Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita
Abstract
:1. Introduction
2. Materials and Methods
2.1. H. anguillulae Strain and Culture
2.2. Screening of Culture Conditions
2.3. LC-MS Detection and Metabolomic Data Analysis
2.4. Instruments, Extraction, and Isolation
2.5. The Nematicidal Activity of Fermentation Products and Compounds
2.6. Chemotaxis Assay Against M. incognita
3. Results
3.1. Activity Assay and LC-MS Detection of Fermentation Products Under Different Screening Conditions
3.2. Structural Identification of the Compounds
3.3. Nematicidal Activity of the Isolated Compounds Against M. incognita
3.4. Chemotactic Activity of Compounds Towards M. incognita
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapia-Vázquez, I.; Montoya-Martínez, A.C.; De Los Santos-Villalobos, S. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: Biology, current control strategies, and perspectives. World J. Microbiol. Biotechnol. 2022, 38, 26. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Chen, S.; Fatima, S.; Ahamad, L.; Siddiqui, M.A. Biotechnological tools to elucidate the mechanism of plant and nematode interactions. Plants 2023, 12, 2387. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.J.; Park, A.R.; Kim, S. Biological control of root-knot nematodes by organic acid-producing Lactobacillus brevis WiKim0069 isolated from Kimchi. Plant Pathol. J. 2019, 35, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Rutter, W.B.; Franco, J.; Gleason, C. Rooting out the mechanisms of root-knot nematode-plant interactions. Annu. Rev. Phytopathol. 2022, 60, 43–76. [Google Scholar] [CrossRef]
- Forghani, F.; Hajihassani, A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes. Front. Plant Sci. 2020, 11, 1125. [Google Scholar] [CrossRef]
- Veronico, P.; Melillo, M.T. Marine organisms for the sustainable management of plant parasitic nematodes. Plants 2021, 10, 369. [Google Scholar] [CrossRef]
- Liang, L.M.; Zou, C.G.; Xu, J.; Zhang, K.Q. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180317. [Google Scholar] [CrossRef]
- Soares, F.E.F.; Ferreira, J.; Genier, H.L.; Al-Ani, L.; Aguilar-Marcelino, L. Biological control 2.0: Use of nematophagous fungi enzymes for nematode control. J. Nat. Pestic. Res. 2023, 4, 100025. [Google Scholar] [CrossRef]
- Li, X.; Luo, H.; Zhang, K. A new species of Harposporium parasitic on nematodes. Can. J. Bot. 2005, 83, 558–562. [Google Scholar] [CrossRef]
- Flores Francisco, B.G.; Ponce, I.M.; Plascencia Espinosa, M.; Moctezuma, A.M.; López, V.E.L.y. Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi. World J. Microbiol. Biotechnol. 2021, 37, 180. [Google Scholar] [CrossRef]
- Hsueh, Y.P.; Gronquist, M.R.; Schwarz, E.M.; Nath, R.D.; Lee, C.H.; Gharib, S.; Schroeder, F.C.; Sternberg, P.W. Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 2017, 6, e20023. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hu, X.; Pop, M.; Wernet, N.; Kirschhöfer, F.; Brenner-Weiß, G.; Keller, J.; Bunzel, M.; Fischer, R. Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat. Commun. 2021, 12, 5462. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.M.; Souvanhnachit, S.; Wang, X.; Li, G.H. A new furan derivative from Harposporium sp. YMF1.01735. Chem. Nat. Compd. 2020, 56, 845–847. [Google Scholar] [CrossRef]
- Dai, Z.B.; Gan, Y.; Zhao, P.J.; Li, G.H. Secondary metabolites from the endoparasitic nematophagous fungus Harposporium anguillulae YMF1.01751. Microorganisms 2022, 10, 1553. [Google Scholar] [CrossRef]
- Lei, H.M.; Wang, J.T.; Hu, Q.Y.; Li, C.Q.; Mo, M.H.; Zhang, K.Q.; Li, G.H.; Zhao, P.J. 2-Furoic acid associated with the infection of nematodes by Dactylellina haptotyla and its biocontrol potential on plant root-knot nematodes. Microbiol. Spectr. 2023, 11, e0189623. [Google Scholar] [CrossRef]
- Lu, C.J.; Meng, Y.; Wang, Y.L.; Zhang, T.; Yang, G.F.; Mo, M.H.; Ji, K.F.; Liang, L.M.; Zou, C.G.; Zhang, K.Q. Survival and infectivity of second-stage root-knot nematode Meloidogyne incognita juveniles depend on lysosome-mediated lipolysis. J. Biol. Chem. 2022, 298, 101637. [Google Scholar] [CrossRef]
- Koulagi, R.; Banerjee, S.; Gawade, B.H.; Singh, A.K.; Jain, P.K.; Praveen, S.; Subramaniam, K.; Sirohi, A. Host-delivered RNA interference in tomato for mediating resistance against Meloidogyne incognita and Tomato leaf curl virus. Plant Cell Tissue Organ Cult. 2020, 143, 345–361. [Google Scholar] [CrossRef]
- Zhang, W.P.; Ruan, W.B.; Deng, Y.Y.; Gao, Y.B. Potential antagonistic effects of nine natural fatty acids against Meloidogyne incognita. J. Agric. Food Chem. 2012, 60, 11631–11637. [Google Scholar] [CrossRef]
- Bao, Z.X.; Liu, R.; Li, C.Q.; Pan, X.R.; Zhao, P.J. Pathogenicity and metabolites of Purpureocillium lavendulum YMF1.00683 against Meloidogyne incognita. Pathogens 2022, 11, 795. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Kim, M. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ. Microbiol. 2017, 19, 1776–1790. [Google Scholar] [CrossRef]
- Pathak, R.D. Synthesis, characterization and biological evaluation of halolitoralin B—A natural cyclic peptide. Asian J. Chem. 2007, 19, 1499–1505. [Google Scholar]
- Poojary, B.; Belagali, S.L. Synthesis, characterization and biological evaluation of cyclic peptides: Viscumamide, Yunnanin A and Evolidine. Z. Naturforschung B 2005, 60, 1313–1320. [Google Scholar] [CrossRef]
- Czerwinski, K.M.; Zificsak, C.A.; Stevens, J.; Oberbeck, M.; Randlett, C.; King, M.; Mennen, S. An improved synthesis of canthin-6-one. Synth. Commun. 2003, 33, 1225–1231. [Google Scholar] [CrossRef]
- Izumida, H.; Imamura, N.; Sano, H. A novel chitinase inhibitor from a marine bacterium, Pseudomonas sp. J. Antibiot. 1996, 49, 76–80. [Google Scholar] [CrossRef]
- Vergne, C.; Boury-Esnault, N.; Perez, T. Verpacamides A-D, a sequence of C11N5 diketopiperazines relating cyclo(Pro-Pro) to cyclo(Pro-Arg), from the marine sponge Axinella vaceleti: Possible biogenetic precursors of pyrrole-2-aminoimidazole alkaloids. Org. Lett. 2006, 8, 2421–2424. [Google Scholar] [CrossRef]
- Mehnaz, S.; Saleem, R.S.; Yameen, B. Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. J. Nat. Prod. 2013, 76, 135–141. [Google Scholar] [CrossRef]
- Anil, S.M.; Shobith, R.; Kiran, K.R.; Swaroop, T.R.; Mallesha, N.; Sadashiva, M.P. Facile synthesis of 1,4-benzodiazepine-2,5-diones and quinazolinones from amino acids as anti-tubercular agents. New J. Chem. 2019, 43, 182–187. [Google Scholar] [CrossRef]
- Wang, S.; Tan, N.; Yang, Y.; He, M. Cyclodipeptides from the roots of Panax notoginseng. Nat. Prod. Res. Dev. 2004, 16, 383–386. [Google Scholar]
- Campbell, J.; Lin, Q.; Geske, G.D.; Blackwell, H.E. New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem. Biol. 2009, 4, 1051–1059. [Google Scholar] [CrossRef]
- Ding, Z.G.; Zhao, J.Y.; Yang, P.W.; Li, M.G.; Huang, R.; Cui, X.L.; Wen, M.L. 1H and 13C NMR assignments of eight nitrogen containing compounds from Nocardia alba sp.nov (YIM 30243T). Magn. Reson. Chem. 2009, 47, 366–370. [Google Scholar] [CrossRef]
- Kamble, N.R.; Pawar, H.R.; Kamble, V.T. NbCl5 and AgClO4 promoted regio-selective acylation of indoles. Asian J. Chem. 2020, 32, 317–321. [Google Scholar] [CrossRef]
- Hwang, B.K.; Lim, S.W.; Kim, B.S.; Lee, J.Y.; Moon, S.S. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microb. 2001, 67, 3739–3745. [Google Scholar] [CrossRef] [PubMed]
- Koga, J.; Yamauchi, T.; Shimura, M.; Ogawa, N.; Oshima, K.; Umemura, K.; Kikuchi, M.; Ogasawara, N. Cerebrosides A and C, sphingolipid elicitors of hypersensitive cell death and phytoalexin accumulation in rice plants. J. Biol. Chem. 1998, 273, 31985–31991. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A.; Shaukat, S.S. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. J. Appl. Microbiol. 2005, 98, 43–55. [Google Scholar] [CrossRef]
- Cho, S.-K.; Jeong, M.; Jang, D.S.; Choi, J.-H. Anti-inflammatory effects of canthin-6-one alkaloids from Ailanthus altissima. Planta Med. 2018, 84, 527–535. [Google Scholar] [CrossRef]
- Rajamani, S.; Bauer, W.D.; Robinson, J.B.; Farrow, J.M.; Pesci, E.C.; Teplitski, M.; Gao, M.; Sayre, R.T.; Phillips, D.A. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol. Plant Microbe Interact. 2008, 21, 1184–1192. [Google Scholar] [CrossRef]
- Phillips, D.A.; Joseph, C.M.; Yang, G.P.; Martinez-Romero, E.; Sanborn, J.R.; Volpin, H. Identification of lumichrome as a sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc. Natl. Acad. Sci. USA 1999, 96, 12275–12280. [Google Scholar] [CrossRef]
- Li, H.X.; Xiao, Y.; Cao, L.L.; Yan, X.; Li, C.; Shi, H.Y.; Wang, J.W.; Ye, Y.H. Cerebroside C Increases Tolerance to Chilling Injury and Alters Lipid Composition in Wheat Roots. PLoS ONE 2013, 8, e73380. [Google Scholar] [CrossRef]
- Aschner, M.; Kohn, S. The biology of Harposporium anguillulae. Microbiology 1958, 19, 182–189. [Google Scholar] [CrossRef]
- Anderson, M.G.; Jarman, T.B.; Rickards, R.W. Structures and absolute configurations of antibiotics of the oligosporon group from the nematode-trapping fungus Arthrobotrys oligospora. J. Antibiot. 1995, 48, 391–398. [Google Scholar] [CrossRef]
- Xu, Z.F.; Chen, Y.H.; Song, T.Y.; Zeng, Z.J.; Yan, N.; Zhang, K.Q.; Niu, X.M. Nematicidal key precursors for the biosynthesis of morphological regulatory arthrosporols in the nematode-trapping fungus Arthrobotrys oligospora. J. Agric. Food Chem. 2016, 64, 7949–7956. [Google Scholar] [CrossRef] [PubMed]
Position | 1H | 13C | HMBC |
---|---|---|---|
Val-1-1 | - | 171.5, s | - |
Val-1-2 | 4.03 (1H, q, J = 7.1 Hz) | 51.7, d | 20.88 |
Val-1-3 | 1.43 (3H, d, J = 7.1 Hz) | 20.88, q | 51.7, 171.5 |
Val-2-1 | - | 171.1, s | - |
Val-2-2 | 4.00 (1H, q, J = 7.1 Hz) | 51.9, d | 20.92 |
Val-2-3 | 1.44 (3H, d, J = 7.1 Hz) | 20.92, q | 51.9, 171.1 |
Ile-1 | - | 169.2, s | - |
Ile-2 | 3.90 (1H, d, J = 3.0 Hz) | 60.9, d | 15.6, 25.3, 40.3, 169.2, 171.1 |
Ile-3 | 1.95 (1H, m) | 40.3, d | 25.3, 60.9 |
Ile-4 | 1.24 (1H, m) | 25.3, t | 12.2, 40.3 |
1.51 (1H, m) | 12.2, 40.3 | ||
Ile-5 | 0.94 (3H, t, J = 7.4 Hz) | 12.2, q | 25.3, 40.3 |
Ile-6 | 1.02 (3H, d, J = 7.1 Hz) | 15.6, q | 25.3, 40.3, 60.9 |
Leu-1 | - | 171.0, s | - |
Leu-2 | 3.93 (1H, dd, J = 4.6, 8.5 Hz) | 54.6, d | 25.6, 45.1, 171.0, 169.2 |
Leu-3 | 1.72 (1H, m) | 45.1, t | 23.5, 25.6, 54.6, 171.0 |
1.63 (1H, m) | 25.6, 54.6 | ||
Leu-4 | 1.84 (1H, m) | 25.6, d | 45.1, 22.1 |
Leu-5 | 0.95 (3H, d, J = 6.3 Hz) | 22.1, q | 25.6, 45.1 |
Leu-6 | 0.96 (3H, d, J = 6.2 Hz) | 23.5, q | 25.6, 45.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Bao, L.-F.; Lei, H.-M.; Zhang, G.-K.; Li, G.-H.; Zhao, P.-J. Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita. Microorganisms 2024, 12, 2585. https://doi.org/10.3390/microorganisms12122585
Li D, Bao L-F, Lei H-M, Zhang G-K, Li G-H, Zhao P-J. Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita. Microorganisms. 2024; 12(12):2585. https://doi.org/10.3390/microorganisms12122585
Chicago/Turabian StyleLi, Dong, Ling-Feng Bao, Hong-Mei Lei, Guang-Ke Zhang, Guo-Hong Li, and Pei-Ji Zhao. 2024. "Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita" Microorganisms 12, no. 12: 2585. https://doi.org/10.3390/microorganisms12122585
APA StyleLi, D., Bao, L. -F., Lei, H. -M., Zhang, G. -K., Li, G. -H., & Zhao, P. -J. (2024). Bioactive Secondary Metabolites from Harposporium anguillulae Against Meloidogyne incognita. Microorganisms, 12(12), 2585. https://doi.org/10.3390/microorganisms12122585