Soil Fertilization with Palm Oil Mill Effluent Has a Short-Term Effect on the Bacterial Diversity of an Amazonian Agricultural Land Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DNA Extraction
2.2. 16S rRNA Gene Sequencing
2.3. Bioinformatics
3. Results
3.1. Alpha and Beta Diversity
3.2. Taxonomic Composition of Microbial Communities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murphy, D.J.; Goggin, K.; Paterson, R.R.M. Oil Palm in the 2020s and beyond: Challenges and Solutions. CABI Agric. Biosci. 2021, 2, 39. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.T.; Kalpana, M.; Sivaraj, N.; Kamala, V.; Pandravada, S.R.; Sunil, N. Indigenous Traditional Knowledge on Health and Equitable Benefits of Oil Palm (Elaeis spp.). OALib 2019, 6, 1–25. [Google Scholar] [CrossRef]
- Choudhary, M.; Grover, K. Fruit Oils: Chemistry and Functionality; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- United State Department of Agriculture USDA. Production, Supply and Distribution. Available online: https://www.usda.gov/ (accessed on 1 September 2023).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Produção Agrícola—Lavoura Permanente|Abacate|2020. Available online: https://cidades.ibge.gov.br/brasil/al/pesquisa/15/11967?tipo=ranking&ano=2018 (accessed on 7 September 2023).
- Homma, A.K.O. Cronologia Do Cultivo Do Dendezeiro Na Amazônia. Embrapa Amaz. Orient. Doc. 2016, 423, 1–48. [Google Scholar]
- Murphy, D. Oil Palm Value Chain Management. In The Oxford Handbook of Food, Water and Society; Allan, T., Bromwich, B., Keulertz, M., Colman, A., Eds.; Oxford University Press: Oxford, UK, 2019; pp. 630–651. [Google Scholar]
- Nwoko, O.; Ogunyemi, S.; Nkwocha, E. Effect of Pre-Treatment of Palm Oil Mill Effluent (POME) and Cassava Mill Effluent (CME) on the Growth of Tomato (Lycopersicum esculentum). J. Appl. Sci. Environ. Manag. 2010, 14, 67–72. [Google Scholar] [CrossRef]
- Mohammed, R.R.; Chong, M.F. Treatment and Decolorization of Biologically Treated Palm Oil Mill Effluent (POME) Using Banana Peel as Novel Biosorbent. J. Environ. Manag. 2014, 132, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Sharuddin, S.S.; Ramli, N.; Hassan, M.A.; Mustapha, N.A.; Amran, A.; Mohd-Nor, D.; Sakai, K.; Tashiro, Y.; Shirai, Y.; Maeda, T. Bacterial Community Shift Revealed Chromatiaceae and Alcaligenaceae as Potential Bioindicators in the Receiving River Due to Palm Oil Mill Effluent Final Discharge. Ecol. Indic. 2017, 82, 526–529. [Google Scholar] [CrossRef]
- Soleimaninanadegani, M.; Manshad, S. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms. Int. Sch. Res. Not. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Aka, B.E.Z.; Djeni, T.N.; Amoikon, S.L.T.; Kannengiesser, J.; Ouazzani, N.; Dje, M.K. High-Throughput 16S RRNA Gene Sequencing of the Microbial Community Associated with Palm Oil Mill Effluents of Two Oil Processing Systems. Sci. Rep. 2021, 11, 13232. [Google Scholar] [CrossRef]
- Mohd-Nor, D.; Ramli, N.; Sharuddin, S.S.; Hassan, M.A.; Mustapha, N.A.; Ariffin, H.; Sakai, K.; Tashiro, Y.; Shirai, Y.; Maeda, T. Dynamics of Microbial Populations Responsible for Biodegradation during the Full-Scale Treatment of Palm Oil Mill Effluent. Microbes Environ. 2019, 34, 121–128. [Google Scholar] [CrossRef]
- Parman, A.; Mat Isa, M.N.; Benbelgacem, F.F.; Noorbatcha, I.A.; Salleh, H.M. Comparative Metagenomics Analysis of Palm Oil Mill Effluent (Pome) Using Three Different Bioinformatics Pipelines. IIUM Eng. J. 2019, 20, 1–11. [Google Scholar] [CrossRef]
- Ibe, I.J.; Ogbulie, J.N.; Orji, J.C.; Nwanze, P.I.; Ihejirika, C.; Okechi, R.N. Effects of Palm Oil Mill Effluent (Pome) on Soil Bacteria and Enzymes at Different Seasons. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 928–934. [Google Scholar]
- Krishnan, Y.; Bong, C.P.C.; Azman, N.F.; Zakaria, Z.; Othman, N.; Abdullah, N.; Ho, C.S.; Lee, C.T.; Hansen, S.B.; Hara, H. Co-Composting of Palm Empty Fruit Bunch and Palm Oil Mill Effluent: Microbial Diversity and Potential Mitigation of Greenhouse Gas Emission. J. Clean. Prod. 2017, 146, 94–100. [Google Scholar] [CrossRef]
- Semenov, M.V. Metabarcoding and Metagenomics in Soil Ecology Research: Achievements, Challenges, and Prospects. Biol. Bull. Rev. 2021, 11, 40–53. [Google Scholar] [CrossRef]
- Sirichoat, A.; Sankuntaw, N.; Engchanil, C.; Buppasiri, P.; Faksri, K.; Namwat, W.; Chantratita, W.; Lulitanond, V. Comparison of Different Hypervariable Regions of 16S RRNA for Taxonomic Profiling of Vaginal Microbiota Using Next-Generation Sequencing. Arch. Microbiol. 2021, 203, 1159–1166. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Seol, D.; Lim, J.S.; Sung, S.; Lee, Y.H.; Jeong, M.; Cho, S.; Kwak, W.; Kim, H. Microbial identification using rRNA operon region: Database and tool for metataxonomics with long-read sequence. Microbiol. Spectr. 2022, 10, e02017–e02021. [Google Scholar] [CrossRef] [PubMed]
- Loh, S.K.; Lai, M.E.; Ngatiman, M.; Lim, W.S.; Choo, Y.M.; Zhang, Z.; Salimon, J. Zero Discharge Treatment Technology of Palm Oil Mill Effluent. J. Oil Palm Res. 2013, 25, 273–281. [Google Scholar]
- Soo, P.L.; Bashir, M.J.K.; Wong, L.P. Recent Advancements in the Treatment of Palm Oil Mill Effluent (POME) Using Anaerobic Biofilm Reactors: Challenges and Future Perspectives. J. Environ. Manag. 2022, 320, 115750. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; Baidurah, S.; Kobayashi, T.; Ismail, N.; Leh, C.P. Palm Oil Mill Effluent Treatment Processes—A Review. Processes 2021, 9, 739. [Google Scholar] [CrossRef]
- Koppen, W. Climatologia; Fundo de Cultura Econômica: Cidade do México, México, 1931. [Google Scholar]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. Vegan: Community Ecology Package. R Package Version 2.5-7. Community Ecol. Package 2020, 10, 31. Available online: https://CRAN.R-project.org/package=vegan (accessed on 10 September 2023).
- Soriano-Lerma, A.; Pérez-Carrasco, V.; Sánchez-Marañón, M.; Ortiz-González, M.; Sánchez-Martín, V.; Gijón, J.; Navarro-Mari, J.M.; García-Salcedo, J.A.; Soriano, M. Influence of 16S rRNA Target Region on the Outcome of Microbiome Studies in Soil and Saliva Samples. Sci. Rep. 2020, 10, 13637. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover Crops to Increase Soil Microbial Diversity and Mitigate Decline in Perennial Agriculture. A Review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Kanu, J.O.; Babalola, O.O. Metagenomic Profiling of Rhizosphere Microbial Community Structure and Diversity Associated with Maize Plant as Affected by Cropping Systems. Int. Microbiol. 2021, 24, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.K.; Zoqratt, M.Z.H.M.; Goh, Y.K.; Ayub, Q.; Ting, A.S.Y. Determining Soil Microbial Communities and Their Influence on Ganoderma Disease Incidences in Oil Palm (Elaeis guineensis) via High-Throughput Sequencing. Biology 2020, 9, 424. [Google Scholar] [CrossRef]
- Yue, Y.; Gong, X.; Zheng, Y.; Tian, P.; Jiang, Y.; Zhang, H.; Qi, H. Organic Material Addition Optimizes Soil Structure by Enhancing Copiotrophic Bacterial Abundances of Nitrogen Cycling Microorganisms in Northeast China. Agronomy 2023, 13, 2108. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Dorjey, S.; Dolkar, D.; Sharma, R. Plant Growth Promoting Rhizobacteria Pseudomonas: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1335–1344. [Google Scholar] [CrossRef]
- Santoyo, G.; del Orozco-Mosqueda, M.C.; Govindappa, M. Mechanisms of Biocontrol and Plant Growth-Promoting Activity in Soil Bacterial Species of Bacillus and Pseudomonas: A Review. Biocontrol Sci. Technol. 2012, 22, 855–872. [Google Scholar] [CrossRef]
- Tienda, S.; Vida, C.; Lagendijk, E.; de Weert, S.; Linares, I.; González-Fernández, J.; Guirado, E.; de Vicente, A.; Cazorla, F.M. Soil Application of a Formulated Biocontrol Rhizobacterium, Pseudomonas Chlororaphis PCL1606, Induces Soil Suppressiveness by Impacting Specific Microbial Communities. Front. Microbiol. 2020, 11, 1874. [Google Scholar] [CrossRef] [PubMed]
- Jie, W.G.; Tan, Y.W.; Yang, D.Y.; Kan, L.B. Effects of Rhizophagus Intraradices and Acinetobacter Calcoaceticus on Soybean Growth and Carbendazim Residue. Sustainability 2023, 15, 10322. [Google Scholar] [CrossRef]
- Tao, Y.; Hu, S.; Han, S.; Shi, H.; Yang, Y.; Li, H.; Jiao, Y.; Zhang, Q.; Akindolie, M.S.; Ji, M.; et al. Efficient Removal of Atrazine by Iron-Modified Biochar Loaded Acinetobacter Lwoffii DNS32. Sci. Total Environ. 2019, 682, 59–69. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Wan, W. Phosphate-Solubilizing Bacterium Acinetobacter Pittii Gp-1 Affects Rhizosphere Bacterial Community to Alleviate Soil Phosphorus Limitation for Growth of Soybean (Glycine Max). Front. Microbiol. 2021, 12, 737116. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.; Liang, J.; Wu, Z. Identification of Pyrene Degraders via DNA-SIP in Oilfield Soil during Natural Attenuation, Bioaugmentation and Biostimulation. Sci. Total Environ. 2021, 800, 149485. [Google Scholar] [CrossRef] [PubMed]
- Bala, J.D.; Lalung, J.; Al-Gheethi, A.A.S.; Hossain, K.; Ismail, N. Microbiota of Palm Oil Mill Wastewater in Malaysia. Trop. Life Sci. Res. 2018, 29, 131–163. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Zhang, Z.; Zhan, P.C.; Lv, A.P.; Li, P.P.; Liu, L.; Li, W.J.; Yang, L.L.; Zhi, X.Y. Comparative Genomic Analysis and Proposal of Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov., Three Novel Clostridium sensu stricto Endophytes with Diverse Capabilities of Acetic Acid and Ethanol production. Anaerobe 2023, 79, 102686. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.A.; Rajandas, H.; Parimannan, S.; Croft, L.J.; Loke, S.; Chong, C.S.; Bruce, N.C.; Yahya, A. Insights into Microbial Community Structure and Diversity in Oil Palm Waste Compost. 3 Biotech 2019, 9, 364. [Google Scholar] [CrossRef]
- Brewer, T.E.; Handley, K.M.; Carini, P.; Gilbert, J.A.; Fierer, N. Genome Reduction in an Abundant and Ubiquitous Soil Bacterium “Candidatus Udaeobacter Copiosus”. Nat. Microbiol. 2016, 2, 16198. [Google Scholar] [CrossRef]
- Chiang, E.; Schmidt, M.L.; Berry, M.A.; Biddanda, B.A.; Burtner, A.; Johengen, T.H.; Palladino, D.; Denef, V.J. Verrucomicrobia Are Prevalent in North-Temperate Freshwater Lakes and Display Class-Level Preferences between Lake Habitats. PLoS ONE 2018, 13, e0195112. [Google Scholar] [CrossRef]
- Taubert, M.; Stähly, J.; Kolb, S.; Küsel, K. Divergent Microbial Communities in Groundwater and Overlying Soils Exhibit Functional Redundancy for Plant-Polysaccharide Degradation. PLoS ONE 2019, 14, e0212937. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanches, J.P.; Costa, S.S.; das Graças, D.A.; Silva, A.; Baião, G.C.; Moreira, R.G.; Magalhães, M.M.; Cunha, R.L.; Baraúna, R.A. Soil Fertilization with Palm Oil Mill Effluent Has a Short-Term Effect on the Bacterial Diversity of an Amazonian Agricultural Land Area. Microorganisms 2024, 12, 507. https://doi.org/10.3390/microorganisms12030507
Sanches JP, Costa SS, das Graças DA, Silva A, Baião GC, Moreira RG, Magalhães MM, Cunha RL, Baraúna RA. Soil Fertilization with Palm Oil Mill Effluent Has a Short-Term Effect on the Bacterial Diversity of an Amazonian Agricultural Land Area. Microorganisms. 2024; 12(3):507. https://doi.org/10.3390/microorganisms12030507
Chicago/Turabian StyleSanches, Johnes Pinto, Sávio Souza Costa, Diego Assis das Graças, Artur Silva, Guilherme Costa Baião, Rennan G. Moreira, Marcelo Murad Magalhães, Roberto Lisboa Cunha, and Rafael Azevedo Baraúna. 2024. "Soil Fertilization with Palm Oil Mill Effluent Has a Short-Term Effect on the Bacterial Diversity of an Amazonian Agricultural Land Area" Microorganisms 12, no. 3: 507. https://doi.org/10.3390/microorganisms12030507
APA StyleSanches, J. P., Costa, S. S., das Graças, D. A., Silva, A., Baião, G. C., Moreira, R. G., Magalhães, M. M., Cunha, R. L., & Baraúna, R. A. (2024). Soil Fertilization with Palm Oil Mill Effluent Has a Short-Term Effect on the Bacterial Diversity of an Amazonian Agricultural Land Area. Microorganisms, 12(3), 507. https://doi.org/10.3390/microorganisms12030507