Coinfection of Cage-Cultured Spotted Sea Bass (Lateolabrax maculatus) with Vibrio harveyi and Photobacterium damselae subsp. piscicida Associated with Skin Ulcer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diseased Fish Sampling and Bacterial Isolation
2.2. Molecular Characterization and Phylogenetic Analysis
2.3. Biochemical and Antimicrobial Resistance Characterization
2.4. Genomic Sequencing and Analysis
2.5. Determination of Extracellular Enzymes and Hemolytic Effect
2.6. Experimental Infection
2.6.1. Experimental Fish
2.6.2. Single Bacterial Infection and Quantitation of Bacteria in Tissues
2.6.3. Coinfection with Strains NH-LM1 and NH-LM1
2.7. Histopathological Observations
2.8. Statistical Analysis
3. Results
3.1. Clinical Symptoms of Naturally Infected Fish
3.2. Isolation and Identification of the Pathogens
3.3. Biochemical Characteristics
3.4. Antibiotic Sensitivity
3.5. Genomic Analysis
3.6. Pathogenic Genes Analysis
3.7. Determination of Extracellular Enzymes and Hemolytic Activities
3.8. Single Experimental Infection with V. harveyi NH-LM1 or P. damselae Subsp. Piscicida NH-LM2
3.9. Coinfection with V. harveyi NH-LM1 and P. damselae Subsp. Piscicida NH-LM2
3.10. Pathological Analysis of Artificially Infected Fish
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.X.; Dong, H.B.; Zhan, A.J.; Wang, W.H.; Duan, Y.F.; Xie, M.J.; Liu, Q.S.; Li, H.; Zhang, J.S. Protection of teprenone against hypoxia and reoxygenation stress in stomach and intestine of Lateolabrax maculatus. Fish Physiol. Biochem. 2020, 46, 575–584. [Google Scholar] [CrossRef]
- Yokogawa, K. Nomenclatural reassessment of the sea bass Lateolabrax maculatus (McClelland, 1844) (Percichthyidae) and a redescription of the species. Biogeography 2013, 15, 21–32. [Google Scholar]
- Wang, B.T.; Mao, C.; Feng, J.; Li, Y.; Hu, J.M.; Jiang, B.; Gu, Q.H.; Su, Y.L. A first report of Aeromonas veronii infection of the sea bass, Lateolabrax maculatus in China. Front. Vet. Sci. 2021, 7, 600587. [Google Scholar] [CrossRef]
- Seo, H.G.; Do, J.W.; Jung, S.H.; Han, H.J. Outbreak of hirame rhabdovirus infection in cultured spotted sea bass Lateolabrax maculatus on the western coast of Korea. J. Fish. Dis. 2016, 39, 1239–1246. [Google Scholar] [CrossRef]
- Hu, J.; Wang, B.; Feng, J.; Liu, C.; Jiang, B.; Li, W.; Su, Y. Edwardsiella piscicida, a pathogenic bacterium newly detected in spotted sea bass Lateolabrax maculatus in China. Aquac. Rep. 2022, 22, 100973. [Google Scholar] [CrossRef]
- Barnes, A.C.; dos Santos, N.M.; Ellis, A.E. Update on bacterial vaccines: Photobacterium damselae subsp. piscicida. Dev. Biol. 2005, 121, 75–84. [Google Scholar]
- Snieszko, S.F.; Bullock, G.L.; Hollis, E.; Boone, J.G. Pasteurella sp. from an epizootic of white perch (Roccus americanus) in Chesapeake Bay-tide water areas. J. Bacteriol. 1964, 88, 1814–1815. [Google Scholar] [CrossRef] [PubMed]
- Essam, H.M.; Abdellrazeq, G.S.; Tayel, S.I.; Torky, H.A.; Fadel, A.H. Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea bream. Microb. Pathog. 2016, 99, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, G.; Cammà, C.; Curini, V.; Mazzariol, S.; Proietto, U.; Di Francesco, C.E.; Ferri, N.; Di Provvido, A.; Di Guardo, G. Coinfection by Ureaplasma spp., Photobacterium damselae and an Actinomyces-like microorganism in a bottlenose dolphin (Tursiops truncatus) with pleuropneumonia stranded along the Adriatic coast of Italy. Res. Vet. Sci. 2016, 105, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.C.; Lin, J.Y.; Lee, K.K. Virulence of Photobacterium damselae subsp. piscicida in cultured cobia Rachycentron canadum. J. Basic. Microbiol. 2003, 43, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Feng, J.; Su, Y.; Ye, L.; Wang, J. Studies on the isolation of Photobacterium damselae subsp. piscicida from diseased golden pompano (Trachinotus ovatus Linnaeus) and antibacterial agents sensitivity. Vet. Microbiol. 2013, 162, 957–963. [Google Scholar] [CrossRef]
- Fouz, B.; Larsen, J.L.; Nielsen, B.B.; Barja, J.L.; Toranzo, A.E. Characterization of Vibrio damsela strains isolated from turbot Scophthalmus maximus in Spain. Dis. Aquat. Organ. 1992, 12, 155–166. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Li, Y.; Chen, J.X.; Zhang, X.H. Isolation of Photobacterium damselae subsp. piscicida from diseasedtongue sole (Cynoglossus semilaevis Gunther) in China. Acta Microbiol. Sin. 2007, 47, 763–768. [Google Scholar]
- Romalde, J.L. Photobacterium damselae subsp. piscicida: An integrated view of a bacterial fish pathogen. Int. Microbiol. 2002, 5, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Firmino, J.; Furones, M.D.; Andree, K.B.; Sarasquete, C.; Ortiz-Delgado, J.B.; Asencio-Alcudia, G.; Gisbert, E. Contrasting outcomes of Vibrio harveyi pathogenicity in gilthead seabream, Sparus aurata and European seabass Dicentrarchus labrax. Aquaculture 2019, 511, 734210. [Google Scholar] [CrossRef]
- Haldar, S.; Maharajan, A.; Chatterjee, S.; Hunter, S.A.; Chowdhury, N.; Hinenoya, A.; Asakura, M.; Yamasaki, S. Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparus aurata from research hatchery in Malta. Microbiol. Res. 2010, 165, 639–648. [Google Scholar] [CrossRef]
- Yii, K.C.; Yang, T.I.; Lee, K.K. Isolation and characterization of Vibrio carchariae, a causative agent of gastroenteritis in the groupers, Epinephelus coioides. Curr. Microbiol. 1997, 35, 109–115. [Google Scholar] [CrossRef]
- Pujalte, M.J.; Sitjá-Bobadilla, A.; Macián, M.C.; Belloch, C.; Álvarez-Pellitero, P.; Pérez-Sánchez, J.; Uruburu, F.; Garay, E. Virulence and molecular typing of Vibrio harveyi strains isolated from cultured dentex, gilthead sea bream and European sea bass. Syst. Appl. Microbiol. 2003, 26, 284–292. [Google Scholar]
- Won, K.M.; Park, S. Pathogenicity of Vibrio harveyi to cultured marine fishes in Korea. Aquaculture 2008, 285, 8–13. [Google Scholar] [CrossRef]
- Zhang, X.H.; He, X.; Austin, B. Vibrio harveyi: A Serious Pathogen of Fish and Invertebrates in Mariculture. Mar. Life Sci. Technol. 2020, 2, 231–245. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Wang, P.; Zhao, C.; Yan, L.L.; Lin, Y.X.; Qiu, L.H. Spotted sea bass (Lateolabrax maculatus) NOD2 gene involved in the immune response against Vibrio harveyi infection. J. Fish. Dis. 2023, 46, 897–901. [Google Scholar] [CrossRef]
- Tian, Y.; Wen, H.; Qi, X.; Mao, X.B.; Shi, Z.J.; Li, J.F.; He, F.; Yang, W.Z.; Zhang, X.Y.; Li, Y. Analysis of apolipoprotein multigene family in spotted sea bass (Lateolabrax maculatus) and their expression profiles in response to Vibrio harveyi infection. Fish Shellfish Immunol. 2019, 92, 111–118. [Google Scholar] [CrossRef]
- Han, Y.L.; Hou, C.C.; Du, C.; Zhu, J.Q. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection. Fish Shellfish Immunol. 2017, 60, 299–310. [Google Scholar] [CrossRef]
- Kotob, M.H.; Menanteau-Ledouble, S.; Kumar, G.; Abdelzaher, M.; El-Matbouli, M. The impact of co-infections on fish: A review. Vet. Res. 2016, 47, 98. [Google Scholar] [CrossRef] [PubMed]
- Cox, F.E. Concomitant infections, parasites and immune responses. Parasitology 2001, 122, S23–S38. [Google Scholar] [CrossRef]
- Fabbro, C.; Celussi, M.; Russell, H.; Del Negro, P. Phenotypic and genetic diversity of coexisting Listonella anguillarum, Vibrio harveyi and Vibrio chagassi recovered from skin haemorrhages of diseased sand smelt, Atherina boyeri, in the Gulf of Trieste (NE Adriatic Sea). Lett. Appl. Microbiol. 2011, 54, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wu, H.; Guo, W.; Li, X.; Wang, J.; Duan, Y.; Zhang, P.; Huang, Z.; Li, Y.; Dong, G.; et al. Vibrio harveyi co-infected with Cryptocaryon irritans to orange-spotted groupers Epinephelus coioides. Fish Shellfish Immunol. 2023, 139, 108879. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acids Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: Chichester, UK, 1991; pp. 115–147. [Google Scholar]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kimet, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Gaur, P.; Hada, V.; Rath, R.S.; Mohanty, A.; Singh, P.; Rukadikar, A. Interpretation of antimicrobial susceptibility testing using European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) Breakpoints: Analysis of Agreement. Cureus 2023, 15, e36977. [Google Scholar] [CrossRef]
- Berlin, K.; Koren, S.; Chin, C.S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015, 33, 623. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2010, 25, 1754–1760. [Google Scholar] [CrossRef]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014, 25, 1043–1055. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef]
- Chen, L.H.; Xiong, Z.H.; Sun, L.L.; Yang, J.; Jin, Q. VFDB 2012 update: Toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 2012, 40, D641–D645. [Google Scholar] [CrossRef]
- Martin, U.; Rashmi, P.; Arathi, R. The Pathogen-host interactions database (PHI-base): Additions and future developments. Nucleic Acids Res. 2015, 43, D645–D655. [Google Scholar]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.Y.; Tsang, K.T.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Liu, B.; Pop, M. ARDB-antibiotic resistance genes database. Nucleic Acids Res. 2009, 37, D443–D447. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, C.; Gu, H.J.; Zhang, J.; Sun, L. Characterization of the genome feature and toxic capacity of a Bacillus wiedmannii isolate from the hydrothermal field in Okinawa Trough. Front. Cell Infect. Microbiol. 2019, 9, 370. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Du, R.B.; Sun, Q.L.; Sun, Y.Y.; Zhang, J.; Tang, Y.Z. Pontivivens ytuae sp. nov., isolated from deep sea sediment of the Mariana Trench. Int. J. Syst. Evol. Microbiol. 2021, 71, 004967. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714–719. [Google Scholar] [CrossRef]
- Rameshkumar, P.; Kalidas, C.; Tamilmani, G.; Sakthivel, M.; Nazar, A.A.; Maharshi, V.A.; Rao, S.K.S.; Gopakumar, G. Microbiological and histopathological investigations of Vibrio alginolyticus infection in Cobia Rachycentron canadum (Linnaeus, 1766) cultured in sea cage. Indian J. Fish. 2014, 61, 124–127. [Google Scholar]
- Bertone, S.; Gili, C.; Moizo, A.; Calegari, L. Vibrio carchariae associated with a chronic skin ulcer on a shark, Carcharhinus plumbeus (Nardo). J. Fish Dis. 1996, 19, 429–434. [Google Scholar] [CrossRef]
- Zorrilla, I.; Arijo, S.; Chabrillon, M.; Diaz, P.; Martinez-Manzanares, E.; Balebona, M.C.; Morinigo, M.A. Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J. Fish Dis. 2003, 26, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.M.; Shi, C.Y.; Fan, C.; Jia, D.; Wang, S.Q.; Xie, G.S.; Li, G.Y.; Mo, Z.L.; Huang, J. Isolation, identification and pathogenicity of Vibrio harveyi, the causal agent of skin ulcer disease in juvenile hybrid groupers Epinephelus fuscoguttatus × Epinephelus lanceolatus. J. Fish Dis. 2017, 40, 1351–1362. [Google Scholar] [CrossRef]
- Pham, T.H.; Cheng, T.C.; Wang, P.C.; Chen, S.C. Genotypic diversity, and molecular and pathogenic characterization of Photobacterium damselae subsp. piscicida isolated from different fish species in Taiwan. J. Fish Dis. 2020, 43, 757–774. [Google Scholar] [CrossRef]
- Afifi, S.; Al-Thobiati, S.; Hazaa, M. Bacteriological and histopathological studies on Aeromnas hydrophila infection of Nile Tilapia (Oreochromis niloticas) from fish farms in Saudi Arabia, Assiut. Vet. Med. J. 2000, 42, 195–205. [Google Scholar]
- Mohamad, N.; Mohd Roseli, F.A.; Azmai, M.N.A.; Saad, M.Z.; Md Yasin, I.S.; Zulkiply, N.A.; Nasruddin, N.S. Natural concurrent infection of Vibrio harveyi and V. alginolyticus in cultured hybrid groupers in Malaysia. J. Aquat. Anim. Health 2019, 31, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, F.; Magnani, M. Photobacteriosis: Prevention and diagnosis. J. Immunol. Res. 2014, 2014, 793817. [Google Scholar] [CrossRef]
- Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 2008, 8, 1–13. [Google Scholar] [CrossRef]
- Kang, C.H.; Kim, Y.; Oh, S.J.; Mok, J.S.; Cho, M.H.; So, J.S. Antibiotic resistance of Vibrio harveyi isolated from seawater in Korea. Mar. Pollut. Bull. 2014, 86, 261–265. [Google Scholar] [CrossRef]
- Stalin, N.; Srinivasan, P. Molecular characterization of antibiotic resistant Vibrio harveyi isolated from shrimp aquaculture environment in the south east coast of India. Microb. Pathog. 2016, 97, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Barba, S.; Top, E.M.; Stalder, T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat. Rev. Microbiol. 2024, 22, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Sun, J.; Lv, A.; Sung, Y.; Shi, H.; Hu, X.; Xing, K. Isolation, identification and characterization of Shewanella algae from reared tongue sole, Cynoglossus semilaevis Günther. Aquaculture 2017, 468, 356–362. [Google Scholar] [CrossRef]
- Chen, F.; Sun, J.; Han, Z.; Yang, X.; Xian, J.A.; Lv, A.; Hu, X.; Shi, H. Isolation, identification and characteristics of Aeromonas veronii from diseased crucian carp (Carassius auratus gibelio). Front. Microbiol. 2019, 10, 2742. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Dawood, M.A.; Menanteau-Ledouble, S.; El-Matbouli, M. The nature and consequences of co-infections in tilapia: A review. J. Fish. Dis. 2020, 43, 651–664. [Google Scholar] [CrossRef]
- Chandrarathna, H.; Nikapitiya, C.; Dananjaya, S.; Wijerathne, C.; Wimalasena, S.; Kwun, H.J.; Heo, G.-J.; Lee, J.; De Zoysa, M. Outcome of co-infection with opportunistic and multidrug resistant Aeromonas hydrophila and A. veronii in zebrafish: Identification, characterization, pathogenicity and immune responses. Fish Shellfish Immunol. 2018, 80, 573–581. [Google Scholar] [CrossRef]
- Xu, H.; Xu, R.; Wang, X.; Liang, Q.; Zhang, L.; Liu, J.; Wei, J.; Lu, Y.; Yu, D. Co-infections of Aeromonas veronii and Nocardia seriolae in largemouth bass (Micropterus salmoides). Microb. Pathog. 2022, 173, 105815. [Google Scholar] [CrossRef]
- Siddique, A.B.; Moniruzzaman, M.; Ali, S.; Dewan, N.; Islam, M.R.; Islam, S.; Amin, M.B.; Mondal, D.; Parvez, A.K.; Mahmud, Z.H. Characterization of pathogenic Vibrio parahaemolyticus isolated from fish aquaculture of the Southwest Coastal Area of Bangladesh. Front. Microbiol. 2021, 12, 635539. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, K.M.; Pardío-Sedas, V.T.; Lizárraga-Partida, L.; Williams, J.d.J.; Martínez-Herrera, D.; Flores-Primo, A.; Uscanga-Serrano, R.; Rendón-Castro, K. Environmental parameters influence on the dynamics of total and pathogenic Vibrio parahaemolyticus densities in Crassostrea virginica harvested from Mexico’s Gulf coast. Mar. Pollut. Bull. 2015, 91, 317–329. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Concentration (µg per disc, Unless Otherwise Stated) | NH-LM1 | NH-LM2 |
---|---|---|---|
Clindamycin | 2 | R | R a |
Chloramphenicol | 30 | S | S |
Furazolidone | 300 | S | I |
Polymyxin B | 300 IU | R | I |
Vancomycin | 30 | R | R |
Ciprofloxacin | 5 | S | S |
Ofloxacin | 5 | S | S |
Norfloxacin | 10 | S | S |
Midecamycin | 30 | I | R |
Erythromycin | 15 | I | R |
Minocycline | 30 | S | S |
Doxycycline | 30 | S | S |
Tetracycline | 30 | S | S |
Neomycin | 30 | I | R |
Kanamycin | 30 | I | I |
Gentamicin | 10 | S | R |
Amikacin | 30 | S | I |
Cefoperazone | 75 | R | I |
Ceftriaxone | 30 | S | S |
Ceftazidime | 30 | S | I |
Cefuroxime | 30 | I | I |
Cefradine | 30 | R | I |
Cefamezin | 30 | R | R |
Cephalexin | 30 | R | S |
Piperacillin | 100 | R | I |
Carbenicillin | 100 | R | R |
Ampicillin | 10 | R | R |
Oxacillin | 1 | R | R |
Penicillin | 10 U | R | R |
Genome Feature | NH-LM1 | NH-LM2 |
---|---|---|
Genome size (bp) | 6,050,675 | 4,478,563 |
Chr1 (bp) | 2,355,947 | 1,302,242 |
Chr2 (bp) | 3,694,728 | 3,176,321 |
Plas1 | 101,750 | 114,771 |
Plas2 | 126,749 | 114,897 |
Plas3 | 57,915 | 185,744 |
Plas4 | 65,786 | - |
Plas5 | 75,229 | - |
Plas6 | 81,481 | - |
Encoded genes | 6136 | 4317 |
Annotated genes | 5994 | 4146 |
5S rRNA | 12 | 21 |
16S rRNA | 11 | 19 |
23S rRNA | 11 | 19 |
tRNA | 129 | 211 |
Genomics islands | 26 | 5 |
Prophages | - | 2 |
CRISPR | 1 | 4 |
Secreted proteins | 539 | 338 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Zhang, B.; Dong, Y.; Li, X.; Zhang, J. Coinfection of Cage-Cultured Spotted Sea Bass (Lateolabrax maculatus) with Vibrio harveyi and Photobacterium damselae subsp. piscicida Associated with Skin Ulcer. Microorganisms 2024, 12, 503. https://doi.org/10.3390/microorganisms12030503
Zhou D, Zhang B, Dong Y, Li X, Zhang J. Coinfection of Cage-Cultured Spotted Sea Bass (Lateolabrax maculatus) with Vibrio harveyi and Photobacterium damselae subsp. piscicida Associated with Skin Ulcer. Microorganisms. 2024; 12(3):503. https://doi.org/10.3390/microorganisms12030503
Chicago/Turabian StyleZhou, Dandan, Binzhe Zhang, Yuchen Dong, Xuepeng Li, and Jian Zhang. 2024. "Coinfection of Cage-Cultured Spotted Sea Bass (Lateolabrax maculatus) with Vibrio harveyi and Photobacterium damselae subsp. piscicida Associated with Skin Ulcer" Microorganisms 12, no. 3: 503. https://doi.org/10.3390/microorganisms12030503
APA StyleZhou, D., Zhang, B., Dong, Y., Li, X., & Zhang, J. (2024). Coinfection of Cage-Cultured Spotted Sea Bass (Lateolabrax maculatus) with Vibrio harveyi and Photobacterium damselae subsp. piscicida Associated with Skin Ulcer. Microorganisms, 12(3), 503. https://doi.org/10.3390/microorganisms12030503