Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient’s Characteristics
2.2. Ethical Considerations
2.3. Study Design
- Stool Analysis: Assessment of stool frequency and consistency
- Digestive System and Psychoemotional Status Assessment with specialized questionnaires:
- a.
- Gastrointestinal Symptom Rating Scale (GSRS)
- b.
- Gastrointestinal Symptom Score (GIS)
- c.
- Hospital Anxiety and Depression Scale (HADS)
- Examination of the gut microbiota
- Analysis of interleukins parameters
2.4. Autoprobiotic Strains
Making of Autoprobiotic Enterococci
2.5. Questionnaires
2.6. Study of the Gut Microbiota
2.6.1. Bacteriological Study
2.6.2. Quantitative Polymerase Chain Reaction (qPCR)
2.6.3. Metagenome Analysis (16 S rRNA)
2.7. Serum Analysis (Cytokine Status)
2.8. Statistical Analysis
3. Results
3.1. Clinical Data
3.1.1. Analysis of the Results of the Questionnaires
3.1.2. Assessment of Adverse Events
3.2. Serum Analysis (Cytokine Status)
3.3. Cut Microbiota Study
3.3.1. Bacteriological Study
3.3.2. qPCR Study Results
3.3.3. Metagenome Analysis Study
4. Discussion
5. Conclusions
- A personalized approach to patient care.
- Expedited restoration of stool of normal consistency after surgery (type 3–4 on the Bristol scale).
- Reduction in abdominal pain, dyspeptic symptoms, and inflammation post-surgery.
- Lowering the risk of CRC relapse by diminishing pro-carcinogenic inflammation in the colon associated with gut dysbiosis.
- A complex approach in the restoring of composition of the gut microbiota in complex therapy of CRC after surgical intervention with autoprobiotic enterococci.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baquero, F.; Nombela, C. The microbiome as a human organ. Clin. Microbiol. Infect. 2012, 18 (Suppl. 4), 2–4. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alexander, K.L.; Targan, S.R.; Elson, C.O. Microbiota activation and regulation of innate and adaptive immunity. Immunol. Rev. 2014, 260, 206–220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Sun, K.; Wu, Y.; Yang, Y.; Tso, P.; Wu, Z. Interactions between Intestinal Microbiota and Host Immune Response in Inflammatory Bowel Disease. Front. Immunol. 2017, 8, 942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, Y.; Chen, F.; Wu, W.; Sun, M.; Bilotta, A.J.; Yao, S.; Xiao, Y.; Huang, X.; Eaves-Pyles, T.D.; Golovko, G.; et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018, 11, 752–762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarashi, S.; Siadat, S.D.; Ahmadi Badi, S.; Zali, M.; Biassoni, R.; Ponzoni, M.; Moshiri, A. Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer? Microorganisms 2019, 7, 561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, N.; Yang, X.; Zhang, R.; Li, J.; Xiao, X.; Hu, Y.; Chen, Y.; Yang, F.; Lu, N.; Wang, Z.; et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb. Ecol. 2013, 66, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Wei, C.; Ensor, J.E.; Smolenski, D.J.; Amos, C.I.; Levin, B.; Berry, D.A. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013, 24, 1207–1222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017, 66, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Cougnoux, A.; Delmas, J.; Gibold, L.; Faïs, T.; Romagnoli, C.; Robin, F.; Cuevas-Ramos, G.; Oswald, E.; Darfeuille-Michaud, A.; Prati, F.; et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 2016, 65, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Alcoholado, L.; Ramos-Molina, B.; Otero, A.; Laborda-Illanes, A.; Ordóñez, R.; Medina, J.A.; Gómez-Millán, J.; Queipo-Ortuño, M.I. The Role of the Gut Microbiome in Colorectal Cancer Development and Therapy Response. Cancers 2020, 12, 1406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karamzin, A.M.; Ropot, A.V.; Boshian, R.E. Relationship of the mucin-degrading bacterium Akkermansia muciniphila with colorectal cancer. Exp. Clin. Gastroenterol. 2020, 178, 158–165. (In Russian) [Google Scholar] [CrossRef]
- Tsoi, H.; Chu, E.; Zhang, X.; Sheng, J.; Nakatsu, G.; Ng, S.C.; Chan, A.; Chan, W.; Sung, J.; Yu, J. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice. Gastroenterology 2017, 152, 1419–1433.e5. [Google Scholar] [CrossRef] [PubMed]
- Dulal, S.; Keku, T.O. Gut microbiome and colorectal adenomas. Cancer J. 2014, 20, 225–231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dutilh, B.E.; Backus, E.; van Hijum, S.A.; Tjalsma, H. Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Best. Pract. Res. Clin. Gastroenterol. 2013, 27, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wu, Y.; He, L.; Wu, L.; Wang, X.; Liu, Z. Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer. J. Cancer 2018, 9, 2510–2517. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kochkina, S.O.; Gordeev, S.S.; Mamedli, Z.Z. Role of human microbiota in the development of colorectal cancer. Tazovaya Khirurgiya I Onkol. = Pelvic Surg. Oncol. 2019, 9, 11–17. [Google Scholar] [CrossRef]
- Alasiri, G.A. Effect of gut microbiota on colorectal cancer progression and treatment. Saudi Med. J. 2022, 43, 1289–1299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pitsillides, L.; Pellino, G.; Tekkis, P.; Kontovounisios, C. The Effect of Perioperative Administration of Probiotics on Colorectal Cancer Surgery Outcomes. Nutrients 2021, 13, 1451. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zakharenko, A.A.; Suvorov, A.N.; Shlyk, I.V.; Ten, O.A.; Dzhamilov, S.R.; Natkha, A.S.; Trushin, A.A.; Belyaev, M.A. Disorders of a microbiocenosis of intestines at patients with a colorectal cancer and ways of their correction (review). Coloproctology 2016, 2, 48–56. [Google Scholar] [CrossRef]
- Floch, M.H. The Role of Prebiotics and Probiotics in Gastrointestinal Disease. Gastroenterol. Clin. N. Am. 2018, 47, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Zaharuddin, L.; Mokhtar, N.M.; Muhammad Nawawi, K.N.; Raja Ali, R.A. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 2019, 19, 131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Consoli, M.L.; da Silva, R.S.; Nicoli, J.R.; Bruña-Romero, O.; da Silva, R.G.; de Vasconcelos Generoso, S.; Correia, M.I. Randomized Clinical Trial: Impact of Oral Administration of Saccharomyces boulardii on Gene Expression of Intestinal Cytokines in Patients Undergoing Colon Resection. JPEN J. Parenter. Enter. Nutr. 2016, 40, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Krebs, B. Prebiotic and Synbiotic Treatment before Colorectal Surgery--Randomised Double Blind Trial. Coll. Antropol. 2016, 40, 35–40. [Google Scholar] [PubMed]
- Kim, C.E.; Yoon, L.S.; Michels, K.B.; Tranfield, W.; Jacobs, J.P.; May, F.P. The Impact of Prebiotic, Probiotic, and Synbiotic Supplements and Yogurt Consumption on the Risk of Colorectal Neoplasia among Adults: A Systematic Review. Nutrients 2022, 14, 4937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khakimova, G.G.; Tryakin, A.A.; Zabotina, T.N.; Tsukanov, A.S.; Aliev, V.A.; Gutorov, S.L. The Role of the Intestinal Microbiome in the Immunotherapy of Colon Cancer. Malig. Tumours 2019, 9, 5–11. (In Russian) [Google Scholar] [CrossRef]
- Finlay, B.B.; Goldszmid, R.; Honda, K.; Trinchieri, G.; Wargo, J.; Zitvogel, L. Can we harness the microbiota to enhance the efficacy of cancer immunotherapy? Nat. Rev. Immunol. 2020, 20, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.L.; Moreira, J.; Lorenzo, A.; Lamas, C.C. Infectious complications following probiotic ingestion: A potentially underestimated problem? A systematic review of reports and case series. BMC Complement. Altern. Med. 2018, 18, 329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suvorov, A.N.; Ermolenko, E.I.; Kotyleva, M.P.; Tsapieva, A.N. Method for Preparing Autoprobiotic Based on Anaerobic Bacteria Consortium. Patent for Invention 2734896 C2, 26 October 2020. Application No. 2018147697 Dated 28 December 2018. Available online: https://patents.s3.yandex.net/RU2734896C2_20201026.pdf (accessed on 30 December 2023).
- Suvorov, A. Gut microbiota, probiotics, and human health. Biosci. Microbiota Food Health 2013, 32, 81–91. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holzapfel, W.; Arini, A.; Aeschbacher, M.; Coppolecchia, R.; Pot, B. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef. Microbes 2018, 9, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Suvorov, A. What Is Wrong with Enterococcal Probiotics? Probiotics Antimicrob. Proteins 2020, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Yermolenko, E.; Chernysh, A.; Kolobov, A.; Suvorov, A. Influence of synthetic peptide inducers on antibacterial activity of enterococci. Benef. Microbes 2011, 2, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Chikindas, M.L. Probiotics and antimicrobial peptides: The creatures’ and substances’ future in the twenty-first century: An opinion letter. Probiotics Antimicrob. Proteins 2014, 6, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Ermolenko, E.; Gromova, L.; Borschev, Y.; Voeikova, A.; Karaseva, A.; Ermolenko, K.; Gruzdkov, A.; Suvorov, A. Influence of different probiotic lactic Acid bacteria on microbiota and metabolism of rats with dysbiosis. Biosci. Microbiota Food Health 2013, 32, 41–49. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Averina, O.V.; Ermolenko, E.I.; Ratushniy, A.Y.; Tarasova, E.A.; Borschev, Y.Y.; Leontieva, G.F.; Kramskaya, T.A.; Kotyleva, M.P.; Danilenko, V.N.; Suvorov, A.N. Influence of probiotics on cytokine production in the in vitro and in vivo systems. Med. Immunol. (Russ.)/Meditsinskaya Immunol. 2015, 17, 443–454. [Google Scholar] [CrossRef]
- Bonacina, J.; Suárez, N.; Hormigo, R.; Fadda, S.; Lechnev, M.; Saavedra, L.A. Genomic view of food-related and probiotic Enterococcus strains. DNA Res. 2017, 24, 11–24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7, 1–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tynkkynen, S.; Singh, K.V.; Varmanen, P. Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Int. J. Food Microbiol. 1998, 41, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Shuxrat, T.; Bakievich, A.U.; Ramizitdinovna, A.R.; Jo’raevich, C.A. Research on the application of protein soya is from local raw materials from Uzbekistan. Am. J. Agric. Biomed. Eng. 2021, 3, 107–120. [Google Scholar] [CrossRef]
- Suvorov, A.N.; Simanenkov, V.I.; Sundukova, Z.R.; Ermolenko, E.I.; Tsapieva, A.N.; Donets, V.N.; Solovyova, O.I. Method for Producing Autoprobiotic of Enterocuccus Faecium Being Representative of Indigenic Host Intestinal Microflora. Patent for Invention RU2460778C1, Application RU2010154822/10A. 30 December 2010. Available online: https://patents.google.com/patent/RU2460778C1/en (accessed on 30 December 2023).
- Vershinin, A.E.; Kolodzhieva, V.V.; Ermolenko, E.I.; Grabovskaia, K.B.; Klimovich, B.V.; Suvorov, A.N.; Bondarenko, V.M. Genetic identification as method of detection of pathogenic and symbiotic strains of enterococci. Zh. Mikrobiol. Epidemiol. Immunobiol. 2008, 83–87. (In Russian) [Google Scholar] [PubMed]
- Cheng, S.; McCleskey, F.K.; Gress, M.J.; Petroziello, J.M.; Liu, R.; Namdari, H.; Beninga, K.; Salmen, A.; DelVecchio, V.G. A PCR assay for identification of Enterococcus faecium. J. Clin. Microbiol. 1997, 35, 1248–1250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Creti, R.; Imperi, M.; Bertuccini, L.; Fabretti, F.; Orefici, G.; Di Rosa, R.; Baldassarri, L. Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J. Med. Microbiol. 2004, 53 Pt 1, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Dutka-Malen, S.; Evers, S.; Courvalin, P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 1995, 33, 24–27, Erratum in J. Clin. Microbiol. 1995, 33, 1434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eaton, T.J.; Gasson, M.J. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nallapareddy, S.R.; Wenxiang, H.; Weinstock, G.M.; Murray, B.E. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J. Bacteriol. 2005, 187, 5709–5718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suvorov, A.; Karaseva, A.; Kotyleva, M.; Kondratenko, Y.; Lavrenova, N.; Korobeynikov, A.; Kozyrev, P.; Kramskaya, T.; Leontieva, G.; Kudryavtsev, I.; et al. Autoprobiotics as an Approach for Restoration of Personalised Microbiota. Front. Microbiol. 2018, 9, 1869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Revicki, D.A.; Wood, M.; Wiklund, I.; Crawley, J. Reliability and validity of the Gastrointestinal Symptom Rating Scale in patients with gastroesophageal reflux disease. Qual. Life Res. 1998, 7, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Adam, B.; Liebregts, T.; Saadat-Gilani, K.; Vinson, B.; Holtmann, G. Validation of the gastrointestinal symptom score for the assessment of symptoms in patients with functional dyspepsia. Aliment. Pharmacol. Ther. 2005, 22, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Monreal, M.T.; Pereira, P.C.; de Magalhães Lopes, C.A. Intestinal microbiota of patients with bacterial infection of the respiratory tract treated with amoxicillin. Braz. J. Infect. Dis. 2005, 9, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Vorob’ev, A.A.; Gershanovich, M.L.; Petrov, L.N. Predposylki i perspektivy primeneniia probiotikov v kompleksnoĭ terapii onkologicheskikh bol’nykh. Prerequisites and perspectives for use of probiotics in complex therapy of cancer. Vopr. Onkol. 2004, 50, 361–365. (In Russian) [Google Scholar] [PubMed]
- Bagnenko, S.F.; Zakharenko, A.A.; Suvorov, A.N.; Shlyk, I.V.; Ten, O.A.; Dzhamilov, S.R.; Belyaev, M.A.; Trushin, A.A.; Natkha, A.S.; Zaitsev, D.A.; et al. Perioperative changes of colon microbiocenosis in patients with colon cancer. Grek. Bull. Surg. 2016, 175, 33–37. (In Russian) [Google Scholar] [CrossRef]
- Lyte, M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. Bioessays 2011, 33, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, R.A.; Wienholts, K.; Williamson, A.J.; Gaines, S.; Hyoju, S.; van Goor, H.; Zaborin, A.; Shogan, B.D.; Zaborina, O.; Alverdy, J.C. Enterococcus faecalis exploits the human fibrinolytic system to drive excess collagenolysis: Implications in gut healing and identification of druggable targets. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G1–G9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zorron Cheng Tao Pu, L.; Yamamoto, K.; Honda, T.; Nakamura, M.; Yamamura, T.; Hattori, S.; Burt, A.D.; Singh, R.; Hirooka, Y.; Fujishiro, M. Microbiota profile is different for early and invasive colorectal cancer and is consistent throughout the colon. J. Gastroenterol. Hepatol. 2020, 35, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015, 42, 344–355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, S.S.; Xie, Y.L.; Xiao, X.Y.; Kang, Z.R.; Lin, X.L.; Zhang, L.; Li, C.S.; Qian, Y.; Xu, P.P.; Leng, X.X.; et al. Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 2023, 31, 781–797.e9. [Google Scholar] [CrossRef] [PubMed]
- Drewes, J.L.; White, J.R.; Dejea, C.M.; Fathi, P.; Iyadorai, T.; Vadivelu, J.; Roslani, A.C.; Wick, E.C.; Mongodin, E.F.; Loke, M.F.; et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes 2017, 3, 34, Erratum in NPJ Biofilms Microbiomes 2019, 5, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Purcell, R.V.; Visnovska, M.; Biggs, P.J.; Schmeier, S.; Frizelle, F.A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 2017, 7, 11590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, M.S.; DeSantis, T.Z.; Weinmaier, T.; McMurdie, P.J.; Cope, J.L.; Altrichter, A.; Yamal, J.M.; Hollister, E.B. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut 2018, 67, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.A.; Neoh, H.M.; Ab Mutalib, N.S.; Chin, S.F.; Mazlan, L.; Raja Ali, R.A.; Zakaria, A.D.; Ngiu, C.S.; Ang, M.Y.; Jamal, R. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 2021, 11, 2925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Löwenmark, T.; Löfgren-Burström, A.; Zingmark, C.; Eklöf, V.; Dahlberg, M.; Wai, S.N.; Larsson, P.; Ljuslinder, I.; Edin, S.; Palmqvist, R. Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Sci. Rep. 2020, 10, 15250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hansson, G.C. Role of mucus layers in gut infection and inflammation. Curr. Opin. Microbiol. 2012, 15, 57–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shenderov, B.A.; Yudin, S.M.; Zagaynova, A.Z.; Shevyreva, M.P. Akkermansia muciniphila is a new universal probiotic on the basis of live human commensal gut bacteria: The reality legend? Zh. Mikrobiol. 2019, 96, 105–115. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, H.; Yang, Z.; Xia, Y.; Liu, W.; Yang, J.; Jiang, Y.; Zhang, H.; Yang, Z.; Wang, Y.; et al. Randomised clinical trial: The effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery—A double-blind study. Aliment. Pharmacol. Ther. 2011, 33, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Yousefi, B.; Kokhaei, P.; Hemati, M.; Nejad, Z.R.; Arabkari, V.; Namdar, A. Importance of probiotics in the prevention and treatment of colorectal cancer. J. Cell. Physiol. 2019, 234, 17127–17143. [Google Scholar] [CrossRef] [PubMed]
- Ermolenko, E.I.; Erofeev, N.P.; Zacharova, L.B.; Pariyskaya, E.N.; Kotyleva, M.P.; Kramskaya, T.A.; Karaseva, A.B.; Suvorov, A.N. Features of microbiota content and intestinal motility after the correction of experimental dysbiosis with probiotic and autoprobiotic enterococci. Exp. Clin. Gastroenterol. 2017, 7, 89–96. (In Russian) [Google Scholar]
- Ermolenko, E.; Sitkin, S.; Vakhitov, T.; Solovyeva, O.; Karaseva, A.; Morozova, A.; Kotyleva, M.; Shumikhina, I.; Lavrenova, N.; Demyanova, E.; et al. Evaluation of the effectiveness of personalised therapy for the patients with irritable bowel syndrome. Benef. Microbes. 2023, 14, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Baryshnikova, N.V.; Ilina, A.S.; Ermolenko, E.I.; Uspenskiy, Y.P.; Suvorov, A.N. Probiotics and autoprobiotics for treatment of Helicobacter pylori infection. World J. Clin. Cases 2023, 11, 4740–4751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ermolenko, E.I.; Punchenko, O.E.; Voropaeva, L.S.; Swarwal, A.V.; Kotyleva, M.P.; Suvorov, A.N. Probiotics and autoprobiotics in the treatment of experimental vaginitis. Antibiot. I Khimioter = Antibiot. Chemother. 2022, 67, 29–35. [Google Scholar] [CrossRef]
- O’Keefe, S.J.; Ou, J.; Aufreiter, S.; O’Connor, D.; Sharma, S.; Sepulveda, J.; Fukuwatari, T.; Shibata, K.; Mawhinney, T. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J. Nutr. 2009, 139, 2044–2048. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, X.; Huycke, M.M. Colorectal cancer: Role of commensal bacteria and bystander effects. Gut Microbes 2015, 6, 370–376. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zorina, V.N.; Promzeleva, N.V.; Zorin, N.A.; Ryabicheva, T.G.; Zorina, R.M. Production of proinflammatory cytokines and alpha-2-macroglobulin by peripheral blood cells in the patients with colorectal cancer. Med. Immunol. 2016, 18, 483–488. (In Russian) [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, S.K.; Kim, C.S.; Kim, I.Y.; Cho, M.Y.; Kim, N.K. Association of serum and intratumoral cytokine profiles with tumor stage and neutrophil lymphocyte ratio in colorectal cancer. Anticancer Res. 2014, 34, 3481–3487. [Google Scholar] [PubMed]
- Khare, P.; Bose, A.; Singh, P.; Singh, S.; Javed, S.; Jain, S.K.; Singh, O.; Pal, R. Gonadotropin and tumorigenesis: Direct and indirect effects on inflammatory and immunosuppressive mediators and invasion. Mol. Carcinog. 2017, 56, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Sparreboom, C.L.; Wu, Z.; Dereci, A.; Boersema, G.S.; Menon, A.G.; Ji, J.; Kleinrensink, G.J.; Lange, J.F. Cytokines as Early Markers of Colorectal Anastomotic Leakage: A Systematic Review and Meta-Analysis. Gastroenterol. Res. Pract. 2016, 2016, 3786418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ermolenko, E.I.; Kotyleva, M.P.; Tsapieva, A.N.; Karaseva, A.B.; Kraeva, L.A.; Buoy, T.L.; Buoy, T.H.; Buoy, T.T.; Suvorov, A.N. The effect of autoprobiotic enterococci of various types on the intestinal microbiota of Hanoi residents in the treatment of irritable bowel syndrome. Gastroenterol. St. Petersburg 2020, 1–2, 82. [Google Scholar]
- Ermolenko, E.I.; Kotyleva, M.P.; Tsapieva, A.N.; Karaseva, A.B.; Anh, L.; Suvorov, A.N. Irritable bowel syndrome therapy in Vietnam with probiotic enterococci. Exp. Clin. Gastroenterol. 2021, 196, 35–43. (In Russian) [Google Scholar] [CrossRef]
Parameters, Scores/Data Evaluation Periods | Abdominal Pain | Reflux | Diarrhea | Dyspepsia | Constipation |
---|---|---|---|---|---|
V1 | 1 | 1 | 3.5 | 2.4 | 1.1 |
V2 | 0 | 0 | 1.1 * | 0.75 * | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ermolenko, E.; Baryshnikova, N.; Alekhina, G.; Zakharenko, A.; Ten, O.; Kashchenko, V.; Novikova, N.; Gushchina, O.; Ovchinnikov, T.; Morozova, A.; et al. Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period. Microorganisms 2024, 12, 980. https://doi.org/10.3390/microorganisms12050980
Ermolenko E, Baryshnikova N, Alekhina G, Zakharenko A, Ten O, Kashchenko V, Novikova N, Gushchina O, Ovchinnikov T, Morozova A, et al. Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period. Microorganisms. 2024; 12(5):980. https://doi.org/10.3390/microorganisms12050980
Chicago/Turabian StyleErmolenko, Elena, Natalia Baryshnikova, Galina Alekhina, Alexander Zakharenko, Oleg Ten, Victor Kashchenko, Nadezhda Novikova, Olga Gushchina, Timofey Ovchinnikov, Anastasia Morozova, and et al. 2024. "Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period" Microorganisms 12, no. 5: 980. https://doi.org/10.3390/microorganisms12050980
APA StyleErmolenko, E., Baryshnikova, N., Alekhina, G., Zakharenko, A., Ten, O., Kashchenko, V., Novikova, N., Gushchina, O., Ovchinnikov, T., Morozova, A., Ilina, A., Karaseva, A., Tsapieva, A., Gladyshev, N., Dmitriev, A., & Suvorov, A. (2024). Autoprobiotics in the Treatment of Patients with Colorectal Cancer in the Early Postoperative Period. Microorganisms, 12(5), 980. https://doi.org/10.3390/microorganisms12050980