Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Samples and Sampling Procedures
2.2. Microbiological Analyses
2.3. Chemical–Physical Analyses and Identification of Volatile Compounds
2.4. Inhibitory Activity of Sodium Lactate (SL), Sodium Diacetate (SLD), and Sodium Acetate (SD) in a Cooked Salami Model System
2.5. In Vitro Evaluation of the Phenotypic Characteristics of Both the Isolated Strains
2.6. Hop Extract Preparation, Minimum Inhibitory Concentration (MIC), and Antimicrobial Effects
2.7. Effects of Hop Extract on Cooked Sausage Slices (MICs)
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Identification and Phenotypic Characterization of the Isolated Strains
3.2. Identification of Volatile Compounds of the Spoilage
3.3. Inhibitory Activity of Sodium Lactate, Sodium Diacetate, and Sodium Acetate
3.4. Antimicrobial Effect of Hop Extract
3.5. Sensorial Analysis
3.6. Origin of the Contamination and Spoilage Risk Elimination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veselá, H.; Dorotíková, K.; Dušková, M.; Furmančíková, P.; Šedo, O.; Kameník, J. The Pork Meat or the Environment of the Production Facility? The Effect of Individual Technological Steps on the Bacterial Contamination in Cooked Hams. Microorganisms 2022, 10, 1106. [Google Scholar] [CrossRef] [PubMed]
- Kameník, J.; Bogdanovičová, K.; Dorotíková, K. Haltbarkeit von Geschnittenem Kochschinken in Modifizierter Atmosphäre. Fleischwirtschaft 2019, 99, 118–122. [Google Scholar]
- Raimondi, S.; Luciani, R.; Sirangelo, T.M.; Amaretti, A.; Leonardi, A.; Ulrici, A.; Foca, G.; D’Auria, G.; Moya, A.; Zuliani, V.; et al. Microbiota of Sliced Cooked Ham Packaged in Modified Atmosphere throughout the Shelf Life: Microbiota of Sliced Cooked Ham in MAP. Int. J. Food Microbiol. 2019, 289, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Mataragas, M.; Drosinos, E.H.; Vaidanis, A.; Metaxopoulos, I. Development of a Predictive Model for Spoilage of Cooked Cured Meat Products and Its Validation under Constant and Dynamic Temperature Storage Conditions. J. Food Sci. 2006, 71, M157–M167. [Google Scholar] [CrossRef]
- Pothakos, V.; Snauwaert, C.; De Vos, P.; Huys, G.; Devlieghere, F. Psychrotrophic Members of Leuconostoc gasicomitatum, Leuconostoc gelidum and Lactococcus piscium Dominate at the End of Shelf-Life in Packaged and Chilled-Stored Food Products in Belgium. Food Microbiol. 2014, 39, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Bjorkroth, K.J.; Geisen, R.; Schillinger, U.; Weiss, N.; De Vos, P.; Holzapfel, W.H.; Korkeala, H.J.; Vandamme, P. Characterization of Leuconostoc gasicomitatum Sp. Nov., Associated with Spoiled Raw Tomato-Marinated Broiler Meat Strips Packaged under Modified-Atmosphere Conditions. Appl. Environ. Microbiol. 2000, 66, 3764–3772. [Google Scholar] [CrossRef] [PubMed]
- Dušková, M.; Kameník, J.; Lačanin, I.; Šedo, O.; Zdráhal, Z. Lactic Acid Bacteria in Cooked Hams—Sources of Contamination and Chances of Survival in the Product. Food Control 2016, 61, 1–5. [Google Scholar] [CrossRef]
- Pothakos, V.; Samapundo, S.; Devlieghere, F. Total Mesophilic Counts Underestimate in Many Cases the Contamination Levels of Psychrotrophic Lactic Acid Bacteria (LAB) in Chilled-Stored Food Products at the End of Their Shelf-Life. Food Microbiol. 2012, 32, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, K.J.; Korkeala, H.J. Use of RRNA Gene Restriction Patterns to Evaluate Lactic Acid Bacterium Contamination of Vacuum-Packaged Sliced Cooked Whole-Meat Product in a Meat Processing Plant. Appl. Environ. Microbiol. 1997, 63, 448–453. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Paramithiotis, S.; Kagkli, D.M.; Nychas, G.J.E. Lactic Acid Bacteria Population Dynamics during Minced Beef Storage under Aerobic or Modified Atmosphere Packaging Conditions. Food Microbiol. 2010, 27, 1028–1034. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. Identification and Process Origin of Bacteria Responsible for Cavities and Volatile Off-Flavour Compounds in Artisan Cooked Ham. Int. J. Food Sci. Technol. 2012, 47, 114–121. [Google Scholar] [CrossRef]
- Lyhs, U.; Koort, J.M.K.; Lundström, H.S.; Björkroth, K.J. Leuconostoc gelidum and Leuconostoc gasicomitatum Strains Dominated the Lactic Acid Bacterium Population Associated with Strong Slime Formation in an Acetic-Acid Herring Preserve. Int. J. Food Microbiol. 2004, 90, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Vihavainen, E.J.; Björkroth, K.J. Spoilage of Value-Added, High-Oxygen Modified-Atmosphere Packaged Raw Beef Steaks by Leuconostoc gasicomitatum and Leuconostoc gelidum. Int. J. Food Microbiol. 2007, 119, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, C.; Milesi, S.; Iacumin, L.; Comi, G. Leuconostoc e Rigonfiamento in Prodotti Alimentari. Ind. Aliment. 2009, XLVIII, 40–44. [Google Scholar]
- Comi, G.; Andyanto, D.; Manzano, M.; Iacumin, L. Lactococcus lactis and Lactobacillus sakei as Bio-Protective Culture to Eliminate Leuconostoc mesenteroides Spoilage and Improve the Shelf Life and Sensorial Characteristics of Commercial Cooked Bacon. Food Microbiol. 2016, 58, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, L.; Cecchini, F.; Manzano, M.; Osualdini, M.; Boscolo, D.; Orlic, S.; Comi, G. Description of the Microflora of Sourdoughs by Culture-Dependent and Culture-Independent Methods. Food Microbiol. 2009, 26, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.E.; Yu, R.R.Y.; Lee, O.A.; Price, S.; Haas, G.J.; Johnson, E.A. Antimicrobial Activity of Hop Extracts against Listeria monocytogenes in Media and in Food. Int. J. Food Microbiol. 1996, 33, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Hough, J.S.; Howard, G.A.; Slater, C.A. Bacteriostatic Activities of Hop Resin Materials. J. Inst. Brew. 1957, 63, 331–333. [Google Scholar] [CrossRef]
- Schmalreck, A.F.; Teuber, M.; Reininger, W.; Hartl, A. Structural Features Determining the Antibiotic Potencies of Natural and Synthetic Hop Bitter Resins, Their Precursors and Derivatives. Can. J. Microbiol. 1975, 21, 205–212. [Google Scholar] [CrossRef]
- Mizobuchi, S.; Sato, Y. Antifungal Activities of Hop Bitter Resins and Related Compounds. Agric. Biol. Chem. 1985, 49, 399–403. [Google Scholar] [CrossRef]
- Cocolin, L.; Manzano, M.; Cantoni, C.; Comi, G. Denaturing Gradient Gel Electrophoresis Analysis of the 16S RRNA Gene V1 Region to Monitor Dynamic Changes in the Bacterial Population during Fermentation of Italian Sausages. Appl. Environ. Microbiol. 2001, 67, 5113–5121. [Google Scholar] [CrossRef] [PubMed]
- Rantsiou, K.; Urso, R.; Iacumin, L.; Cantoni, C.; Cattaneo, P.; Comi, G.; Cocolin, L. Culture-Dependent and -Independent Methods to Investigate the Microbial Ecology of Italian Fermented Sausages. Appl. Environ. Microbiol. 2005, 71, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.; Duchini, M.; Iacumin, L.; Boscolo, D.; Comi, G.; Cantoni, C. Caratteristiche Chimiche e Batteriologiche Di Salami Della Lomellina. Arch. Vet. Ital. 2006, 57, 209–224. [Google Scholar]
- Stout, M.J.; Brovont, R.A.; Duffey, S.S. Effect of Nitrogen Avilability on Expression of Constitutive and Inducible Chemical Defenses in Tomato, Lycopersicon esculentum. J. Chem. Ecol. 1998, 24, 945–963. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- ISO 4120:2004. Triangle Test Methodology. Standard Test Method for Sensory Analysis—General Guidance for the Design of test Rooms.
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Menezes, N.M.C.; Martins, W.F.; Longhi, D.A.; de Aragão, G.M.F. Modeling the Effect of Oregano Essential Oil on Shelf-Life Extension of Vacuum-Packed Cooked Sliced Ham. Meat Sci. 2018, 139, 113–119. [Google Scholar] [CrossRef]
- Iulietto, M.F.; Sechi, P.; Borgogni, E.; Cenci-Goga, B.T. Meat Spoilage: A Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 316–326. [Google Scholar] [CrossRef]
- Spampinato, G.; Candeliere, F.; Amaretti, A.; Licciardello, F.; Rossi, M.; Raimondi, S. Microbiota Survey of Sliced Cooked Ham During the Secondary Shelf Life. Front. Microbiol. 2022, 13, 842390. [Google Scholar] [CrossRef]
- Kreyenschmidt, J.; Hübner, A.; Beierle, E.; Chonsch, L.; Scherer, A.; Petersen, B. Determination of the Shelf Life of Sliced Cooked Ham Based on the Growth of Lactic Acid Bacteria in Different Steps of the Chain. J. Appl. Microbiol. 2010, 108, 510–520. [Google Scholar] [CrossRef]
- Wu, V.C.H. A Review of Microbial Injury and Recovery Methods in Food. Food Microbiol. 2008, 25, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Zagdoun, M.; Coeuret, G.; N’Dione, M.; Champomier-Vergès, M.C.; Chaillou, S. Large Microbiota Survey Reveals How the Microbial Ecology of Cooked Ham Is Shaped by Different Processing Steps. Food Microbiol. 2020, 91, 103547. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, C.; De Maere, H.; De Mey, E.; Paelinck, H.; De Vuyst, L.; Leroy, F. Technology-Induced Selection towards the Spoilage Microbiota of Artisan-Type Cooked Ham Packed under Modified Atmosphere. Food Microbiol. 2010, 27, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Pothakos, V.; Snauwaert, C.; De Vos, P.; Huys, G.; Devlieghere, F. Monitoring Psychrotrophic Lactic Acid Bacteria Contamination in a Ready-to-Eat Vegetable Salad Production Environment. Int. J. Food Microbiol. 2014, 185, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; D’Haene, K.; Messens, K.; Ruyssen, T.; Vandamme, P.; Huys, G. Diversity of Lactic Acid Bacteria from Modified Atmosphere Packaged Sliced Cooked Meat Products at Sell-by Date Assessed by PCR-Denaturing Gradient Gel Electrophoresis. Food Microbiol. 2010, 27, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Tabanelli, G.; Montanari, C.; Grazia, L.; Lanciotti, R.; Gardini, F. Effects of Aw at Packaging Time and Atmosphere Composition on Aroma Profile, Biogenic Amine Content and Microbiological Features of Dry Fermented Sausages. Meat Sci. 2013, 94, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Carballo, J. The Role of Fermentation Reactions in the Generation of Flavor and Aroma of Foods. In Fermentation: Effects on Food Properties; Mehta, B.M., Kamal-Eldin, A., Iwanski, R.Z., Eds.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Montanari, C.; Barbieri, F.; Gardini, G.; Magnani, R.; Gottardi, D.; Gardini, F.; Tabanelli, G. Effects of Starter Cultures and Type of Casings on the Microbial Features and Volatile Profile of Fermented Sausages. Fermentation 2022, 8, 683. [Google Scholar] [CrossRef]
- Geornaras, I.; Skandamis, P.N.; Belk, K.E.; Scanga, J.A.; Kendall, P.A.; Smith, G.C.; Sofos, J.N. Postprocess Control of Listeria monocytogenes on Commercial Frankfurters Formulated with and without Antimicrobials and Stored at 10 °C. J. Food Prot. 2006, 69, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Brasileiro, I.S.; Barbosa, M.; Igarashi, M.C.; Biscola, V.; Maffei, D.F.; Landgraf, M.; Franco, B.D.G. de M. Use of Growth Inhibitors for Control of Listeria monocytogenes in Heat-Processed Ready-to-Eat Meat Products Simulating Post-Processing Contamination. LWT 2016, 74, 7–13. [Google Scholar] [CrossRef]
- Horita, C.N.; Baptista, R.C.; Caturla, M.Y.R.; Lorenzo, J.M.; Barba, F.J.; Sant’Ana, A.S. Combining Reformulation, Active Packaging and Non-Thermal Post-Packaging Decontamination Technologies to Increase the Microbiological Quality and Safety of Cooked Ready-to-Eat Meat Products. Trends Food Sci. Technol. 2018, 72, 45–61. [Google Scholar] [CrossRef]
- Samelis, J.; Kakouri, A. Growth Inhibitory and Selective Pressure Effects of Sodium Diacetate on the Spoilage Microbiota of Frankfurters Stored at 4 °C and 12 °C in Vacuum. Foods 2021, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Andreevskaya, M.; Jääskeläinen, E.; Johansson, P.; Ylinen, A.; Paulin, L.; Björkroth, J.; Auvinen, P. Food Spoilage-Associated Leuconostoc, Lactococcus, and Lactobacillus Species Display Different Survival Strategies in Response to Competition. Appl. Environ. Microbiol. 2018, 84, e00554-18. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef]
- Drosinos, E.H.; Mataragas, M.; Kampani, A.; Kritikos, D.; Metaxopoulos, I. Inhibitory Effect of Organic Acid Salts on Spoilage Flora in Culture Medium and Cured Cooked Meat Products under Commercial Manufacturing Conditions. Meat Sci. 2006, 73, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Bouju-Albert, A.; Pilet, M.F.; Guillou, S. Influence of Lactate and Acetate Removal on the Microbiota of French Fresh Pork Sausages. Food Microbiol. 2018, 76, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Peirson, M.D.; Guan, T.Y.; Holley, R.A. Thermal Resistances and Lactate and Diacetate Sensitivities of Bacteria Causing Bologna Discolouration. Int. J. Food Microbiol. 2003, 86, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Samelis, J.; Georgiadou, K.G. The Microbial Association of Greek Taverna Sausage Stored at 4 and 10 °C in Air, Vacuum or 100% Carbon Dioxide, and Its Spoilage Potential. J. Appl. Microbiol. 2000, 88, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Možina, S.S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A Comparison of Antioxidant and Antimicrobial Activity between Hop Leaves and Hop Cones. Ind. Crops Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In Vitro Evaluation of Antibacterial, Anticollagenase, and Antioxidant Activities of Hop Components (Humulus Lupulus) Addressing Acne vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Flesar, J.; Havlik, J.; Kloucek, P.; Rada, V.; Titera, D.; Bednar, M.; Stropnicky, M.; Kokoska, L. In Vitro Growth-Inhibitory Effect of Plant-Derived Extracts and Compounds against Paenibacillus larvae and Their Acute Oral Toxicity to Adult Honey Bees. Vet. Microbiol. 2010, 145, 129–133. [Google Scholar] [CrossRef]
- Rozalski, M.; Micota, B.; Sadowska, B.; Stochmal, A.; Jedrejek, D.; Wieckowska-Szakiel, M.; Rozalska, B. Antiadherent and Antibiofilm Activity of Humulus lupulus L. Derived Products: New Pharmacological Properties. Biomed Res. Int. 2013, 2013, 101089. [Google Scholar] [CrossRef] [PubMed]
Phase | Temperature/Time |
---|---|
Raw meat and fat | 4 ± 2 °C |
Trimming/grinding | 12 °C |
Addition of tanning/kneading | 7 °C |
Rest | 2–4 °C—12 h |
Casing | 12 °C |
Smoking | 66 °C—24 h |
Cooking | 72–78 °C—6 h |
Cooling/slicing | 2–4 °C |
MAP/Storing | 4 ± 2 °C |
Antimicrobial Compound | Concentration | Number Samples/Temperature | |
---|---|---|---|
4 °C | 4–8 °C | ||
Sodium lactate | 1.5% | 15 | 15 |
Sodium acetate | 0.1% | 15 | 15 |
Sodium lactate/sodium diacetate | 1.5/0.25% | 15 | 15 |
Control | 15 | 15 |
Microorganism | Accession Number | Serial Dilutions | |||||
---|---|---|---|---|---|---|---|
10−3 | 10−4 | 10−5 | 10−6 | 10−7 | 10−8 | ||
Leuconostoc gelidum | MK948921.1 | + | + | + | + | + | + |
Latilactobacillus sakei | CP113247.1 | + | - | - | - | - | - |
Microorganism | Yellow Slime | pH | Pasteurization 72 °C for 5 min | ** Growth at 4 °C |
---|---|---|---|---|
Leuconostoc gelidum | + | 5.5 ± 0.2 a * | −6 log CFU/g | 15 ± 1 a * |
Latilactobacillus sakei | - | 5.3 ± 0.2 a * | −6 log CFU/g | 16 ± 2 a * |
RT | Compound | RI | Unspoiled | Spoiled | ||
---|---|---|---|---|---|---|
Mean | (±) SD | Mean | (±) SD | |||
Ketones | ||||||
2.29 | 2-Propanone | 819 | 2.51 | 0.02 a | 1.65 | 0.08 b |
3.17 | 2-Butanone | 907 | 6.04 | 0.03 b | 9.33 | 0.01 a |
4.72 | 2-Pentanone | 961 | 8.45 | 0.07 a | 0.28 | 0.01 b |
17.63 | 3-Hydroxy-2-butanone | 1284 | 37.35 | 0.64 a | 5.80 | 0.19 b |
Alcohols | ||||||
3.87 | Ethanol | 932 | 16.90 | 0.08 b | 26.11 | 0.02 a |
Carbossilic acid | ||||||
22.23 | Acetic acid | 1449 | 5.48 | 0.11 b | 7.51 | 0.21 a |
27.04 | 3-Methylbutanoic acid | 1666 | 1.88 | 0.07 a | 1.04 | 0.02 b |
Esters | ||||||
3.05 | Ethyl acetate | 888 | 2.26 | 0.04 a | 0.88 | 0.07 b |
Temperature | Treatment | Days | ||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 20 | 30 | ||
4 °C | C | 2.1 ± 0.2 a | 2.1 ± 0.2 a | 5.4 ± 0.3 a | 6.7 ± 0.2 b | 8.4 ± 0.1 b |
SL 1.5% | 2.0 ± 0.2 a | 2.0 ± 0.3 a | 5.4 ± 0.1 a | 6.3 ± 0.2 a | 7.9 ± 0.2 a | |
SA 1.5% | 2.1 ± 0.2 a | 2.0 ± 0.1 a | 5.2 ± 0.2 a | 6.3 ± 0.1 a | 7.9 ± 0.2 a | |
SL 1.5% + SDA 0.25% | 2.0 ± 0.2 a | 2.1 ± 0.1 a | 5.1 ± 0.2 a | 6.0 ± 0.2 a | 7.7 ± 0.3 c | |
4–8 °C | C | 2.0 ± 0.1 a | 2.0 ± 0.1 a | 5.4 ± 0.1 a | 7.2 ± 0.2 b | 9.2 ± 0.2 b |
SL 1.5% | 2.1 ± 0.2 a | 2.0 ± 0.1 a | 5.3 ± 0.2 a | 6.9 ± 0.2 a | 8.6 ± 0.1 c | |
SA 1.5% | 2.0 ± 0.2 a | 2.0 ± 0.3 a | 5.3 ± 0.2 a | 6.9 ± 0.3 a | 8.7 ± 0.1 c | |
SL 1.5% + SDA 0.25% | 2.0 ± 0.2 a | 2.0 ± 0.2 a | 5.2 ± 0.1 a | 6.7 ± 0.2 a | 8.2 ± 0.2 b |
Hop Extract Concentration mg/mL | Strains | ||
---|---|---|---|
1 | 2 | 3 | |
0.08 | - | - | - |
0.04 | - | - | - |
0.016 | - | - | - |
0.008 | - | - | - |
0.004 | + | + | + |
Hop Extract Concentration (mg/kg) | Day of Visible Growth | |
---|---|---|
4 °C | 4–8 °C | |
0 | 8 ± 1 | 8 ± 1 |
2 | 15 ± 2 | 13 ± 2 |
3 | 20 ± 2 | 16 ± 2 |
4 | - | - |
5 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comi, G.; Colautti, A.; Bernardi, C.E.M.; Stella, S.; Orecchia, E.; Coppola, F.; Iacumin, L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms 2024, 12, 1175. https://doi.org/10.3390/microorganisms12061175
Comi G, Colautti A, Bernardi CEM, Stella S, Orecchia E, Coppola F, Iacumin L. Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms. 2024; 12(6):1175. https://doi.org/10.3390/microorganisms12061175
Chicago/Turabian StyleComi, Giuseppe, Andrea Colautti, Cristian Edoardo Maria Bernardi, Simone Stella, Elisabetta Orecchia, Francesca Coppola, and Lucilla Iacumin. 2024. "Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested" Microorganisms 12, no. 6: 1175. https://doi.org/10.3390/microorganisms12061175
APA StyleComi, G., Colautti, A., Bernardi, C. E. M., Stella, S., Orecchia, E., Coppola, F., & Iacumin, L. (2024). Leuconostoc gelidum Is the Major Species Responsible for the Spoilage of Cooked Sausage Packaged in a Modified Atmosphere, and Hop Extract Is the Best Inhibitor Tested. Microorganisms, 12(6), 1175. https://doi.org/10.3390/microorganisms12061175