Genomic Characterization of Wild Lactobacillus delbrueckii Strains Reveals Low Diversity but Strong Typicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Wild Strains
2.2. DNA Extraction and Sequencing
2.3. Pangenome Assembly and Visualization
2.4. Phylogenetic Reconstruction
2.5. KEGG Functional Analysis
2.6. Preparation of Model Cheese Curd
2.7. Production of Volatile Compounds Using the DHS-TDU GC-MS Method
2.8. Proteolytic Activities
2.9. Statistical Analysis
3. Results
3.1. Isolation and Identification of 15 Lactobacillus delbrueckii ssp. Lactis Wild Strains
3.2. Genetic Homogeneity among SN-Strains
3.2.1. Pangenome Analysis
3.2.2. Carbohydrate Putative Metabolism
3.2.3. Proteins and Peptides Putative Metabolism
3.3. Phenotypic Analysis with Technological Interests
3.3.1. Proteolytic Activities
3.3.2. Production of Volatile Compounds
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Sun, Z.; Guo, C.; Wu, Y.; Liu, W.; Yu, J.; Menghe, B.; Yang, R.; Zhang, H. Genetic Diversity and Population Structure of Lactobacillus delbrueckii Subspecies bulgaricus Isolated from Naturally Fermented Dairy Foods. Sci. Rep. 2016, 6, 22704. [Google Scholar] [CrossRef] [PubMed]
- Tsuchihashi, H.; Ichikawa, A.; Takeda, M.; Koizumi, A.; Mizoguchi, C.; Ishida, T.; Kimura, K. Genetic Diversity of Lactobacillus delbrueckii Isolated from Raw Milk in Hokkaido, Japan. J. Dairy Sci. 2022, 105, 2082–2093. [Google Scholar] [CrossRef] [PubMed]
- Giraffa, G.; Andrighetto, C.; Antonello, C.; Gatti, M.; Lazzi, C.; Marcazzan, G.; Lombardi, A.; Neviani, E. Genotypic and Phenotypic Diversity of Lactobacillus delbrueckii subsp. lactis Strains of Dairy Origin. Int. J. Food Microbiol. 2004, 91, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Abarquero, D.; Renes, E.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E. Evaluation of Technological Properties and Selection of Wild Lactic Acid Bacteria for Starter Culture Development. LWT 2022, 171, 114121. [Google Scholar] [CrossRef]
- Cuffia, F.; Bergamini, C.V.; Hynes, É.R.; Wolf, I.V.; Perotti, M.C. Evaluation of Autochthonous Cultures to Improve the Cheese Flavor: A Case Study in Hard Cheese Model. Food Sci. Technol. Int. Cienc. Tecnol. Aliment. Int. 2020, 26, 173–184. [Google Scholar] [CrossRef]
- Viana de Souza, J.; Silva Dias, F. Protective, Technological, and Functional Properties of Select Autochthonous Lactic Acid Bacteria from Goat Dairy Products. Curr. Opin. Food Sci. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Guarcello, R.; De Angelis, M.; Settanni, L.; Formiglio, S.; Gaglio, R.; Minervini, F.; Moschetti, G.; Gobbetti, M. Selection of Amine-Oxidizing Dairy Lactic Acid Bacteria and Identification of the Enzyme and Gene Involved in the Decrease of Biogenic Amines. Appl. Environ. Microbiol. 2016, 82, 6870–6880. [Google Scholar] [CrossRef]
- Özkan, E.R.; Demirci, T.; Akın, N. In Vitro Assessment of Probiotic and Virulence Potential of Enterococcus faecium Strains Derived from Artisanal Goatskin Casing Tulum Cheeses Produced in Central Taurus Mountains of Turkey. LWT 2021, 141, 110908. [Google Scholar] [CrossRef]
- Özkan, E.R.; Demirci, T.; Öztürk, H.İ.; Akın, N. Screening Lactobacillus Strains from Artisanal Turkish Goatskin Casing Tulum Cheeses Produced by Nomads via Molecular and In Vitro Probiotic Characteristics. J. Sci. Food Agric. 2021, 101, 2799–2808. [Google Scholar] [CrossRef]
- Tittarelli, F.; Perpetuini, G.; Di Gianvito, P.; Tofalo, R. Biogenic Amines Producing and Degrading Bacteria: A Snapshot from Raw Ewes’ Cheese. LWT 2019, 101, 1–9. [Google Scholar] [CrossRef]
- Grizon, A.; Theil, S.; Callon, C.; Gerber, P.; Helinck, S.; Dugat- Bony, E.; Bonnarme, P.; Chassard, C. Genetic and Technological Diversity of Streptococcus thermophilus Isolated from the Saint-Nectaire PDO Cheese-Producing Area. Front. Microbiol. 2023, 14, 1245510. [Google Scholar] [CrossRef]
- Callon, C.; Millet, L.; Montel, M.-C. Diversity of Lactic Acid Bacteria Isolated from AOC Salers Cheese. J. Dairy Res. 2004, 71, 231–244. [Google Scholar] [CrossRef]
- Cantu, V.A.; Sadural, J.; Edwards, R. PRINSEQ++, a Multi-Threaded Tool for Fast and Efficient Quality Control and Preprocessing of Sequencing Datasets. PeerJ 2019, 7, e27553v1. [Google Scholar]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Croucher, N.J.; Goater, R.J.; Abudahab, K.; Aanensen, D.M.; Harris, S.R. Phandango: An Interactive Viewer for Bacterial Population Genomics. Bioinformatics 2018, 34, 292–293. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest Suite for Rapid Core-Genome Alignment and Visualization of Thousands of Intraspecific Microbial Genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef]
- The Galaxy Community. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef]
- Lee, I.; Ouk Kim, Y.; Park, S.-C.; Chun, J. OrthoANI: An Improved Algorithm and Software for Calculating Average Nucleotide Identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for Taxonomy-Based Analysis of Pathways and Genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Callon, C.; Arliguie, C.; Montel, M.-C. Control of Shigatoxin-Producing Escherichia Coli in Cheese by Dairy Bacterial Strains. Food Microbiol. 2016, 53, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Myagkonosov, D.S.; Abramov, D.V.; Ovchinnikova, E.G.; Krayushkina, V.N. Express Method for Assessing Proteolysis in Cheese and Aromatic Additives with Cheese Flavor. Food Syst. 2021, 3, 4–10. [Google Scholar] [CrossRef]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric Assay Using O-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Baek, M.; Kim, K.W.; Yi, H. Subspecies-Level Genome Comparison of Lactobacillus delbrueckii. Sci. Rep. 2023, 13, 3171. [Google Scholar] [CrossRef]
- El Kafsi, H.; Binesse, J.; Loux, V.; Buratti, J.; Boudebbouze, S.; Dervyn, R.; Kennedy, S.; Galleron, N.; Quinquis, B.; Batto, J.-M.; et al. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: A Chronicle of Evolution in Action. BMC Genom. 2014, 15, 407. [Google Scholar] [CrossRef]
- Tettelin, H.; Riley, D.; Cattuto, C.; Medini, D. Comparative Genomics: The Bacterial Pan-Genome. Curr. Opin. Microbiol. 2008, 11, 472–477. [Google Scholar] [CrossRef]
- Thierry, A.; Collins, Y.F.; Abeijón Mukdsi, M.C.; McSweeney, P.L.H.; Wilkinson, M.G.; Spinnler, H.E. Chapter 17—Lipolysis and Metabolism of Fatty Acids in Cheese. In Cheese, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 423–444. ISBN 978-0-12-417012-4. [Google Scholar]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic Systems of Lactic Acid Bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Ardö, Y.; McSweeney, P.L.H.; Magboul, A.A.A.; Upadhyay, V.K.; Fox, P.F. Chapter 18—Biochemistry of Cheese Ripening: Proteolysis. In Cheese, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 445–482. ISBN 978-0-12-417012-4. [Google Scholar]
- Zotta, T.; Ricciardi, A.; Ciocia, F.; Rossano, R.; Parente, E. Diversity of Stress Responses in Dairy Thermophilic Streptococci. Int. J. Food Microbiol. 2008, 124, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Helinck, S.; Le Bars, D.; Moreau, D.; Yvon, M. Ability of Thermophilic Lactic Acid Bacteria to Produce Aroma Compounds from Amino Acids. Appl. Environ. Microbiol. 2004, 70, 3855–3861. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Weatherly, M.R.; Beaman, D.C. Sweeteners, Flavorings, and Dyes in Antibiotic Preparations. Pediatrics 1991, 87, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Kandler, O. Carbohydrate Metabolism in Lactic Acid Bacteria. Antonie Leeuwenhoek 1983, 49, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, C.F.; Cailliez-Grimal, C.; Borges, F.; Revol-Junelles, A.-M. Review of Lactose and Galactose Metabolism in Lactic Acid Bacteria Dedicated to Expert Genomic Annotation. Trends Food Sci. Technol. 2019, 88, 121–132. [Google Scholar] [CrossRef]
- Grossiord, B.; Vaughan, E.E.; Luesink, E.; de Vos, W.M. Genetics of Galactose Utilisation via the Leloir Pathway in Lactic Acid Bacteria. Lait 1998, 78, 77–84. [Google Scholar] [CrossRef]
- Weiss, N.; Schillinger, U.; Kandler, O. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, Subjective Synonyms of Lactobacillus delbrueckii, and Description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Syst. Appl. Microbiol. 1983, 4, 552–557. [Google Scholar] [CrossRef]
- Zeng, L.; Das, S.; Burne, R.A. Utilization of Lactose and Galactose by Streptococcus mutans: Transport, Toxicity, and Carbon Catabolite Repression. J. Bacteriol. 2010, 192, 2434–2444. [Google Scholar] [CrossRef]
- Hébert, E.M.; Raya, R.R.; de Giori, G.S. Nutritional Requirements of Lactobacillus delbrueckii subsp. lactis in a Chemically Defined Medium. Curr. Microbiol. 2004, 49, 341–345. [Google Scholar] [CrossRef]
- Villegas, J.M.; Brown, L.; Savoy de Giori, G.; Hebert, E.M. Characterization of the Mature Cell Surface Proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581. Appl. Microbiol. Biotechnol. 2015, 99, 4277–4286. [Google Scholar] [CrossRef] [PubMed]
- Doeven, M.K.; Kok, J.; Poolman, B. Specificity and Selectivity Determinants of Peptide Transport in Lactococcus lactis and Other Microorganisms. Mol. Microbiol. 2005, 57, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Wegmann, U.; Klein, J.R.; Drumm, I.; Kuipers, O.P.; Henrich, B. Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression. Appl. Environ. Microbiol. 1999, 65, 4729–4733. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Ma, J.; Xu, M.; Agyei, D. Cell-Envelope Proteinases from Lactic Acid Bacteria: Biochemical Features and Biotechnological Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 369–400. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Villegas, J.M.; Elean, M.; Fadda, S.; Mozzi, F.; Saavedra, L.; Hebert, E.M. YebC, a Putative Transcriptional Factor Involved in the Regulation of the Proteolytic System of Lactobacillus. Sci. Rep. 2017, 7, 8579. [Google Scholar] [CrossRef]
- Elean, M.; Albarracin, L.; Villena, J.; Kitazawa, H.; Saavedra, L.; Hebert, E.M. In Silico Comparative Genomic Analysis Revealed a Highly Conserved Proteolytic System in Lactobacillus delbrueckii. Int. J. Mol. Sci. 2023, 24, 11309. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F. Cheese: An Overview. In Cheese: Chemistry, Physics and Microbiology: Volume 1 General Aspects; Fox, P.F., Ed.; Springer: Boston, MA, USA, 1993; pp. 1–36. ISBN 978-1-4615-2650-6. [Google Scholar]
- Bertuzzi, A.S.; McSweeney, P.L.H.; Rea, M.C.; Kilcawley, K.N. Detection of Volatile Compounds of Cheese and Their Contribution to the Flavor Profile of Surface-Ripened Cheese. Compr. Rev. Food Sci. Food Saf. 2018, 17, 371–390. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.J.; Xu, L.Y.; Wang, B.; Zhang, J.H.; Li, B.Z.; Cao, Y.P.; Tan, L. Key Aroma Compounds Identified in Cheddar Cheese with Different Ripening Times by Aroma Extract Dilution Analysis, Odor Activity Value, Aroma Recombination, and Omission. J. Dairy Sci. 2021, 104, 1576–1590. [Google Scholar] [CrossRef]
- Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Conte, F. Solid-Phase Microextraction and Gas Chromatography Mass Spectrometry Analysis of Dairy Product Volatiles for the Determination of Shelf-Life. Int. Dairy J. 2008, 18, 819–825. [Google Scholar] [CrossRef]
- Curioni, P.M.G.; Bosset, J.O. Key Odorants in Various Cheese Types as Determined by Gas Chromatography-Olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Kilcawley, K.N. Cheese Flavour. In Fundamentals of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2017; pp. 443–474. ISBN 978-1-4899-7681-9. [Google Scholar]
- Thomsen, M.; Martin, C.; Mercier, F.; Tournayre, P.; Berdagué, J.-L.; Thomas-Danguin, T.; Guichard, E. Investigating Semi-Hard Cheese Aroma: Relationship between Sensory Profiles and Gas Chromatography-Olfactometry Data. Int. Dairy J. 2012, 26, 41. [Google Scholar] [CrossRef]
- Avsar, Y.K.; Karagul-Yuceer, Y.; Drake, M.A.; Singh, T.K.; Yoon, Y.; Cadwallader, K.R. Characterization of Nutty Flavor in Cheddar Cheese. J. Dairy Sci. 2004, 87, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Hannon, J.A.; Kilcawley, K.N.; Wilkinson, M.G.; Delahunty, C.M.; Beresford, T.P. Production of Ingredient-Type Cheddar Cheese with Accelerated Flavor Development by Addition of Enzyme-Modified Cheese Powder. J. Dairy Sci. 2006, 89, 3749–3762. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.K.; Drake, M.A.; Cadwallader, K.R. Flavor of Cheddar Cheese: A Chemical and Sensory Perspective. Compr. Rev. Food Sci. Food Saf. 2003, 2, 166–189. [Google Scholar] [CrossRef] [PubMed]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour Formation by Lactic Acid Bacteria and Biochemical Flavour Profiling of Cheese Products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Molimard, P.; Spinnler, H.E. Review: Compounds Involved in the Flavor of Surface Mold-Ripened Cheeses: Origins and Properties. J. Dairy Sci. 1996, 79, 169–184. [Google Scholar] [CrossRef]
- Lawlor, J.B.; Delahunty, C.M.; Wilkinson, M.G.; Sheehan, J. Relationships between the Gross, Non-Volatile and Volatile Compositions and the Sensory Attributes of Eight Hard-Type Cheeses. Int. Dairy J. 2002, 12, 493–509. [Google Scholar] [CrossRef]
- Pan, D.D.; Wu, Z.; Peng, T.; Zeng, X.Q.; Li, H. Volatile Organic Compounds Profile during Milk Fermentation by Lactobacillus pentosus and Correlations between Volatiles Flavor and Carbohydrate Metabolism. J. Dairy Sci. 2014, 97, 624–631. [Google Scholar] [CrossRef]
- Alemayehu, D.; Hannon, J.A.; McAuliffe, O.; Ross, R.P. Characterization of Plant-Derived Lactococci on the Basis of Their Volatile Compounds Profile When Grown in Milk. Int. J. Food Microbiol. 2014, 172, 57–61. [Google Scholar] [CrossRef]
- Liu, S.-Q.; Holland, R.; Crow, V.L. Esters and Their Biosynthesis in Fermented Dairy Products: A Review. Int. Dairy J. 2004, 14, 923–945. [Google Scholar] [CrossRef]
- Delgado, F.J.; González-Crespo, J.; Cava, R.; Ramírez, R. Formation of the Aroma of a Raw Goat Milk Cheese during Maturation Analysed by SPME–GC–MS. Food Chem. 2011, 129, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Yvon, M.; Rijnen, L. Cheese Flavour Formation by Amino Acid Catabolism. Int. Dairy J. 2001, 11, 185–201. [Google Scholar] [CrossRef]
- Buchin, S.; Duboz, G.; Salmon, J.-C. Lactobacillus delbrueckii subsp. lactis as a Starter Culture Significantly Affects the Dynamics of Volatile Compound Profiles of Hard Cooked Cheeses. Eur. Food Res. Technol. 2017, 243, 1943–1955. [Google Scholar] [CrossRef]
- Liu, A.; Liu, Q.; Bu, Y.; Hao, H.; Liu, T.; Gong, P.; Zhang, L.; Chen, C.; Tian, H.; Yi, H. Aroma Classification and Characterization of Lactobacillus delbrueckii subsp. bulgaricus Fermented Milk. Food Chem. X 2022, 15, 100385. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.R.; Racioppo, A.; Monacis, N.; Speranza, B. Commercial Starters or Autochtonous Strains? That Is the Question. In Starter Cultures in Food Production; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 174–198. ISBN 978-1-118-93379-4. [Google Scholar]
- Silvetti, T.; Capra, E.; Morandi, S.; Cremonesi, P.; Decimo, M.; Gavazzi, F.; Giannico, R.; De Noni, I.; Brasca, M. Microbial Population Profile during Ripening of Protected Designation of Origin (PDO) Silter Cheese, Produced with and without Autochthonous Starter Culture. LWT 2017, 84, 821–831. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, J.; Liu, W.; Li, W.; Sun, Z.; Cui, Y.; Zhang, H. Exploring the Industrial Potential of Lactobacillus delbrueckii ssp. bulgaricus by Population Genomics and Genome-Wide Association Study Analysis. J. Dairy Sci. 2021, 104, 4044–4055. [Google Scholar] [CrossRef]
- Van de Guchte, M.; Penaud, S.; Grimaldi, C.; Barbe, V.; Bryson, K.; Nicolas, P.; Robert, C.; Oztas, S.; Mangenot, S.; Couloux, A.; et al. The Complete Genome Sequence of Lactobacillus bulgaricus Reveals Extensive and Ongoing Reductive Evolution. Proc. Natl. Acad. Sci. USA 2006, 103, 9274–9279. [Google Scholar] [CrossRef]
- Randazzo, C.L.; Pitino, I.; De Luca, S.; Scifò, G.O.; Caggia, C. Effect of Wild Strains Used as Starter Cultures and Adjunct Cultures on the Volatile Compounds of the Pecorino Siciliano Cheese. Int. J. Food Microbiol. 2008, 122, 269–278. [Google Scholar] [CrossRef]
- Dan, T.; Ren, W.; Liu, Y.; Tian, J.; Chen, H.; Li, T.; Liu, W. Volatile Flavor Compounds Profile and Fermentation Characteristics of Milk Fermented by Lactobacillus delbrueckii subsp. bulgaricus. Front. Microbiol. 2019, 10, 2183. [Google Scholar] [CrossRef]
- Zhai, Y.; Wei, C. Open Pangenome of Lactococcus lactis Generated by a Combination of Metagenome-Assembled Genomes and Isolate Genomes. Front. Microbiol. 2022, 13, 948138. [Google Scholar] [CrossRef] [PubMed]
Strains | Isolation Source | Accession Number |
---|---|---|
H15BR1 (SN-strain) | Raw milk | GCA_963920275 1 |
H29BR1 (SN-strain) | Raw milk | GCA_963920385 1 |
H24BR3 (SN-strain) | Raw milk | GCA_963920445 1 |
H28BR3 (SN-strain) | Raw milk | GCA_963920295 1 |
H23BR3 (SN-strain) | Raw milk | GCA_963920345 1 |
H19BR1 (SN-strain) | Raw milk | GCA_963920365 1 |
H14BR1 (SN-strain) | Raw milk | GCA_963920425 1 |
155BR2 (SN-strain) | Raw milk | GCA_963920285 1 |
144BR1 (SN-strain) | Raw milk | GCA_963920375 1 |
149BR5 (SN-strain) | Raw milk | GCA_963920315 1 |
73BR5 (SN-strain) | Raw milk | GCA_963920405 1 |
110BR2 (SN-strain) | Raw milk | GCA_963920335 1 |
110BR5 (SN-strain) | Raw milk | GCA_963920435 1 |
46BR1 (SN-strain) | Raw milk | GCA_963920395 1 |
187BR1 (SN-strain) | Raw milk | GCA_963920355 1 |
CSYR1 CS | Commercial starter | - |
ND02 | Unknown | GCA_000182835.1 2 |
CNRZ327 | Environment | GCA_000751695.2 2 |
KCTC3034 | Sour milk | GCA_002016675.1 2 |
DSM20072 | Emmental cheese | GCA_002017855.1 2 |
CNRZ700 | Environment | GCA_000751275.1 2 |
CNRZ333 | Environment | GCA_000751235.1 2 |
CRL581 | Argentinian cheese | GCA_000409675.1 2 |
KCTC 3035 | Unknown | GCA_001888985.1 2 |
CNRZ226 | Environment | GCA_000751655.1 2 |
DSM20074 | Environment | GCA_001908495.1 2 |
DSM 26046 | Fermented beverage | GCA_001888925.1 2 |
KCTC 13731 | Environment | GCA_001888945.1 2 |
PB2003/044-T3-4 | Biological product | GCA_000179375.1 2 |
JCM 17838 | Fermented vegetable | GCA_001888965.1 2 |
KCCM3417 | Environment | GCA_001888905.1 2 |
ACTC 11842 | Bulgarian yogurt | GCA_000056065.1 2 |
MN-BM-F01 | Traditional fermented dairy | GCA_001469775.1 2 |
LBB.B5 | Home-made yogurt | GCA_001647065.1 2 |
ND04 | Fermented camel milk | GCA_002000885.1 2 |
JCM 15610 | Dairy fermented product | GCA_001908415.1 2 |
Strain | 110BR2 | 110BR5 | 144BR1 | 155BR2 | 187BR1 | 46BR1 | 73BR5 | CCSC | H15BR1 | H19BR1 | H23BR3 | H28BR3 | H29BR1 | RCS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Esters | ||||||||||||||
Ethyl Acetate | - | - | - | - | - | 274 ± 2.1 a | - | - | - | - | - | - | - | - |
Ethyl hexanoate | - | 497 ± 42.5 b | - | - | 1425 ± 26.4 a | - | 61 ± 0.7 c | - | 30 ± 0.8 c | 145 ± 3.2 c | - | - | 133 ± 1.8 c | |
Ethyl Octanoate | - | - | - | - | - | - | - | - | - | 11 ± 0.5 c | 12 ± 0.3 b | - | - | 13 ± 0.5 a |
Ketones | ||||||||||||||
2-Butanone | 2403 ± 239.2 b | - | - | - | - | - | - | 2702 ± 38.9 a | 2422 ± 272.1 ab | - | - | - | - | - |
2,3-Butanedione | - | - | - | - | - | - | - | 4499 ± 19.9 b | - | 4703 ± 6.6 a | 3290 ± 29.6 d | - | - | 3745 ± 146 c |
Methyl Isobutyl Ketone | 314 ± 7.6 bcd | 213 ± 15.5 gh | 119 ± 13.3 i | 421 ± 5.7 a | 316 ± 2.9 bc | 275 ± 3.8 def | 343 ± 42.3 b | 291 ± 6.3 cde | 414 ± 10.4 a | 273 ± 1.6 ef | 317 ± 1.1 bc | 244 ± 9.1 fg | 191 ± 0.9 h | 444 ± 4.3 a |
Acetoin | 31 ± 0.3 g | 15 ± 0.2 g | 54 ± 0.6 g | 370 ± 8.4 f | 42 ± 0.9 g | 12447 ± 72.1 b | 63 ± 0.0 g | 13206 ± 81.2 a | 85 ± 0.2 g | 9327 ± 84.1 d | 5930 ± 77.1 e | 39 ± 0.2 g | 23 ± 0.7 g | 9928 ± 29.6 c |
2,3-Pentanedione | - | - | - | - | 25 ± 0.5 d | - | 9 ± 0.2 e | 123 ± 3.6 b | 11 ± 0.2 | 120 ± 6.8 bc | 115 ± 0.2 c | - | - | 143 ± 2.1 a |
2-Heptanone | - | 164 ± 4.9 a | 72 ± 0.4 c | - | - | 23 ± 1.0 g | - | 154 ± 5.3 b | 55 ± 0.3 de | 52 ± 0.2 e | 59 ± 0.7 d | 42 ± 0.1 f | 46 ± 0.7 f | 70 ± 0.2 c |
Acetoin acetate | - | - | - | - | - | - | - | 62 ± 0.3 d | - | 652 ± 2.8 a | 395 ± 3.6 c | - | - | 464 ± 2.5 b |
2-Hydroxy-3-pentanone | - | - | - | - | - | - | - | 181 ± 5.6 c | - | 149 ± 2.2 d | 208 ± 5.6 b | - | - | 236 ± 3.0 a |
Acetophenone | - | - | - | - | - | - | - | 12 ± 2.2 a | - | - | - | - | - | - |
2-Propanone, 1-hydroxy- | - | - | - | - | - | - | - | 55 ± 0.5 a | - | 54 ± 0.5 b | - | - | - | 43 ± 0.1 c |
Acetone | 1136 ± 47.3 f | 705 ± 5.9 j | 1330 ± 41.4 e | 5848 ± 37.3 a | 1077 ± 82.3 fg | 1782 ± 55.1 d | 979 ± 4.3 ghi | 1130 ± 13.8 f | 906 ± 4.5 i | 3842 ± 6.1 c | 5776 ± 99.2 a | 1045 ± 6.6 fgh | 919 ± 9.3 hi | 4405 ± 57 b |
2-Pentanone | 684 ± 3 g | 1205 ± 2.7 a | 760 ± 11.4 f | 803 ± 3.9 e | 743 ± 19.4 f | 983 ± 4.5 b | 665 ± 1.6 g | 748 ± 6.8 f | 933 ± 5.2 c | 542 ± 2.0 i | 622 ± 3.1 h | 964 ± 3.9 b | 874 ± 5.0 d | 390 ± 6.4 j |
2-Nonanone | - | - | - | - | - | 23 ± 0.5 a | - | 14 ± 0.8 b | - | - | - | - | - | - |
2,3-Dimethylhydroquinone | - | - | - | - | - | - | - | 46 ± 0.9 a | - | - | - | - | - | - |
Aldehydes | ||||||||||||||
2-Methylbutanal | - | - | - | - | - | - | 146 ± 0.9 b | 225 ± 14 a | - | - | - | - | - | - |
3-Methylbutanal | - | - | - | - | - | - | 1374 ± 90.7 a | 1167 ± 25.5 b | - | - | - | - | - | - |
Decanal | 16 ± 0.3 a | - | 16 ± 0.6 a | 13 ± 1.0 b | - | - | 12 ± 0.8 b | - | - | - | - | - | 12 ± 0.5 b | - |
Benzaldehyde | 26 ± 0.3 e | - | - | - | 118 ± 1.3 a | - | 45 ± 0.9 b | 8 ± 0.1 g | 25 ± 0.4 e | 11 ± 0.2 f | 8 ± 0.0 g | 43 ± 1 c | 35 ± 0.2 d | - |
Benzaldehyde, 4-methyl- | 15 ± 0.5 c | - | - | - | - | - | 35 ± 0.4 b | - | - | - | - | 39 ± 0.3 a | - | - |
Hexanal | 66 ± 0.5 d | - | - | - | 143 ± 8.8 a | - | 42 ± 0.2 f | - | 50 ± 0.8 e | - | - | 97 ± 0.4 b | 87 ± 0.9 c | - |
Heptanal | 34 ± 2.3 b | - | - | - | 135 ± 14 a | - | - | - | - | - | - | - | - | - |
Octanal | - | - | - | - | 8 ± 0.2 a | - | - | - | - | - | - | - | - | - |
2-Nonenal, (E)- | - | - | - | - | 7 ± 0.2 a | - | - | - | - | - | - | - | - | - |
Alcohols | ||||||||||||||
2-Butanol, (R)- | - | 644 ± 2.7 a | - | - | - | - | - | - | - | - | - | - | - | - |
1-Propanol, 2-methyl- | 286 ± 2.4 j | 423 ± 2.2 g | 506 ± 3.9 f | 416 ± 2.4 g | 416 ± 4.8 g | 559 ± 7 e | 308 ± 4.7 i | 938 ± 7.5 a | 298 ± 1.5 ij | 778 ± 5.7 b | 761 ± 5.3 c | 334 ± 2.7 h | 251 ± 4.4 k | 675 ± 3.8 d |
3-Methyl-Butanol | 36 ± 0.3 e | 63 ± 0.2 e | 34 ± 0.7 e | 75 ± 0.2 de | 37 ± 0.2 e | 2966 ± 53.1 b | 28 ± 0.0 e | 4689 ± 100.8 a | 60 ± 0.2 e | 369 ± 5.1 c | 115 ± 1.1 de | 33 ± 0.4 e | 28 ± 1.0 e | 155 ± 3.6 d |
3-Pentanol | - | - | - | - | - | - | - | 509 ± 1.4 a | - | 307 ± 7.4 b | 156 ± 4.2 d | - | - | 259 ± 5.2 c |
Ethanol | - | - | 457 ± 0.1 c | 1443 ± 28.3 a | - | 138 ± 6.6 de | 211 ± 0.7 d | 114 ± 2.6 e | - | 110 ± 5.2 e | 1356 ± 89.1 b | - | - | 1336 ± 12.3 b |
1-Butanol | 153 ± 1.6 b | - | - | 106 ± 0.2 e | 168 ± 1.0 a | 61 ± 0.6 g | 147 ± 1.8 c | 65 ± 0.1 f | 124 ± 3.4 d | - | - | 63 ± 0.1 fg | 13 ± 0.3 h | - |
1-Penten-3-ol | 8 ± 0.3 b | - | - | 9 ± 0.1 b | 32 ± 1.3 a | - | 6 ± 0.1 c | - | - | - | - | - | - | - |
1-Pentanol | - | - | - | 60 ± 0.1 b | 183 ± 17.8 a | - | - | - | - | - | - | - | - | - |
1-Octadecanol | - | - | - | - | - | - | - | 48 ± 0.4 a | - | 40 ± 0.2 b | - | - | - | - |
Aromatic hydrocarbons | ||||||||||||||
Toluene | 254 ± 1.7 b | 186 ± 1.7 ef | 155 ± 0.5 gh | 188 ± 0.9 e | 167 ± 1.3 fg | 153 ± 1.8 gh | 246 ± 13.7 b | 222 ± 3.9 cd | 226 ± 14.4 c | 274 ± 1.7 a | 144 ± 3.4 hi | 203 ± 11.6 de | 132 ± 2.1 i | 157 ± 0.7 gh |
Carboxylic acids | ||||||||||||||
Acetic acid | 27 ± 0.3 ij | 47 ± 0.6 gh | 17 ± 0.6 jk | 92 ± 0.2 e | 57 ± 0.2 g | 334 ± 3.2 c | 10 ± 7.2 k | 1143 ± 5.8 a | 37 ± 0.8 hi | 326 ± 1.5 c | 241 ± 0.8 d | 70 ± 1.0 f | 41 ± 0.3 h | 381 ± 11 b |
Hexanoic acid | - | 34 ± 0.3 b | 16 ± 0.4 d | - | - | - | - | 253 ± 4.4 a | - | 23 ± 0.3 c | 35 ± 0.3 b | - | - | 36 ± 0.2 b |
Octanoic acid | - | - | - | - | - | - | - | 34 ± 1.9 a | - | - | - | - | - | - |
Butanoic acid | - | 165 ± 3.3 c | 76 ± 0.2 d | - | - | - | - | 1442 ± 24.2 a | - | 1357 ± 2.7 b | - | - | - | 180 ± 8.4 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grizon, A.; Theil, S.; Helinck, S.; Gerber, P.; Bonnarme, P.; Chassard, C. Genomic Characterization of Wild Lactobacillus delbrueckii Strains Reveals Low Diversity but Strong Typicity. Microorganisms 2024, 12, 512. https://doi.org/10.3390/microorganisms12030512
Grizon A, Theil S, Helinck S, Gerber P, Bonnarme P, Chassard C. Genomic Characterization of Wild Lactobacillus delbrueckii Strains Reveals Low Diversity but Strong Typicity. Microorganisms. 2024; 12(3):512. https://doi.org/10.3390/microorganisms12030512
Chicago/Turabian StyleGrizon, Anna, Sébastien Theil, Sandra Helinck, Pauline Gerber, Pascal Bonnarme, and Christophe Chassard. 2024. "Genomic Characterization of Wild Lactobacillus delbrueckii Strains Reveals Low Diversity but Strong Typicity" Microorganisms 12, no. 3: 512. https://doi.org/10.3390/microorganisms12030512
APA StyleGrizon, A., Theil, S., Helinck, S., Gerber, P., Bonnarme, P., & Chassard, C. (2024). Genomic Characterization of Wild Lactobacillus delbrueckii Strains Reveals Low Diversity but Strong Typicity. Microorganisms, 12(3), 512. https://doi.org/10.3390/microorganisms12030512