Candida dubliniensis in Japanese Oral Microbiota: A Cross-Sectional Study of Six Geographic Regions in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Collection of Candida Specimens and Culturing
2.3. Species Determination
2.4. Identification of C. dubliniensis and Genotyping of C. albicans
2.5. Antifungal Drug Susceptibility Test
2.6. Secretory Aspartic Proteinase (SAP) Productivity Test
2.7. Statistical Analysis
3. Results
3.1. Prevalence of Oral Candida and Candida Species in Healthy Subjects in Different Geographic Regions and with Different Health Conditions
3.2. Proportion of Each Genotype of C. albicans and C. dubliniensis
3.3. Antifungal Drug Susceptibility
3.4. Secretory Aspartic Proteinase (SAP) Productivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Japan Ministry of Health, Labor and Welfare Web Page. Vital Statistics Occurring in Japan. Available online: https://www.mhlw.go.jp/english/database/db-hw/dl/2_Summary_of_results.pdf (accessed on 29 December 2023).
- Teramoto, S.; Fukuchi, Y.; Sasaki, H.; Sato, K.; Sekizawa, K.; Matsuse, T.; Japanese Study Group on Aspiration Pulmonary Disease. High incidence of aspiration pneumonia in community- and hospital-acquired pneumonia in hospitalized patients: A multicenter, prospective study in Japan. J. Am. Geriatr. Soc. 2008, 56, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.L.; Chao, C.M.; Lai, C.C. The impact of Candida isolates on the outcome of aspiration pneumonia. Am. J. Infect. Control 2013, 41, 850–851. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Westerneng, T.J.; Haynes, K.A.; Bennett, D.E.; Coleman, D.C. Candida dubliniensis sp. nov.: Phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 1995, 141, 1507–1521. [Google Scholar] [CrossRef]
- Loreto, E.S.; Scheid, L.A.; Nogueira, C.W.; Zeni, G.; Santurio, J.M.; Alves, S.H. Candida dubliniensis: Epidemiology and phenotypic methods for identification. Mycopathologia 2010, 169, 431–443. [Google Scholar] [CrossRef]
- Moran, G.P.; Sullivan, D.J.; Henmen, M.C.; McCreary, C.E.; Harrington, B.J.; Shanley, D.B.; Coleman, D.C. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrob. Agents Chemother. 1997, 41, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Moran, G.P.; Pinjon, E.; Al-Mosaid, A.; Stokes, C.; Vaughan, C.; Coleman, D.C. Comparison of the epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res. 2004, 4, 369–376. [Google Scholar] [CrossRef]
- Pontón, J.; Rüchel, R.; Clemons, K.V.; Coleman, D.C.; Grillot, R.; Guarro, J.; Aldebert, D.; Ambroise-Thomas, P.; Cano, J.; Carrillo-Muñoz, A.J.; et al. Emerging pathogens. Med. Mycol. 2000, 38, 225–236. [Google Scholar] [CrossRef]
- Akhtar, N.; Magdaleno, J.S.L.; Ranjan, S.; Wani, A.K.; Grewal, R.K.; Oliva, R.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Secreted Aspartyl Proteinases Targeted Multi-Epitope Vaccine Design for Candida dubliniensis Using Immunoinformatics. Vaccines 2023, 11, 364. [Google Scholar] [CrossRef]
- Khan, Z.; Ahmad, S.; Joseph, L.; Chandy, R. Candida dubliniensis: An appraisal of its clinical significance as a bloodstream pathogen. PLoS ONE 2012, 7, e32952. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef]
- Moser, D.; Biere, K.; Han, B.; Hoerl, M.; Schelling, G.; Chouker, A.; Woehrle, T. COVID-19 impairs immune response to Candida albicans. Front. Immunol. 2021, 12, 640644. [Google Scholar] [CrossRef]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Kakehi, A.; Hagiya, H.; Iio, K.; Nakano, Y.; Ihoriya, H.; Taira, Y.; Nakamoto, K.; Hasegawa, K.; Higashikage, A.; Otsuka, F. Candida dubliniensis fungemia in a patient with severe COVID-19: A case report. J. Infect. Chemother. 2022, 28, 1433–1435. [Google Scholar] [CrossRef]
- Ieda, S.; Moriyama, M.; Takashita, T.; Maehara, T.; Imabayashi, Y.; Shinozaki, S.; Tanaka, A.; Hayashida, J.-N.; Furukawa, S.; Ohta, M.; et al. Molecular analysis of fungal populations in patients with oral candidiasis using internal transcribed spacer region. PLoS ONE 2014, 9, e101156. [Google Scholar] [CrossRef]
- Jinam, T.; Nishida, N.; Hirai, M.; Kawamura, S.; Oota, H.; Umetsu, K.; Kimura, R.; Ohashi, J.; Tajima, A.; Yamamoto, T.; et al. The history of human populations in the Japanese Archipelago inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations. J. Hum. Genet. 2012, 1, 9. [Google Scholar]
- Watanabe, Y.; Isshiki, M.; Ohashi, J. Prefecture-level population structure of the Japanese based on SNP genotypes of 11,069 individuals. J. Hum. Genet. 2021, 66, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ohshima, T.; Yasunari, U.; Namikoshi, S.; Yoshihara, A.; Miyazaki, H.; Maeda, N. The carriage of Candida species on the dorsal surface of the tongue: The correlation with the dental, periodontal and prosthetic status in elderly subjects. Gerodontology 2006, 23, 157–163. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.J.; Clemons, K.V.; Stevens, D.A. Molecular and phenotypic characterization of genotypic Candida albicans subgroups and comparison with Candida dubliniensis and Candida stellatoidea. J. Clin. Microbiol. 1999, 37, 417–421. [Google Scholar] [CrossRef]
- Higgins, D. Clustal W Version 1.6; European Bioinformatics Institute: Cambridge, UK, 1996. [Google Scholar]
- Gouy, M. NJplot; University of Lyon: Lyon, France, 1995. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Dunn, B.M. Structure and Function of The Aspartic Proteinases: Advance in Experimental Medicine and Biology; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Gee, S.F.; Joly, S.; Soll, D.R.; Meis, J.F.G.M.; Verweij, P.E.; Polacheck, I.; Sullivan, D.J.; Coleman, D.C. Identification of four distinct genotypes of Candida dubliniensis and detection of microevolution in vitro and in vivo. J. Clin. Mirobiol. 2002, 40, 556–574. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Watanabe, K.; Mikami, Y.; Yazawa, K.; Nishimura, K. Molecular characterization of new clinical isolates of Candida albicans and C. dubliniensis in Japan: Analysis reveals a new genotype of C. albicans with group I intron. J. Clin. Microbiol. 2001, 39, 4309–4315. [Google Scholar] [CrossRef] [PubMed]
- Hartung de Capriles, C.; Mata-Essayag, S.; Pérez, C.; Colella, M.T.; Roselló, A.; Olaizola, C.; Abate, S.M. Detection of Candida dubliniensis in Venezuela. Mycopathologia 2005, 160, 227–234. [Google Scholar] [CrossRef]
- Romeo, O.; Criseo, G. Molecular epidemiology of Candida albicans and its closely related yeasts Candida dubliniensis and Candida africana. J. Clin. Microbiol. 2009, 47, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Blignaut, E.; Pujol, C.; Joly, S.; Soll, D.R. Racial distribution of Candida dubliniensis colonization among South Africans. J. Clin. Microbiol. 2003, 41, 1838–1842. [Google Scholar] [CrossRef]
- Xu, J.; Mitchell, T.G. Geographical Differences in Human Oral Yeast Flora. Clin. Infect. Dis. 2003, 36, 221–224. [Google Scholar] [CrossRef]
- Hammer, M.F.; Karafet, T.M.; Park, H.; Omoto, K.; Harihara, S.; Stoneking, M.; Horai, S. Dual origins of the Japanese: Common ground for hunter-gatherer and farmer Y chromosomes. J. Hum. Genet. 2006, 51, 47–58. [Google Scholar] [CrossRef]
- Horai, S.; Murayama, K.; Hayasaka, K.; Matsubayashi, S.; Hattori, Y.; Fucharoen, G.; Hanihara, S.; Park, K.S.; Omoto, K.; Pan, I.H. mtDNA polymorphism in East Asian Populations, with special reference to the peopling of Japan. Am. J. Hum. Genet. 1996, 59, 579–590. [Google Scholar] [PubMed]
- Yamaguchi-Kabata, Y.; Nakazono, K.; Takahashi, A.; Saito, S.; Hosono, N.; Kubo, M.; Nakamura, Y.; Kamatani, N. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: Effects on population-based association studies. Am. J. Hum. Genet. 2008, 83, 445–456. [Google Scholar] [CrossRef]
- Hanihara, K. Dual structure model for the population history of the Japanese. Jpn. Rev. 1991, 2, 1–33. [Google Scholar]
- Higa, T.; Hanihara, T.; Sunakawa, H.; Ishida, H. Dental variation of Ryukyu islanders: A comparative study among Ryukyu, Ainu, and other Asian populations. Am. J. Hum. Biol. 2003, 15, 127–143. [Google Scholar] [CrossRef]
- Eguchi, K.; Fujii, H.; Oshima, K.; Otani, M.; Matsuo, T.; Yamamoto, T. Human T-lymphotropic virus type 1 (HTLV-1) genetic typing in Kakeroma Island, an island at the crossroads of the ryukyuans and Wajin in Japan, providing further insights into the origin of the virus in Japan. J. Med. Virol. 2009, 81, 1450–1456. [Google Scholar] [CrossRef]
- Vidal, A.U.; Gressain, A.; Yoshida, M.; Mahieux, R.; Nishioka, K.; Tekaia, F.; Rosen, L.; De Thé, G. Molecular epidemiology of HTLV type I in Japan: Evidence for two distinct ancestral lineages with a particular geographical distribution. AIDS Res. Hum. Retroviruses 1994, 10, 1557–1566. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Joly, S.; Vargas, K.; Swails-Wenger, J.; Enger, L.; Soll, D.R. Natural defenses against Candida colonization breakdown in the oral cavities of the elderly. J. Dent. Res. 1999, 78, 857–868. [Google Scholar] [CrossRef]
- Umene, K.; Sakaoka, H. Populations of two eastern countries of Japan and Korea and with a related history share a predominant genotype of herpes simplex virus type 1. Arch. Virol. 1997, 142, 1953–1961. [Google Scholar] [CrossRef]
- Yogo, Y.; Sugimoto, C.; Zheng, H.Y.; Ikegaya, H.; Takasaka, T.; Kitamura, T. JC virus genotyping offers a new paradigm in the study of human populations. Rev. Med. Virol. 2004, 14, 179–191. [Google Scholar] [CrossRef]
- Coleman, D.C.; Moran, G.P.; McManus, B.A.; Sullivan, D.J. Mechanisms of antifungal drug resistance in Candida dubliniensis. Future Microbiol. 2010, 5, 935–949. [Google Scholar] [CrossRef] [PubMed]
- McManus, B.A.; Coleman, D.C.; Moran, G.; Pinjon, E.; Diogo, D.; Bougnoux, M.-E.; Borecká-Melkusova, S.; Bujdákova, H.; Murphy, P.; D’Enfert, C.; et al. Multilocus sequence typing reveals that the population structure of Candida dubliniensis is significantly less divergent than that of Candida albicans. J. Clin. Microbiol. 2008, 46, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.J.; Moran, G.P. Differential virulence of Candida albicans and C. dubliniensis: A role for Tor1 kinase? Virulence 2011, 2, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P. Antifungal susceptibility testing: A primer for clinicians. Open Forum Infect. Dis. 2021, 8, ofab444. [Google Scholar] [CrossRef] [PubMed]
- Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0, EUCAST 2020. Available online: http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 26 December 2023).
Groups | Total Number of Individuals | Average Age (Range) | Candida Positive Rate % | ||||||
---|---|---|---|---|---|---|---|---|---|
Total Candida | Albicans Group (C. a and C. d) | C. g | C. k | C. p | C. t | Candida spp. (Others) | |||
Healthy subjects | |||||||||
Aomori | |||||||||
Elementary school | 133 | 7.2 (6–8) | 28.6 | 24.1 | 3.8 | 0.8 | 0 | 0 | 0.8 |
Junior high school | 135 | 12.1 (12–15) | 29.6 | 26.7 | 3.7 | 0 | 0 | 0 | 0 |
High school | 136 | 15.1 (15–17) | 39.0 | 36.8 | 2.2 | 0 | 0 | 0.7 | 0 |
Adult | 60 | 55.5 (20–85) | 56.7 | 45.0 | 31.7 | 6.7 | 6.7 | 3.3 | 0 |
Sub-total | 464 | 35.6 | 30.4 | 6.9 | 1.1 | 0.9 | 0.7 | 0.2 | |
Niigata | |||||||||
Adult | 490 | 60.7 (20–75) | 56.9 | 48.6 | 20.2 | 1.6 | 4.5 | 2.9 | 3.7 |
Nagano | |||||||||
Adult | 108 | 49.3 (24–80) | 37.0 | 27.8 | 6.5 | 0.9 | 5.6 | 1.9 | 1.9 |
Tokyo/Kanagawa | |||||||||
Kindergarten | 121 | 4.2 (3–5) | 28.9 | 17.4 | 10.7 | 0 | 0 | 0 | 3.3 |
Elementary school | 38 | 9.2 (10–12) | 13.2 | 13.2 | 0 | 0 | 0 | 0 | 0 |
Junior high school | 38 | 13.4 (13–14) | 26.3 | 26.3 | 0 | 0 | 2.6 | 0 | 0 |
High school | 32 | 15.8 (15–17) | 25.0 | 25.0 | 0 | 3.1 | 0 | 0 | 0 |
Adult | 130 | 32.8 (20–76) | 31.5 | 20.2 | 6.9 | 1.6 | 0 | 0 | 0 |
Sub-total | 359 | 27.6 | 19.5 | 6.1 | 0.8 | 0.3 | 0 | 2.2 | |
Yamaguchi | |||||||||
Adult | 129 | 48.4 (23–81) | 45.0 | 41.1 | 9.3 | 3.1 | 3.1 | 0.8 | 2.3 |
Okinawa(isolated island) | |||||||||
Kindergarten | 56 | 3.0 (1–5) | 55.4 | 50.0 | 10.7 | 0 | 0 | 0 | 0 |
Elementary school | 55 | 9.5 (6–12) | 58.2 | 45.5 | 10.9 | 0 | 1.8 | 0 | 0 |
Junior high school | 51 | 13.3 (13–15) | 39.2 | 35.3 | 3.9 | 3.9 | 3.9 | 0 | 0 |
High school | 13 | 17.6(16–18) | 69.2 | 53.8 | 15.4 | 0 | 0 | 7.7 | 0 |
Adult | 177 | 47.7 (21–74) | 58.2 | 50.3 | 14.1 | 5.6 | 5.6 | 0.6 | 1.7 |
Sub-total | 352 | 55.4 | 47.4 | 11.7 | 3.4 | 3.7 | 0.6 | 0.9 | |
Patient subjects (Tokyo/Kanagawa) | |||||||||
HIV positives * (adult) | 107 | 37.2 (21–71) | 63.6 | 61.7 | 5.6 | 0.9 | 1.9 | 0.9 | 1.9 |
Oral candidiasis (adult) | 423 | 66.8 (21–97) | 100 | 92.2 | 46.6 | 0.8 | 13.7 | 7.1 | 9.9 |
Genotype | Number of Strains | |||
---|---|---|---|---|
In This Study | by Gee et al., 2002 [24] | From Healthy Volunteers | From Patient Subjects | Sub-Total |
I | 1 | 80 (a) | 23 (e) | 103 |
II * | N/I | 1 (b) | 0 | 1 |
III * | N/I | 6 (c) | 1 (f) | 7 |
IV * | N/I | 1 (c) | 0 | 1 |
V * | N/I | 3 (d) | 3 (f) | 6 |
VI | 3 | 0 | 0 | 0 |
VII | 4 | 0 | 0 | 0 |
VIII | 2 | 1 (b) | 2 (f) | 3 |
IX * | N/I | 1 (b) | 0 | 1 |
Total | 93 | 29 | 122 |
Amphotericin-B (µg/mL) | Flucytosine (µg/mL) | Fluconazole (µg/mL) | Itraconazole (µg/mL) | Miconazole (µg/mL) | Micafungin (µg/mL) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | |
From HIV negatives | |||||||||||||||||||
C. albicans (A) | 30 | 0.25–1.0 | 0.5 | 1.0 | 0.125–0.5 | 0.125 | 0.125 | 0.25–128 | 4.0 | 128 | 0.015–16 | 16 | 16 | 0.06–64 | 4.0 | 64 | 0.03 (2) | 0.03 | 0.03 |
C. albicans (B) | 12 | 0.13–1.0 | 0.5 | 1.0 | 0.125 | 0.125 | 0.125 | 0.125–128 | 0.5 | 4.0 | 0.03–1.0 | 0.06 | 0.5 | 0.06–1.0 | 0.125 | 0.25 | 0.03 (3) | 0.03 | 0.03 |
C. albicans (C) | 12 | 0.125–1.0 | 0.25 | 1.0 | 0.125 | 0.125 | 0.125 | 0.25–128 | 0.5 | 128 | 0.03–128 | 0.06 | 1.0 | 0.06–4.0 | 0.125 | 2.0 | 0.03 | 0.03 | 0.03 |
C. dubliniensis (D) | 20 | 0.03–0.5 | 0.25 | 0.5 | 0.125 (1) | 0.125 | 0.125 | 0.125–0.5 | 0.25 | 0.5 | 0.015–0.125 | 0.06 | 0.125 | 0.06–0.125 | 0.06 | 0.125 | 0.03 | 0.03 | 0.03 |
From HIV positives | |||||||||||||||||||
C. albicans (A) | 38 | 0.125–1.0 | 0.5 | 1.0 | 0.125–128 | 0.125 | 0.5 | 0.125–128 | 32.0 | 128 | 0.03–16 | 8.0 | 16 | 0.06–64 | 8.0 | 64 | 0.03–2 | 0.03 | 0.03 |
C. albicans (B) | 7 | 0.25–0.5 | 0.5 | 0.5 | 0.125 | 0.125 | 0.125 | 0.125–128 | 0.25 | 128 | 0.03–16 | 0.06 | 8.0 | 0.06–16 | 0.06 | 8.0 | 0.03 | 0.03 | 0.03 |
C. albicans (C) | 13 | 0.5–1.0 | 0.5 | 1.0 | 0.125–0.25 | 0.125 | 0.125 | 0.125–128 | 1.0 | 128 | 0.03–16 | 0.125 | 16 | 0.06–64 | 0.25 | 64 | 0.03 | 0.03 | 0.03 |
C. dubliniensis (D) | 5 | 0.06–0.5 | 0.5 | 0.5 | 0.125 | 0.125 | 0.125 | 0.25–1.0 | 0.5 | 1.0 | 0.06–0.125 | 0.06 | 0.125 | 0.125 | 0.125 | 0.125 | 0.03 | 0.03 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohshima, T.; Mukai, Y.; Watanabe, H.; Ohshima, K.; Makimura, K.; Komabayashi, T.; Ahn, C.; Meyer, K.; Maeda, N. Candida dubliniensis in Japanese Oral Microbiota: A Cross-Sectional Study of Six Geographic Regions in Japan. Microorganisms 2024, 12, 525. https://doi.org/10.3390/microorganisms12030525
Ohshima T, Mukai Y, Watanabe H, Ohshima K, Makimura K, Komabayashi T, Ahn C, Meyer K, Maeda N. Candida dubliniensis in Japanese Oral Microbiota: A Cross-Sectional Study of Six Geographic Regions in Japan. Microorganisms. 2024; 12(3):525. https://doi.org/10.3390/microorganisms12030525
Chicago/Turabian StyleOhshima, Tomoko, Yoko Mukai, Hitoshi Watanabe, Keijiro Ohshima, Koichi Makimura, Takashi Komabayashi, Chul Ahn, Karen Meyer, and Nobuko Maeda. 2024. "Candida dubliniensis in Japanese Oral Microbiota: A Cross-Sectional Study of Six Geographic Regions in Japan" Microorganisms 12, no. 3: 525. https://doi.org/10.3390/microorganisms12030525
APA StyleOhshima, T., Mukai, Y., Watanabe, H., Ohshima, K., Makimura, K., Komabayashi, T., Ahn, C., Meyer, K., & Maeda, N. (2024). Candida dubliniensis in Japanese Oral Microbiota: A Cross-Sectional Study of Six Geographic Regions in Japan. Microorganisms, 12(3), 525. https://doi.org/10.3390/microorganisms12030525