tepidiphilus sp. nov., isolated from a tepid spring. Int. J. Syst. Evol. Microbiol. 2020, 70, 1977–1981. [Google Scholar] [CrossRef]
- Page, A.J.; Taylor, B.; Delaney, A.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2016, 2, e000056. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Letunić, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- González Pereyra, M.L.; Di Giácomo, A.L.; Lara, A.L.; Martínez, M.P.; Cavaglieri, L.R. Aflatoxin-degrading Bacillus sp. strains degrade zearalenone and produce proteases, amylases and cellulases of agro-industrial interest. Toxicon 2020, 180, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, M.; Raja, M.; Perumal, P. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquac. Rep. 2018, 11, 59–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Gross, C.A. Cold Shock Response in Bacteria. Annu. Rev. Genet. 2021, 55, 377–400. [Google Scholar] [CrossRef]
- Ito, M.; Morino, M.; Krulwich, T.A. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front. Microbiol. 2017, 8, 2325. [Google Scholar] [CrossRef]
- Wani, A.K.; Akhtar, N.; Sher, F.; Navarrete, A.A.; Américo-Pinheiro, J.H.P. Microbial adaptation to different environmental conditions: Molecular perspective of evolved genetic and cellular systems. Arch. Microbiol. 2022, 204, 144. [Google Scholar] [CrossRef]
- Vaňousová, K.; Beranová, J.; Fišer, R.; Jemioła-Rzemińska, M.; Lišková, P.; Cybulski, L.E.; Strzałka, K.; Konopásek, I. Membrane fluidization by alcohols inhibits DesK-DesR signalling in Bacillus subtilis. Biochim. Biophys. Acta Biomembr. 2018, 1860, 718–727. [Google Scholar] [CrossRef]
- Bortolotti, A.; Vázquez, D.B.; Almada, J.C.; Inda, M.E.; Drusin, S.I.; Villalba, J.M.; Moreno, D.M.; Ruysschaert, J.M.; Cybulski, L.E. A Transmembrane Histidine Kinase Functions as a pH Sensor. Biomolecules 2020, 10, 1183. [Google Scholar] [CrossRef]
- Roy, A.; Ray, S. Traversing DNA-Protein Interactions Between Mesophilic and Thermophilic Bacteria: Implications from Their Cold Shock Response. Mol. Biotechnol. 2024, 66, 824–844. [Google Scholar] [CrossRef]
- Honoré, F.A.; Méjean, V.; Genest, O. Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis. Cell Rep. 2017, 19, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Wholey, W.Y.; Jakob, U. Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae. Mol. Microbiol. 2012, 83, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Imamoglu, R.; Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein. Nat. Commun. 2020, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Gragerov, A.; Nudler, E.; Комиссарова, Н.В.; Gaitanaris, G.A.; Gottesman, M.E.; Nikiforov, V. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 1992, 89, 10341–10344. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.-H.; Liao, C.-T.; Li, C.-E.; Chiang, Y.-C.; Hsiao, Y.-M. The clpX gene plays an important role in bacterial attachment, stress tolerance, and virulence in Xanthomonas campestris pv. campestris. Arch. Microbiol. 2019, 202, 597–607. [Google Scholar] [CrossRef]
- Zheng, E.J.; Andrews, I.W.; Grote, A.; Manson, A.L.; Alcantar, M.A.; Earl, A.M.; Collins, J.J. Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies. Nat. Commun. 2022, 13, 2525. [Google Scholar] [CrossRef]
- Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 2012, 3, 289–306. [Google Scholar] [CrossRef]
- Kanmani, P.; Kumar, R.; Yuvaraj, N.; Paari, K.A.; Pattukumar, V.; Venkatesan, A. Probiotics and Its Functionally Valuable Products—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef]
- Peters, V.B.M.; van de Steeg, E.; van Bilsen, J.; Meijerink, M. Mechanisms and immunomodulatory properties of pre- and probiotics. Benef. Microbes 2019, 10, 225–236. [Google Scholar] [CrossRef]
- Hay, A.J.; Zhu, J. In Sickness and in Health: The Relationships Between Bacteria and Bile in the Human Gut. Adv. Appl. Microbiol. 2016, 96, 43–64. [Google Scholar] [CrossRef]
- Myo, T.; Wei, F.; Zhang, H.; Hao, J.; Zhang, B.; Liu, Z.; Cao, G.; Tian, B.; Shi, G. Genome-wide identification of the BASS gene family in four Gossypium species and functional characterization of GhBASSs against salt stress. Sci. Rep. 2021, 11, 11342. [Google Scholar] [CrossRef] [PubMed]
- Courvalin, P. Antibiotic resistance: The pros and cons of probiotics. Dig. Liver Dis. 2006, 38, S261–S265. [Google Scholar] [CrossRef] [PubMed]
- Abbrescia, A.; Palese, L.L.; Papa, S.; Gaballo, A.; Alifano, P.; Sardanelli, A.M. Antibiotic Sensitivity of Bacillus clausii Strains in Commercial Preparation. Clin. Immunol. Endocr. Metab. Drugs 2014, 1, 102–110. [Google Scholar] [CrossRef]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol. 2019, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, S.G.; Jayanthi, N.V.; Saravanan, M.; Ratna, M.S. Safety assessment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol. Rep. 2017, 4, 62–71. [Google Scholar] [CrossRef]
- Galopin, S.; Cattoir, V.; Leclercq, R. A chromosomal chloramphenicol acetyltransferase determinant from a probiotic strain of Bacillus clausii. FEMS Microbiol. Lett. 2009, 296, 185–189. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, W.; Paik, H.D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef]
- Heidari, H.R.K.; Budiša, N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front. Microbiol. 2020, 11, 590522. [Google Scholar] [CrossRef]
- Díaz-Madriz, J.P.; Zavaleta-Monestel, E.; Rojas-Chinchilla, C.; Arguedas-Chacón, S.; Serrano-Arias, B.; Ferreto-Meza, M.A.; Romero-Chavarría, B.M.; Zumbado-Amerling, P.; Vásquez-Mendoza, A.F.; Gutiérrez-González, K.S. Bacteremia following Alkalihalobacillus clausii (Formerly Bacillus clausii) Administration in Immunosuppressed Adults: A Case Series. Bacteria 2023, 2, 185–195. [Google Scholar] [CrossRef]
- Su, D.; Liang, L.; Li, Z.; Lin, Q.; Peng, C.; Lei, X.; Liu, S. Genome analysis of two Lactobacillus plantarum strains, LLY-606 and pc-26, for evaluating their potential as probiotics. J. Microbiol. Biotechnol. 2020, 29, 841163. [Google Scholar] [CrossRef]
- Baldwin, V.M. You Can’t B. cereus—A Review of Bacillus cereus Strains That Cause Anthrax-Like Disease. Front. Microbiol. 2020, 11, 1731. [Google Scholar] [CrossRef] [PubMed]
- Merino, S.; Aguilar, A.; Nogueras, M.M.; Regué, M.; Swift, S.; Tomás, J.M. Cloning, Sequencing, and Role in Virulence of Two Phospholipases (A1 and C) from Mesophilic Aeromonas sp. Serogroup O:34. Infect. Immun. 1999, 67, 4008–4013. [Google Scholar] [CrossRef] [PubMed]
Strain Code | Province | Site | Host | Habitat | Similarity (%) | Content (cfu/g) | Soil pH |
---|---|---|---|---|---|---|---|
FJAT-27233 | Heilongjiang | Heihe Town | Grass | Wudalianchi Volcano | 99.8 | 1 × 103 | 7.5 |
FJAT-41143 | Fujian | Fuqing Town | Microbial fermentation bed (MFB) of raising pig | MFB | 99.9 | 13 × 105 | 7.5 |
FJAT-41148 | MFB | 99.9 | 1 × 105 | 7.5 | |||
FJAT-41180 | MFB | 99.9 | 4 × 105 | 7.5 | |||
FJAT-41199 | MFB | 99.6 | 3 × 105 | 7.5 | |||
FJAT-41355 | MFB | 99.6 | 1 × 105 | 7.5 | |||
FJAT-41430 | MFB | 99.6 | 2 × 105 | 7.5 | |||
FJAT-41565 | MFB | 99.6 | 4 × 105 | 7.5 | |||
FJAT-41576 | MFB | 99.8 | 1 × 106 | 7.5 | |||
FJAT-41623 | MFB | 99.6 | 1 × 106 | 7.5 | |||
FJAT-41641 | MFB | 99.62 | 1 × 105 | 7.5 | |||
FJAT-41659 | MFB | 99.6 | 1 × 105 | 7.5 | |||
FJAT-41682 | MFB | 99.8 | 2 × 106 | 7.5 | |||
FJAT-41729 | MFB | 99.6 | 2 × 106 | 7.5 | |||
FJAT-41736 | MFB | 99.8 | 2 × 106 | 7.5 | |||
FJAT-41761 | MFB | 99.9 | 1 × 106 | 7.5 | |||
FJAT-41765 | MFB | 99.7 | 2 × 105 | 7.5 | |||
FJAT-42910 | Zhangzhou City | Soil | Marine sediment | 99.9 | 1 | 7.5 | |
FJAT-46447 | Ningde City | Soil | Marine sediment | 99.8 | 0.5 × 103 | 8.64 | |
FJAT-46477 | Soil | Marine sediment | 99.7 | 0.05 × 103 | 8.64 | ||
FJAT-47732 | Yunxiao County, Zhangzhou City | Mangrove | Marine sediment | 99.7 | 0.5 × 103 | 6.87 | |
FJAT-47757 | Mangrove | Marine sediment | 99.8 | 0.5 × 103 | 7.04 | ||
FJAT-47764 | Mangrove | Marine sediment | 99.9 | 0.5 × 103 | 6.79 | ||
FJAT-44510 | Qinghai | Qinghai Lake | Grass | Saline-alkali soil | 99.9 | 20 | 8.73 |
FJAT-44511 | Grass | Saline-alkali soil | 99.8 | 10 | 8.73 | ||
FJAT-45152 | Hoh Xil | Grass | Saline-alkali soil | 100.0 | 10 | 8.26 | |
FJAT-45178 | Sichuang | MAO County, Aba Tibetan and Qiang Autonomous Prefecture | Soil | Mountains | 99.6 | 0.01 × 103 | 8.12 |
FJAT-45180 | Soil | Mountains | 99.7 | 0.1 × 103 | 8.12 | ||
FJAT-45184 | Soil | Mountains | 99.6 | 0.1 × 103 | 8.12 | ||
FJAT-45219 | Soil | Mountains | 99.8 | 60 | 7.62 | ||
FJAT-45222 | Pine Tree | Mountains | 100 | 10 | 7.84 | ||
FJAT-45234 | Soil | Mountains | 99.8 | 20 | 7.75 | ||
FJAT-45236 | Soil | Mountains | 99.6 | 20 | 7.75 | ||
FJAT-45247 | Loranthus sp. | Mountains | 99.8 | 0.1 × 103 | 5.83 | ||
FJAT-45335 | Xinjiang | Karamay | Gobi | Desert | 99.9 | 0.01 × 103 | 8.12 |
FJAT-45362 | Xinyuan County, Yili Prefecture | Grass | Grasslands | 99.8 | 0.04 × 103 | 6.71 | |
FJAT-45363 | Grass | Grasslands | 99.8 | 0.03 × 103 | 6.71 | ||
FJAT-45535 | Grass | Grasslands | 99.9 | 0.56 × 103 | 7.15 | ||
FJAT-45542 | Grass | Grasslands | 100.0 | 0.16 × 103 | 6.45 | ||
FJAT-45430 | Grass | Grasslands | 99.8 | 0.01 × 103 | 8.04 | ||
FJAT-45399 | Zhungeer Basin | Soil | Saline-alkali soil | 99.9 | 30 | 8.12 | |
FJAT-45452 | Fukang city, Changji Prefecture | Soil | Farm land | 100.0 | 0.04 × 103 | 8.71 | |
FJAT-45507 | Mulei County, Changji Prefecture | Grass | Saline-alkali soil | 99.8 | 0.04 × 103 | 8.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Liu, G.; Chen, Q. Comparative Genomics and In Vitro Experiments Provide Insight into the Adaptation and Probiotic Properties of Shouchella clausii. Microorganisms 2024, 12, 2143. https://doi.org/10.3390/microorganisms12112143
Shi H, Liu G, Chen Q. Comparative Genomics and In Vitro Experiments Provide Insight into the Adaptation and Probiotic Properties of Shouchella clausii. Microorganisms. 2024; 12(11):2143. https://doi.org/10.3390/microorganisms12112143
Chicago/Turabian StyleShi, Huai, Guohong Liu, and Qianqian Chen. 2024. "Comparative Genomics and In Vitro Experiments Provide Insight into the Adaptation and Probiotic Properties of Shouchella clausii" Microorganisms 12, no. 11: 2143. https://doi.org/10.3390/microorganisms12112143
APA StyleShi, H., Liu, G., & Chen, Q. (2024). Comparative Genomics and In Vitro Experiments Provide Insight into the Adaptation and Probiotic Properties of Shouchella clausii. Microorganisms, 12(11), 2143. https://doi.org/10.3390/microorganisms12112143