Identification and Safety Assessment of Enterococcus casseliflavus KB1733 Isolated from Traditional Japanese Pickle Based on Whole-Genome Sequencing Analysis and Preclinical Toxicity Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Whole-Genome Sequencing Analysis
2.1.1. Bacterial Strains and Growth Conditions
2.1.2. DNA Preparation, Genome Sequencing, and De Novo Hybrid Assembly
2.1.3. Comparative Genome Analysis
2.2. Antibiotic Resistance and Virulence Factors
2.2.1. Bacterial Strains and Growth Conditions
2.2.2. Antibiotic Resistance
2.2.3. Virulence Factors
2.3. Bacterial Reverse Mutation Test (Ames Test)
2.3.1. Guidelines Compliance
2.3.2. Tester Microorganisms, Negative Control, and Positive Control
2.3.3. Metabolic Activation
2.3.4. Sample Preparation
2.3.5. Experimental Procedure
2.4. Acute Oral Toxicity
2.4.1. Ethical Approval and Guidelines
2.4.2. Animals and General Housing Conditions
2.4.3. Feeding Intervention
2.4.4. Clinical Observations, Measurements, and Outcomes
3. Results and Discussion
3.1. Whole-Genome Sequencing Analysis
3.2. Antibiotic Resistance
3.3. Virulence Factors
3.4. Ames Test
3.5. Acute Oral Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joint FAO/WHO Working Group. Guidelines for the Evaluation of Probiotics in Food: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations: London, ON, Canada, 2002. [Google Scholar]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
- Satomi, S.; Waki, N.; Arakawa, C.; Fujisawa, K.; Suzuki, S.; Suganuma, H. Effects of Heat-Killed Levilactobacillus brevis KB290 in Combination with β-Carotene on Influenza Virus Infection in Healthy Adults: A Randomized Controlled Trial. Nutrients 2021, 13, 3039. [Google Scholar] [CrossRef]
- Mulaw, G.; Tessema, T.S.; Muleta, D.; Tesfaye, A. In Vitro Evaluation of Probiotic Properties of Lactic Acid Bacteria Isolated from Some Traditionally Fermented Ethiopian Food Products. Int. J. Microbiol. 2019, 2019, 7179514. [Google Scholar] [CrossRef] [PubMed]
- Satomi, S.; Kokubu, D.; Inoue, T.; Sugiyama, M.; Mizokami, M.; Suzuki, S.; Murata, K. Enterococcus casseliflavus KB1733 Isolated from a Traditional Japanese Pickle Induces Interferon-Lambda Production in Human Intestinal Epithelial Cells. Microorganisms 2022, 10, 827. [Google Scholar] [CrossRef] [PubMed]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Patel, M.; Hadi, S. Functional and health promoting inherent attributes of Enterococcus hirae F2 as a novel probiotic isolated from the digestive tract of the freshwater fish Catla catla. Peer J. 2017, 5, e3085. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhan, M.; Evivie, S.E.; Jin, D.; Zhao, L.; Chowdhury, S.; Sarker, S.K.; Huo, G.; Liu, F. Evaluating the safety of potential probiotic Enterococcus durans KLDS6.0930 using whole genome sequencing and oral toxicity study. Front. Microbiol. 2018, 29, 1943. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Smaoui, S. Enterococci: Between Emerging Pathogens and Potential Probiotics. Biomed. Res. Int. 2019, 2019, 5938210. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The genus Enterococcus: Between probiotic potential and safety concerns—An update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J. 2017, 15, e04664. [Google Scholar] [CrossRef]
- Anadón, A.; Martínez-Larrañaga, M.R.; Aranzazu Martínez, M. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul. Toxicol. Pharmacol. 2006, 45, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Nueno-Palop, C.; Narbad, A. Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int. J. Food Microbiol. 2011, 145, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.; Gibbs, P.A.; Teixeira, P. Virulence factors among enterococci isolated from traditional fermented meat products produced in the north of Portugal. Food Control 2010, 21, 651–656. [Google Scholar] [CrossRef]
- Hammami, R.; Fernandez, B.; Lacroix, C.; Fliss, I. Anti-infective properties of bacteriocins: An update. Cell. Mol. Life Sci. 2013, 70, 2947–2967. [Google Scholar] [CrossRef] [PubMed]
- OECD. 471: Bacterial reverse mutation test. In OECD Guidelines for the Testing of Chemicals; OECD: Paris, France, 1997; Section 4; pp. 1–11. [Google Scholar]
- Darbandi, A.; Mirkalantari, S.; Golmoradi Zadeh, R.; Esghaei, M.; Talebi, M.; Kakanj, M. Safety evaluation of mutagenicity, genotoxicity, and cytotoxicity of Lactobacillus spp. isolates as probiotic candidates. J. Clin. Lab. Anal. 2022, 36, e24481. [Google Scholar] [CrossRef]
- Morita, H.; Kuwahara, T.; Ohshima, K.; Sasamoto, H.; Itoh, K.; Hattori, M.; Hayashi, T.; Takami, H. An improved DNA isolation method for metagenomic analysis of the microbial flora of the human intestine. Microbes Environ. 2007, 22, 214–222. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Laetsch, D.R.; Blaxter, M.L. BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. F1000Research 2017, 6, 1287. [Google Scholar] [CrossRef]
- Koutsovoulos, G.; Kumar, S.; Laetsch, D.R.; Stevens, L.; Daub, J.; Conlon, C.; Maroon, H.; Thomas, F.; Aboobaker, A.A.; Blaxter, M. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini. Proc. Natl. Acad. Sci. USA 2016, 113, 5053–5058. [Google Scholar] [CrossRef]
- Petkau, A.; Stuart-Edwards, M.; Stothard, P.; van Domselaar, G. Interactive microbial genome visualization with GView. Bioinformatics 2010, 26, 3125–3126. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition, CLSI Document. Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2012.
- Notification No. 29; Guidelines for the Designation of Food Additives and Revision of Standards for Use of Food Additives. The Ministry of Health, Labour and Welfare: Tokyo, Japan, 1996.
- PFSB/ELD Notification 0920 No. 2; Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use. The Ministry of Health, Labour and Welfare: Tokyo, Japan, 2012.
- Bosshard, P.P.; Abels, S.; Altwegg, M.; Böttger, E.C.; Zbinden, R. Comparison of conventional and molecular methods for identification of aerobic catalase negative gram-positive cocci in the clinical laboratory. J. Clin. Microbiol. 2004, 42, 2065–2073. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Migaw, S.; Ghrairi, T.; Belguesmia, Y.; Choiset, Y.; Berjeaud, J.M.; Chobert, J.M.; Hani, K.; Haertlé, T. Diversity of bacteriocinogenic lactic acid bacteria isolated from Mediterranean fish viscera. World J. Microbiol. Biotechnol. 2014, 30, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus diversity, origins in nature, and gut colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014; pp. 5–63. [Google Scholar]
- Araujo, T.F.; Ferreira, C.L.D.L.F. The genus Enterococcus as probiotic: Safety concerns. Braz. Arch. Biol. Technol. 2013, 56, 457–466. [Google Scholar] [CrossRef]
- Reynolds, P.E.; Arias, C.A.; Courvalin, C. Gene vanXYC encodes D,D-dipeptidase (VanX) and D,D-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 1999, 34, 341–349. [Google Scholar] [CrossRef] [PubMed]
- da Silva Filho, A.C.; Raittz, R.T.; Guizelini, D.; De Pierri, C.R.; Augusto, D.W.; Dos Santos-Weiss, I.C.R.; Marchaukoski, J.N. Comparative Analysis of Genomic Island Prediction Tools. Front. Genet. 2018, 9, 619. [Google Scholar] [CrossRef]
- Franz, C.M.; Muscholl-Silberhorn, A.B.; Yousif, N.M.; Vancanneyt, M.; Swings, J.; Holzapfel, W.H. Incidence of virulence factors and antibiotic resistance among Enterococci isolated from food. Appl. Environ. Microbiol. 2001, 67, 4385–4389. [Google Scholar] [CrossRef]
- Mundy, L.M.; Sahm, D.F.; Gilmore, M. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 2000, 13, 513–522. [Google Scholar] [CrossRef] [PubMed]
KB1733 | JCM 8723T | ||||
---|---|---|---|---|---|
Chromosome | pKB1733-1 | Chromosome | pJCM8723T-1 | pJCM8723T-2 | |
Size (bp) | 3,514,629 | 46,459 | 3,438,284 | 79,290 | 30,933 |
GC content (%) | 42.8 | 34.4 | 42.6 | 35.4 | 31.2 |
Number of CDSs | 3318 | 47 | 3277 | 78 | 38 |
Average protein length | 309.4 | 238.8 | 304.4 | 267.4 | 187.5 |
Number of rRNAs | 15 | 0 | 15 | 0 | 0 |
Number of tRNAs | 61 | 0 | 60 | 0 | 0 |
Number of CRISPRs | 0 | 0 | 0 | 0 | 0 |
Average read depth | 59.113 | 81.5884 | 83.1 | 117.8 | 146.1 |
Resistance Gene | Identity (%) | Contig | Position in Contig | |
---|---|---|---|---|
KB1733 | vanC2 | 100 | Chr | 2,624,186–2,625,238 |
vanXY | 99.3 | Chr | 2,625,235–2,625,807 | |
JCM 8723T | vanC2 | 100 | Chr | 2,539,000–2,540,052 |
vanXY | 99.3 | Chr | 2,540,049–2,540,621 |
Test Strains | Control Strains | ||||||
---|---|---|---|---|---|---|---|
KB1733 | JCM 8723T | Enterococcus | JCM 7783 | JCM 2874 | |||
Reference * | Reference † | Reference † | |||||
AM | 0.18 | 0.25 | 2 | 0.5 | 0.5–2 | 0.5 | 0.5–2 |
CL | 2.5 | 3 | 16 | 4 | 4–16 | 5 | 2–16 |
CI | 1.5 | 1.8 | NR | 0.4 | 0.25–2 | 0.15 | 0.12–0.5 |
CM | 2.5 | 2 | 4 | 12 | 4–16 | 0.08 | 0.06–0.25 |
EM | 4 | 3 | 4 | 4 | 1–4 | 0.5 | 0.25–1 |
GM | 3 | 2 | 32 | 5 | 4–16 | 2 | 0.12–1 |
KM | 32 | 16 | 1024 | 16 | 16–64 | 3.5 | 1–4 |
LZ | 1.5 | 1 | NR | 1.5 | 1–4 | 1.5 | 1–4 |
RI | 0.75 | 0.5 | NR | 0.75 | 0.5–4 | 0.004 | 0.004–0.015 |
TC | 0.25 | 0.19 | 4 | 12 | 8–32 | 0.125 | 0.12–1 |
VA | 1 | 2 | 4 | 2 | 1–4 | 0.75 | 0.5–2 |
Dose (μg/Plate) | Mean Revertant Colonies per Plate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli | Salmonella typhimurium | |||||||||
WP2uvrA | TA100 | TA1535 | TA98 | TA1537 | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | |
Negative control * | 22 | 19 | 116 | 121 | 10 | 12 | 20 | 35 | 12 | 16 |
8.19 | 23 | 15 | 121 | 124 | 13 | 9 | 28 | 35 | 11 | 14 |
20.5 | 21 | 21 | 132 | 110 | 8 | 6 | 24 | 31 | 13 | 11 |
51.2 | 20 | 25 | 111 | 106 | 6 | 11 | 28 | 31 | 6 | 19 |
128 | 22 | 22 | 99 | 117 | 7 | 13 | 29 | 27 | 6 | 16 |
320 | 31 | 16 | 113 | 125 | 16 | 15 | 26 | 30 | 8 | 7 |
800 | 17 | 26 | 114 | 123 | 10 | 5 | 23 | 30 | 6 | 9 |
2000+ | 23 | 27 | 110 | 124 | 10 | 9 | 21 | 29 | 5 | 12 |
5000+ | 22 | 19 | 115 | 120 | 8 | 11 | 28 | 39 | 9 | 10 |
Positive control †,‡ | 113 | 869 | 558 | 892 | 566 | 332 | 640 | 350 | 258 | 149 |
Dose (μg/Plate) | Mean Revertant Colonies per Plate | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli | Salmonella typhimurium | |||||||||
WP2uvrA | TA100 | TA1535 | TA98 | TA1537 | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | |
Negative control * | 29 | 25 | 121 | 131 | 9 | 14 | 22 | 29 | 6 | 12 |
156 | 30 | 22 | 115 | 131 | 13 | 10 | 23 | 30 | 10 | 15 |
313 | 24 | 26 | 125 | 140 | 7 | 9 | 23 | 28 | 7 | 11 |
625 | 24 | 20 | 124 | 133 | 11 | 10 | 20 | 34 | 4 | 12 |
1250 | 24 | 29 | 113 | 136 | 7 | 12 | 22 | 31 | 6 | 14 |
2500+ | 24 | 33 | 104 | 149 | 9 | 12 | 26 | 29 | 7 | 12 |
5000+ | 28 | 22 | 140 | 154 | 12 | 8 | 18 | 30 | 10 | 16 |
Positive control †,‡ | 107 | 798 | 550 | 998 | 622 | 311 | 613 | 391 | 242 | 122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satomi, S.; Takahashi, S.; Inoue, T.; Taniguchi, M.; Sugi, M.; Natsume, M.; Suzuki, S. Identification and Safety Assessment of Enterococcus casseliflavus KB1733 Isolated from Traditional Japanese Pickle Based on Whole-Genome Sequencing Analysis and Preclinical Toxicity Studies. Microorganisms 2024, 12, 953. https://doi.org/10.3390/microorganisms12050953
Satomi S, Takahashi S, Inoue T, Taniguchi M, Sugi M, Natsume M, Suzuki S. Identification and Safety Assessment of Enterococcus casseliflavus KB1733 Isolated from Traditional Japanese Pickle Based on Whole-Genome Sequencing Analysis and Preclinical Toxicity Studies. Microorganisms. 2024; 12(5):953. https://doi.org/10.3390/microorganisms12050953
Chicago/Turabian StyleSatomi, Shohei, Shingo Takahashi, Takuro Inoue, Makoto Taniguchi, Mai Sugi, Masakatsu Natsume, and Shigenori Suzuki. 2024. "Identification and Safety Assessment of Enterococcus casseliflavus KB1733 Isolated from Traditional Japanese Pickle Based on Whole-Genome Sequencing Analysis and Preclinical Toxicity Studies" Microorganisms 12, no. 5: 953. https://doi.org/10.3390/microorganisms12050953
APA StyleSatomi, S., Takahashi, S., Inoue, T., Taniguchi, M., Sugi, M., Natsume, M., & Suzuki, S. (2024). Identification and Safety Assessment of Enterococcus casseliflavus KB1733 Isolated from Traditional Japanese Pickle Based on Whole-Genome Sequencing Analysis and Preclinical Toxicity Studies. Microorganisms, 12(5), 953. https://doi.org/10.3390/microorganisms12050953