Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of the Sample
2.2. Salmonella spp. Isolation
2.3. Serotyping
2.4. The Extraction of DNA from Colonies
2.5. Salmonella spp. Differentiation and Confirmation Using Polymerase Chain Reaction (PCR)
2.6. Susceptibility Testing
2.7. Statistical Analysis
3. Results
3.1. Prevalence and Serotype of Salmonella spp. Isolated in the Traditionally Obtained Pork Meat
3.2. Molecular Confirmation of Salmonella Serotype
3.3. Antimicrobial Resistance Profiles of Salmonella Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- O’Neill, J. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. London: Review on Antimicrobial Resistance. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 20 August 2024).
- Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-contamination and recontamination by Salmonella in foods: A review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Swartz, M.N. Human diseases caused by foodborne pathogens of animal origin. Clin. Infect. Dis. 2002, 34, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Vencia, W.; Gariano, G.R.; Bianchi, D.M.; Zuccon, F.; Sommariva, M.; Nguon, B.; Malabaila, A.; Gallina, S.; Decastelli, L. A Salmonella Enterica Subsp. Enterica Serovar Enteritidis Foodborne Outbreak after Consumption of Homemade Lasagne. Ital. J. Food Saf. 2015, 4, 5127. [Google Scholar] [CrossRef] [PubMed]
- Galanis, E.; Lo Fo Wong, D.M.; Patrick, M.E.; Binsztein, N.; Cieslik, A.; Chalermchikit, T.; Aidara-Kane, A.; Ellis, A.; Angulo, F.J.; Wegener, H.C.; et al. Web-based surveillance and global Salmonella distribution, 2000-2002. Emerg. Infect. Dis. 2006, 12, 381–388. [Google Scholar] [CrossRef]
- Yan, L.; Alam, M.J.; Shinoda, S.; Miyoshi, S.; Shi, L. Prevalence and antimicrobial resistance of Salmonella in retail foods in northern China. Int. J. Food Microbiol. 2010, 143, 230–234. [Google Scholar] [CrossRef]
- Brands, D.A.; Inman, A.E.; Gerba, C.P.; Mare, C.J.; Billington, S.J.; Saif, L.A. Prevalence of Salmonella spp. in oysters in the United States. Appl. Environ. Microbiol. 2005, 71, 893–897. [Google Scholar] [CrossRef]
- Zhao, S.; White, D.G.; Friedman, S.L.; Glenn, A.; Blickenstaff, K.; Ayers, S.L.; Abbott, J.W.; Hall-Robinson, E.; McDermott, P.F. Antimicrobial resistance in Salmonella enterica serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006. Appl. Environ Microbiol. 2008, 74, 6656–6662. [Google Scholar] [CrossRef]
- Hur, J.; Jawale, C.; Lee, J.H. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res. Int. 2012, 45, 819–830. [Google Scholar] [CrossRef]
- Koh, Y.; Bae, Y.; Lee, Y.S.; Kang, D.H.; Kim, S.H. Prevalence and characteristics of Salmonella spp. isolated from raw chicken meat in the Republic of Korea. J. Microbiol. Biotechnol. 2022, 32, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Griffith, R.W.; Carlson, S.A.; Krull, A.C. Salmonellosis. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 912–925. [Google Scholar]
- Fedorka-Cray, P.J.; Gray, J.T.; Wray, C. Salmonella Infections in Pigs. In Salmonella in Domestic Animals; Wray, C., Wray, A., Eds.; CABI Publishing: New York, NY, USA, 2000; pp. 191–208. [Google Scholar]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef]
- Carvajal, A.; Kramer, M.; Argüello, H. Salmonella Control in Swine: A Thoughtful Discussion of the Pre- and Post-Harvest Control Approaches in Industrialized Countries. Animals 2024, 14, 1035. [Google Scholar] [CrossRef]
- Sinh, D.X.; Hung, N.V.; Phuc, P.D.; Unger, F.; Ngan, T.T.; Grace, D.; Makita, K. Risk factors associated with Salmonella spp. prevalence along smallholder pig value chains in Vietnam. Int. J. Food Microbiol. 2019, 290, 105–115. [Google Scholar]
- Asghari, A.; Sadrebazzaz, A.; Shamsi, L.; Shams, M. Global prevalence, subtypes distribution, zoonotic potential, and associated risk factors of Blastocystis sp. in domestic pigs (Sus domesticus) and wild boars (Sus scrofa): A systematic review and meta-analysis. Microb. Pathog. 2021, 160, 105183. [Google Scholar] [CrossRef]
- Alarcón, L.V.; Allepuz, A.; Mateu, E. Biosecurity in pig farms: A review. Porc. Health Manag. 2021, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Kostrzynska, M. Approaches for reducing Salmonella in pork production. J. Food Prot. 2007, 70, 2676–2694. [Google Scholar] [CrossRef]
- Campos, J.; Mourão, J.; Peixe, L.; Antunes, P. Non-typhoidal Salmonella in the pig production chain: A comprehensive analysis of its impact on human health. Pathogens 2019, 8, 19. [Google Scholar] [CrossRef]
- Soliani, L.; Rugna, G.; Prosperi, A.; Chiapponi, C.; Luppi, A. Salmonella infection in pigs: Disease, prevalence, and a link between swine and human health. Pathogens 2023, 12, 1267. [Google Scholar] [CrossRef]
- Deane, A.; Murphy, D.; Leonard, F.C.; Byrne, W.; Clegg, T.; Madigan, G.; Griffin, M.; Egan, J.; Prendergast, D.M. Prevalence of Salmonella spp. in slaughter pigs and carcasses in Irish abattoirs and their antimicrobial resistance. Ir. Vet. J. 2022, 75, 4. [Google Scholar] [CrossRef] [PubMed]
- Smid, J.H.; van Hoek, A.H.A.M.; Aarts, H.J.M.; Havelaar, A.H.; Heres, L.; de Jonge, R.; Pielaat, A. Quantifying the sources of Salmonella on dressed carcasses of pigs based on serovar distribution. Meat Sci. 2014, 96, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Bearson, B.L.; Trachsel, J.M.; Holman, D.B.; Brunelle, B.W.; Sivasankaran, S.K.; Simmons, M.; Wasilenko, J.; Tillman, G.; Johnston, J.J.; Bearson, S.M.D. Complete Genome Sequence of Multidrug-Resistant Salmonella enterica Serovar I 4,[5],12:i:—2015 U.S. Pork Outbreak Isolate USDA15WA-1. Microbiol. Resour. Announc. 2019, 8, e00791-19. [Google Scholar] [CrossRef]
- Mihaiu, L.; Lapusan, A.; Tanasuica, R.; Sobolu, R.; Mihaiu, R.; Oniga, O.; Mihaiu, M. First study of Salmonella in meat in Romania. J. Infect. Dev. Ctries. 2014, 8, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, L.R.; van der Graaf-van Bloois, L.; Donado-Godoy, P.; León, M.; Clavijo, V.; Arévalo, A.; Bernal, J.F.; Mevius, D.J.; Wagenaar, J.A.; Zomer, A.; et al. Genomic characterization of extended-spectrum cephalosporin-resistant Salmonella enterica in the Colombian poultry chain. Front. Microbiol. 2018, 9, 2431. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Salmonella page. 2017. Available online: https://www.cdc.gov/salmonella/general/technical.html (accessed on 20 August 2024).
- Pan, H.; Paudyal, N.; Li, X.; Fang, W.; Yue, M. Multiple food-animal-borne route in transmission of antibiotic-resistant Salmonella Newport to humans. Front. Microbiol. 2018, 9, 23. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Model List of Essential Medicines. 2017. Available online: https://iris.who.int/handle/10665/273826 (accessed on 18 October 2024).
- World Health Organization (WHO). WHO Bacterial Priority Pathogens List, 2024. 2024. Available online: https://iris.who.int/bitstream/handle/10665/376776/9789240093461-eng.pdf?sequence=1 (accessed on 18 October 2024).
- Commission Regulation (EC) No 1441/2007 of 5 December 2007 amending Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2007, 338, 12–29.
- ISO 6579:2002; Horizontal Method for the Detection of Salmonella, Including Salmonella Typhi and Salmonella Paratyphi. Available online: https://www.iso.org/standard/29315.html (accessed on 28 August 2024).
- Modarressi, S.H.; Thong, K.L. Isolation and molecular subtyping of Salmonella enterica from chicken, beef, and street foods in Malaysia. Sci. Res. Essays 2010, 5, 2713–2720. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Volume 38, p. M100. [Google Scholar]
- Roasto, M.; Bonardi, S.; Mäesaar, M.; Alban, L.; Gomes-Neves, E.; Vieira-Pinto, M.; Vågsholm, I.; Elias, T.; Lindegaard, L.L.; Blagojevic, B. Salmonella enterica prevalence, serotype diversity, antimicrobial resistance, and control in the European pork production chain. Trends Food Sci. Technol. 2023, 131, 210–219. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals, and food in 2018/2019. EFSA J. 2021, 19, 6490. [Google Scholar]
- Yokozawa, T.; Sinh, D.X.; Hung, N.V.; Lapar, L.; Makita, K. Transition of Salmonella prevalence in pork value chain from pig slaughterhouse to markets in Hung Yen, Vietnam. J. Vet. Epidemiol. 2016, 20, 51–58. [Google Scholar] [CrossRef]
- Jiu, Y.; Meng, X.; Hong, X.; Huang, Q.; Wang, C.; Chen, Z.; Zhao, L.; Liu, X.; Lu, Y.; Li, S. Prevalence and characterization of Salmonella in three typical commercial pig abattoirs in Wuhan, China. Foodborne Pathog. Dis. 2020, 17, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The silent threat: Antimicrobial-resistant pathogens in food-producing animals and their impact on public health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Categorisation of Antibiotics in the European Union. 2020. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 2 June 2024).
- Tang, B.; Elbediwi, M.; Nambiar, R.B.; Yang, H.; Lin, J.; Yue, M. Genomic Characterization of Antimicrobial-Resistant Salmonella enterica in Duck, Chicken, and Pig Farms and Retail Markets in Eastern China. Microbiol. Spectr. 2022, 10, e0125722. [Google Scholar] [CrossRef]
- Chen, Z.; Biswas, S.; Aminabadi, P.; Stackhouse, J.W.; Jay-Russell, M.T.; Pandey, P.K. Prevalence of Escherichia coli O157 and Salmonella spp. in Solid Bovine Manure in California Using Real-Time Quantitative PCR. Lett. Appl. Microbiol. 2019, 69, 23–29. [Google Scholar] [CrossRef]
Serotype | No. | % |
---|---|---|
Infantis | 15 | 31.25 |
Typhimurium | 15 | 31.25 |
Derby | 11 | 22.91 |
Ruzizi | 1 | 2.08 |
Virkow | 2 | 4.16 |
Brandenburg | 2 | 4.16 |
Bredeney | 1 | 2.08 |
Muenchen | 1 | 2.08 |
Total | 48 | 100 |
Antibiotic | Number of Resistant and Intermediate Resistant Strains (n = 48) | |
---|---|---|
Β-lactams | ||
Ampicillin | 18 (37.5) | 0 |
Cefotaxime | 0 | 0 |
Ceftazidime | 7 (14.58) | 0 |
Aminoglycosides | ||
Gentamycin | 0 | 0 |
Streptomycin | 34 (70.83) | 0 |
Sulfonamides | ||
Sulfamethoxazole | 37 (77.08) | 0 |
Sulfamethoxazole/Trimethoprim | 8 (16.66) | 0 |
Quinolones and fluoroquinolones | ||
Nalidixic acid | 12 (25) | 0 |
Ciprofloxacin | 4 (8.33) | 11 (22.91) |
Tetracycline | 45 (83.33) | 0 |
Chloramphenicol | 12 (25) | 7 (14.58) |
Multiple-Resistant Pattern | Serovar | Resistance Pattern | No. of Isolates (%) |
---|---|---|---|
One type of antimicrobial | Typhimurium | AMP | 1 (2.08) |
Two types of antimicrobials | Infantis | AMP, S | 1 (2.08) |
Derby | AMP, S | 1 (2.08) | |
Three types of antimicrobials | Typhimurium, Infantis | SMX, NA, S | 3 (6.25) |
Derby | SXT, AMP, TET | 1 (2.08) | |
Derby, Typhimurium | SMX, S, TET | 2 (4.16) | |
Ruzizi | S, AMP, TET | 1 (2.08) | |
Infantis | S, SMX, CAZ | 1 (2.08) | |
Infantis | SXT, AMP, SMX | 1 (2.08) | |
Four types of antimicrobials | Derby | S, NA, CIP, TET | 4 (8.33) |
Infantis, Derby, Virkow, Muenchen | SXT, NA, S, TET | 4 (8.33) | |
Infantis, Typhimurium | SMX, AMP, S, TET | 3 (6.25) | |
Five types of antimicrobials | Derby, Infantis | S, NA, CIP, SMX, TET | 5 (10.41) |
Infantis | SMX, NA, CIP, TET, SXT | 2 (4.16) | |
Typhimurium | SMX, CHL, S, AMP, TET | 2 (4.16) | |
Typhimurium | SMX, S, AMP, TET, SXT | 4 (8.33) | |
Derby | SMX, NA, S, CHL, TET | 2 (4.16) | |
Derby | SMX, NA, S, SXT, TET | 2 (4.16) | |
Typhimurium | SMX, NA, S, CHL, TET | 1 (2.08) | |
Typhimurium | SXT, NA, S, CAZ, TET | 2 (4.16) | |
Brandenburg | SMX, S, CIP, AMP, TET | 1 (2.08) | |
Six types of antimicrobials | Derby, Infantis | SMX, S, CHL, AMP, TET, SXT | 2 (4.16) |
Typhimurium, | SMX, S, CHL, AMP, SXT, TET | 2 (4.16) | |
Infantis | SMX, NA, S, AMP, SXT, TET | 1 (2.08) | |
Seven types of antimicrobials | Brandenburg | SMX, NA, S, CIP, AMP, SXT, TET | 1 (2.08) |
Virkov | SMX, NA, S, CIP, SXT, TET | 1 (2.08) | |
Eight types of antimicrobials | Bredeney | SMX, NA, S, CIP, CHL, SXT, TET | 1 (2.08) |
Total | 48 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tăbăran, A.; Dan, S.D.; Colobaţiu, L.M.; Mihaiu, M.; Condor, S.; Mărgăoan, R.; Crişan-Reget, O.L. Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania. Microorganisms 2024, 12, 2196. https://doi.org/10.3390/microorganisms12112196
Tăbăran A, Dan SD, Colobaţiu LM, Mihaiu M, Condor S, Mărgăoan R, Crişan-Reget OL. Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania. Microorganisms. 2024; 12(11):2196. https://doi.org/10.3390/microorganisms12112196
Chicago/Turabian StyleTăbăran, Alexandra, Sorin Danel Dan, Liora Mihaela Colobaţiu, Marian Mihaiu, Sergiu Condor, Rodica Mărgăoan, and Oana Lucia Crişan-Reget. 2024. "Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania" Microorganisms 12, no. 11: 2196. https://doi.org/10.3390/microorganisms12112196
APA StyleTăbăran, A., Dan, S. D., Colobaţiu, L. M., Mihaiu, M., Condor, S., Mărgăoan, R., & Crişan-Reget, O. L. (2024). Evaluation of Multidrug Resistance of Salmonella Isolated from Pork Meat Obtained from Traditional Slaughter Systems in Romania. Microorganisms, 12(11), 2196. https://doi.org/10.3390/microorganisms12112196