Advances in Chlamydia trachomatis Vaccination: Unveiling the Potential of Major Outer Membrane Protein Derivative Constructs
Abstract
:1. Introduction
2. Vaccine-Induced Adaptive Immune Responses against C. trachomatis
3. MOMP as Main Target in C. trachomatis Vaccination Research
4. MOMP-Derivative Vaccines Evaluated in Animal Models
4.1. Antigen Constructs
4.2. Antigen Delivery Systems and Adjuvants
4.3. Immunization Routes
5. Challenges for the Future
5.1. Broadly Protecting C. trachomatis Vaccine
5.2. Appropriate Animal Model
5.3. Long-Term Protection
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murray, S.M.; McKay, P.F. Chlamydia trachomatis: Cell Biology, Immunology and Vaccination. Vaccine 2021, 39, 2965–2975. [Google Scholar] [CrossRef]
- Phillips, S.; Quigley, B.L.; Timms, P. Seventy Years of Chlamydia Vaccine Research—Limitations of the Past and Directions for the Future. Front. Microbiol. 2019, 10, 433459. [Google Scholar] [CrossRef]
- Grygiel-Górniak, B.; Folga, B.A. Chlamydia trachomatis—An Emerging Old Entity? Microorganisms 2023, 11, 1283. [Google Scholar] [CrossRef]
- World Health Organization. Chlamydia; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Peters, R.P.H.; Dubbink, J.H.; Van Der Eem, L.; Verweij, S.P.; Bos, M.L.A.; Ouburg, S.; Lewis, D.A.; Struthers, H.; McIntyre, J.A.; Morré, S.A. Cross-Sectional Study of Genital, Rectal, and Pharyngeal Chlamydia and Gonorrhea in Women in Rural South Africa. Sex. Transm. Dis. 2014, 41, 564–569. [Google Scholar] [CrossRef]
- CDC. Sexually Transmitted Disease Surveillance 2021; CDC: Atlanta, GA, USA, 2024.
- ECDC. Chlamydia—Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2024.
- Manavi, K. A Review on Infection with Chlamydia trachomatis. Best. Pract. Res. Clin. Obstet. Gynaecol. 2006, 20, 941–951. [Google Scholar] [CrossRef]
- Rodrigues, R.; Sousa, C.; Vale, N. Chlamydia trachomatis as a Current Health Problem: Challenges and Opportunities. Diagnostics 2022, 12, 1795. [Google Scholar] [CrossRef]
- Paavonen, J.; Eggert-Kruse, W. Chlamydia trachomatis: Impact on Human Reproduction. Hum. Reprod. Update 1999, 5, 433–447. [Google Scholar] [CrossRef]
- Brunham, R.C. Problems with Understanding Chlamydia trachomatis Immunology. J. Infect. Dis. 2022, 225, 2043–2049. [Google Scholar] [CrossRef]
- Dodet, B. Current Barriers, Challenges and Opportunities for the Development of Effective STI Vaccines: Point of View of Vaccine Producers, Biotech Companies and Funding Agencies. Vaccine 2014, 32, 1624–1629. [Google Scholar] [CrossRef]
- Borges, Á.H.; Follmann, F.; Dietrich, J. Chlamydia trachomatis Vaccine Development—A View on the Current Challenges and How to Move Forward. Expert. Rev. Vaccines 2022, 21, 1555–1567. [Google Scholar] [CrossRef]
- Rank, R.G.; Yeruva, L. Hidden in Plain Sight: Chlamydial Gastrointestinal Infection and Its Relevance to Persistence in Human Genital Infection. Infect. Immun. 2014, 82, 1362–1371. [Google Scholar] [CrossRef]
- Villareal, C.; Whittum-Hudson, J.A.; Hudson, A.P. Persistent Chlamydiae and Chronic Arthritis. Arthritis Res. 2002, 4, 5–9. [Google Scholar] [CrossRef]
- de la Maza, L.M.; Darville, T.L.; Pal, S. Chlamydia trachomatis Vaccines for Genital Infections: Where Are We and How Far Is There to Go? Expert. Rev. Vaccines 2021, 20, 421–435. [Google Scholar] [CrossRef]
- Nasr El-din, A.; Sorour, H.; Fattouh, M.; Abu El-Hamd, M. Evaluation of the Role of Chlamydia trachomatis in Primary Male Infertility. Int. J. Clin. Pract. 2021, 75, e14702. [Google Scholar] [CrossRef]
- Moazenchi, M.; Totonchi, M.; Salman Yazdi, R.; Hratian, K.; Mohseni Meybodi, M.; Ahmadi Panah, M.; Chehrazi, M.; Mohseni Meybodi, A. The Impact of Chlamydia trachomatis Infection on Sperm Parameters and Male Fertility: A Comprehensive Study. Int. J. STD AIDS 2018, 29, 466–473. [Google Scholar] [CrossRef]
- Zhong, G.; Brunham, R.C.; de la Maza, L.M.; Darville, T.; Deal, C. National Institute of Allergy and Infectious Diseases Workshop Report: “Chlamydia Vaccines: The Way Forward”. Vaccine 2019, 37, 7346–7354. [Google Scholar] [CrossRef]
- Hocking, J.S.; Temple-Smith, M.; Guy, R.; Donovan, B.; Braat, S.; Law, M.; Gunn, J.; Regan, D.; Vaisey, A.; Bulfone, L.; et al. Population Effectiveness of Opportunistic Chlamydia Testing in Primary Care in Australia: A Cluster-Randomised Controlled Trial. Lancet 2018, 392, 1413–1422. [Google Scholar] [CrossRef]
- Chavda, V.P.; Pandya, A.; Kypreos, E.; Patravale, V.; Apostolopoulos, V. Chlamydia trachomatis: Quest for an Eye-Opening Vaccine Breakthrough. Expert. Rev. Vaccines 2022, 21, 771–781. [Google Scholar] [CrossRef]
- Hou, C.; Jin, Y.; Wu, H.; Li, P.; Liu, L.; Zheng, K.; Wang, C. Alternative Strategies for Chlamydia Treatment: Promising Non-Antibiotic Approaches. Front. Microbiol. 2022, 13, 987662. [Google Scholar] [CrossRef]
- Olsen, A.W.; Follmann, F.; Erneholm, K.; Rosenkrands, I.; Andersen, P. Protection Against Chlamydia trachomatis Infection and Upper Genital Tract Pathological Changes by Vaccine-Promoted Neutralizing Antibodies Directed to the VD4 of the Major Outer Membrane Protein. J. Infect. Dis. 2015, 212, 978–989. [Google Scholar] [CrossRef]
- Lorenzen, E.; Follmann, F.; Bøje, S.; Erneholm, K.; Olsen, A.W.; Agerholm, J.S.; Jungersen, G.; Andersen, P. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity through Secretory IgA in Minipigs Infected with Chlamydia trachomatis. Front. Immunol. 2015, 6, 170194. [Google Scholar] [CrossRef]
- Bakshi, R.K.; Gupta, K.; Jordan, S.J.; Chi, X.; Lensing, S.Y.; Press, C.G.; Geisler, W.M. An Adaptive Chlamydia trachomatis-Specific IFN-γ-Producing CD4+ T Cell Response Is Associated With Protection Against Chlamydia Reinfection in Women. Front. Immunol. 2018, 9, 1981. [Google Scholar] [CrossRef]
- Yount, K.S.; Kollipara, A.; Liu, C.; Zheng, X.; O’Connell, C.M.; Bagwell, B.; Wiesenfeld, H.C.; Hillier, S.L.; Darville, T. Unique T Cell Signatures Are Associated with Reduced Chlamydia trachomatis Reinfection in a Highly Exposed Cohort. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kuczkowska, K.; Myrbråten, I.; Øverland, L.; Eijsink, V.G.H.; Follmann, F.; Mathiesen, G.; Dietrich, J. Lactobacillus plantarum Producing a Chlamydia trachomatis Antigen Induces a Specific IgA Response after Mucosal Booster Immunization. PLoS ONE 2017, 12, e0176401. [Google Scholar] [CrossRef]
- Wern, J.E.; Sorensen, M.R.; Olsen, A.W.; Andersen, P.; Follmann, F. Simultaneous Subcutaneous and Intranasal Administration of a CAF01-Adjuvanted Chlamydia Vaccine Elicits Elevated IgA and Protective Th1/Th17 Responses in the Genital Tract. Front. Immunol. 2017, 8, 222004. [Google Scholar] [CrossRef]
- Stary, G.; Olive, A.; Radovic-Moreno, A.F.; Gondek, D.; Alvarez, D.; Basto, P.A.; Perro, M.; Vrbanac, V.D.; Tager, A.M.; Shi, J.; et al. A Mucosal Vaccine against Chlamydia trachomatis Generates Two Waves of Protective Memory T Cells. Science 2015, 348, aaa8205. [Google Scholar] [CrossRef]
- Karunakaran, K.P.; Yu, H.; Jiang, X.; Chan, Q.W.T.; Foster, L.J.; Johnson, R.M.; Brunham, R.C. Discordance in the Epithelial Cell-Dendritic Cell Major Histocompatibility Complex Class II Immunoproteome: Implications for Chlamydia Vaccine Development. J. Infect. Dis. 2020, 221, 841–850. [Google Scholar] [CrossRef]
- Snoeck, V.; Peters, I.R.; Cox, E. The IgA System: A Comparison of Structure and Function in Different Species. Vet. Res. 2006, 37, 455–467. [Google Scholar] [CrossRef]
- Woof, J.M.; Mestecky, J. Mucosal Immunoglobulins. Immunol. Rev. 2005, 206, 64–82. [Google Scholar] [CrossRef]
- Hafner, L.M.; Wilson, D.P.; Timms, P. Development Status and Future Prospects for a Vaccine against Chlamydia trachomatis Infection. Vaccine 2014, 32, 1563–1571. [Google Scholar] [CrossRef]
- Lorenzen, E.; Contreras, V.; Olsen, A.W.; Andersen, P.; Desjardins, D.; Rosenkrands, I.; Juel, H.B.; Delache, B.; Langlois, S.; Delaugerre, C.; et al. Multi-Component Prime-Boost Chlamydia trachomatis Vaccination Regimes Induce Antibody and T Cell Responses and Accelerate Clearance of Infection in a Non-Human Primate Model. Front. Immunol. 2022, 13, 1057375. [Google Scholar] [CrossRef]
- Bøje, S.; Olsen, A.W.; Erneholm, K.; Agerholm, J.S.; Jungersen, G.; Andersen, P.; Follmann, F. A Multi-Subunit Chlamydia Vaccine Inducing Neutralizing Antibodies and Strong IFN-γ + CMI Responses Protects against a Genital Infection in Minipigs. Immunol. Cell Biol. 2016, 94, 185–195. [Google Scholar] [CrossRef]
- Garcia-del Rio, L.; Diaz-Rodriguez, P.; Pedersen, G.K.; Christensen, D.; Landin, M. Sublingual Boosting with a Novel Mucoadhesive Thermogelling Hydrogel Following Parenteral CAF01 Priming as a Strategy Against Chlamydia trachomatis. Adv. Healthc. Mater. 2022, 11, 2102508. [Google Scholar] [CrossRef]
- He, W.; Felderman, M.; Evans, A.C.; Geng, J.; Homan, D.; Bourguet, F.; Fischer, N.O.; Li, Y.; Lam, K.S.; Noy, A.; et al. Cell-Free Production of a Functional Oligomeric Form of a Chlamydia Major Outer-Membrane Protein (MOMP) for Vaccine Development. J. Biol. Chem. 2017, 292, 15121–15132. [Google Scholar] [CrossRef]
- Carlsen, P.H.R.; Kjeldsen, R.B.; Pedersen, G.K.; Christensen, D.; Nielsen, L.H.; Boisen, A. Oral Vaccination Using Microdevices to Deliver α-GalCer Adjuvanted Vaccine Afford a Mucosal Immune Response. J. Control. Release 2023, 353, 134–146. [Google Scholar] [CrossRef]
- Nguyen, N.D.N.T.; Guleed, S.; Olsen, A.W.; Follmann, F.; Christensen, J.P.; Dietrich, J. Th1/Th17 T Cell Tissue-Resident Immunity Increases Protection, But Is Not Required in a Vaccine Strategy Against Genital Infection With Chlamydia trachomatis. Front. Immunol. 2021, 12, 790463. [Google Scholar] [CrossRef]
- Rose, F.; Wern, J.E.; Gavins, F.; Andersen, P.; Follmann, F.; Foged, C. A Strong Adjuvant Based on Glycol-Chitosan-Coated Lipid-Polymer Hybrid Nanoparticles Potentiates Mucosal Immune Responses against the Recombinant Chlamydia trachomatis Fusion Antigen CTH522. J. Control. Release 2018, 271, 88–97. [Google Scholar] [CrossRef]
- Acosta-Coley, I.; Cervantes-Ceballos, L.; Tejeda-Benítez, L.; Sierra-Márquez, L.; Cabarcas-Montalvo, M.; García-Espiñeira, M.; Coronell-Rodríguez, W.; Arroyo-Salgado, B. Vaccines Platforms and COVID-19: What You Need to Know. Trop. Dis. Travel Med. Vaccines 2022, 8, 20. [Google Scholar] [CrossRef]
- Tu, J.; Hou, B.; Wang, B.; Lin, X.; Gong, W.; Dong, H.; Zhu, S.; Chen, S.; Xue, X.; Zhao, K.N.; et al. A Multi-Epitope Vaccine Based on Chlamydia trachomatis Major Outer Membrane Protein Induces Specific Immunity in Mice. Acta Biochim. Biophys. Sin. 2014, 46, 401–408. [Google Scholar] [CrossRef]
- Findlay, H.E.; McClafferty, H.; Ashley, R.H. Surface Expression, Single-Channel Analysis and Membrane Topology of Recombinant Chlamydia trachomatis Major Outer Membrane Protein. BMC Microbiol. 2005, 5, 5. [Google Scholar] [CrossRef]
- Baehr, W.; Zhang, Y.-X.; Joseph, T.; Su, H.; Nano, F.E.; Everettt, K.D.E.; Caldwell, H.D. Mapping Antigenic Domains Expressed by Chlamydia trachomatis Major Outer Membrane Protein Genes. Proc. Natl. Acad. Sci. USA 1988, 85, 4000–4004. [Google Scholar] [CrossRef] [PubMed]
- Stephens, R.S.; Wagar, E.A.; Schoolnik, G.K. High-Resolution Mapping of Serovar-Specific and Common Antigenic Determinants of the Major Outer Membrane Protein of Chlamydia trachomatis. J. Exp. Med. 1988, 167, 817–831. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Bertoni, D.; Magana, P.; Paramval, U.; Pidruchna, I.; Radhakrishnan, M.; Tsenkov, M.; Nair, S.; Mirdita, M.; Yeo, J.; et al. AlphaFold Protein Structure Database in 2024: Providing Structure Coverage for over 214 Million Protein Sequences. Nucleic Acids Res. 2024, 52, D368–D375. [Google Scholar] [CrossRef]
- Pal, S.; Peterson, E.M.; de la Maza, L.M. Vaccination with the Chlamydia trachomatis Major Outer Membrane Protein Can Elicit an Immune Response as Protective as That Resulting from Inoculation with Live Bacteria. Infect. Immun. 2005, 73, 8153–8160. [Google Scholar] [CrossRef]
- Berry, L.J.; Hickey, D.K.; Skelding, K.A.; Bao, S.; Rendina, A.M.; Hansbro, P.M.; Gockel, C.M.; Beagley, K.W. Transcutaneous Immunization with Combined Cholera Toxin and CpG Adjuvant Protects against Chlamydia Muridarum Genital Tract Infection. Infect. Immun. 2004, 72, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Cruz-Fisher, M.I.; Cheng, C.; Carmichael, J.R.; Tifrea, D.F.; Tatarenkova, O.; de la Maza, L.M. Vaccination with the Recombinant Major Outer Membrane Protein Elicits Long-Term Protection in Mice against Vaginal Shedding and Infertility Following a Chlamydia Muridarum Genital Challenge. NPJ Vaccines 2020, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Theodor, I.; Peterson, E.M.; de la Maza, L.M. Immunization with the Chlamydia trachomatis Mouse Pneumonitis Major Outer Membrane Protein Can Elicit a Protective Immune Response against a Genital Challenge. Infect. Immun. 2001, 69, 6240–6247. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Feng, Y.; Rao, P.; Xue, X.; Chen, S.; Li, W.S.; Zhu, G.; Zhang, L. Hepatitis B Virus Surface Antigen as Delivery Vector Can Enhance Chlamydia trachomatis MOMP Multi-Epitope Immune Response in Mice. Appl. Microbiol. Biotechnol. 2014, 98, 4107–4117. [Google Scholar] [CrossRef]
- Kuo, C.; Takahashi, N.; Swanson, A.F.; Ozeki, Y.; Hakomori, S. An N-Linked High-Mannose Type Oligosaccharide, Expressed at the Major Outer Membrane Protein of Chlamydia trachomatis, Mediates Attachment and Infectivity of the Microorganism to HeLa Cells. J. Clin. Investig. 1996, 98, 2813–2818. [Google Scholar] [CrossRef]
- Kari, L.; Whitmire, W.M.; Crane, D.D.; Reveneau, N.; Carlson, J.H.; Goheen, M.M.; Peterson, E.M.; Pal, S.; de la Maza, L.M.; Caldwell, H.D. Chlamydia trachomatis Native Major Outer Membrane Protein Induces Partial Protection in Nonhuman Primates: Implication for a Trachoma Transmission-Blocking Vaccine. J. Immunol. 2009, 182, 8063–8070. [Google Scholar] [CrossRef] [PubMed]
- Crane, D.D.; Carlson, J.H.; Fischer, E.R.; Bavoil, P.; Hsia, R.; Tan, C.; Kuo, C.; Caldwell, H.D. Chlamydia trachomatis Polymorphic Membrane Protein D Is a Species-Common Pan-Neutralizing Antigen. Proc. Natl. Acad. Sci. USA 2006, 103, 1894–1899. [Google Scholar] [CrossRef]
- Kim, S.-K.; DeMars, R. Epitope Clusters in the Major Outer Membrane Protein of Chlamydia trachomatis. Curr. Opin. Immunol. 2001, 13, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Rose, F.; Karlsen, K.; Jensen, P.R.; Jakobsen, R.U.; Wood, G.K.; Rand, K.D.; Godiksen, H.; Andersen, P.; Follmann, F.; Foged, C. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein–Based Fusion Antigen CTH522 Into Protein Nanoparticles. J. Pharm. Sci. 2018, 107, 1690–1700. [Google Scholar] [CrossRef]
- Collar, A.L.; Linville, A.C.; Core, S.B.; Frietze, K.M. Epitope-Based Vaccines against the Chlamydia trachomatis Major Outer Membrane Protein Variable Domain 4 Elicit Protection in Mice. Vaccines 2022, 10, 875. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, J.; Gong, W.; Chen, J.; Zhu, S.; Zhang, L. Protective Immunity against Chlamydia trachomatis Genital Infection Induced by a Vaccine Based on the Major Outer Membrane Multi-Epitope Human Papillomavirus Major Capsid Protein L1. Vaccine 2011, 29, 2672–2678. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, S.; Xu, W.; Lu, L.; Li, L.; Zhang, L. The Cellular Immune Response Produced in BALB/c Mice Immunized with HPV6b L1/Ct MOMP Multi-Epitope Chimeric DNA. Chin. J. Microbiol. Immunol. 2010, 30, 942–948. [Google Scholar]
- Wang, L.; Cai, Y.; Xiong, Y.; Du, W.; Cen, D.; Zhang, C.; Song, Y.; Zhu, S.; Xue, X.; Zhang, L. DNA Plasmid Vaccine Carrying Chlamydia trachomatis (Ct) Major Outer Membrane and Human Papillomavirus 16L2 Proteins for Anti-Ct Infection. Oncotarget 2017, 8, 33241–33251. [Google Scholar] [CrossRef]
- Blakney, A.K.; McKay, P.F.; Christensen, D.; Yus, B.I.; Aldon, Y.; Follmann, F.; Shattock, R.J. Effects of Cationic Adjuvant Formulation Particle Type, Fluidity and Immunomodulators on Delivery and Immunogenicity of SaRNA. J. Control. Release 2019, 304, 65–74. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Stewart, S.; Joseph, T.; Taylor, H.R.; Caldwell, H.D. Protective Monoclonal Antibodies Recognize Epitopes Located on the Major Outer Membrane Protein of Chlamydia trachomatis. J. Immunol. 1987, 138, 575–581. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Stewart, S.J.; Caldwell, H.D. Protective Monoclonal Antibodies to Chlamydia trachomatis Serovar- and Serogroup-Specific Major Outer Membrane Protein Determinants. Infect. Immun. 1989, 57, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.; Angevine, M.; Kim, S.-K.; Watkins, D.; Demars, R. T-Cell Epitopes in Variable Segments of Chlamydia trachomatis Major Outer Membrane Protein Elicit Serovar-Specific Immune Responses in Infected Humans. Infect. Immun. 2000, 68, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, L.; Demick, K.P.; Petersen, J.W.; Polka, M.; Rudersdorf, R.A.; Van der Pol, B.; Jones, R.; Angevine, M.; DeMars, R. Chlamydia trachomatis Major Outer Membrane Protein (MOMP) Epitopes That Activate HLA Class Il-Restricted T Cells from Infected Humans. J. Immunol. 1996, 157, 4554–4567. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-P.; Kuo, C.-C.; Grayston, J.T. A Simplified Method for Immunological Typing of Trachoma-Inclusion Conjunctivitis-Lympho-Granuloma Venereum Organisms. Infect. Immun. 1973, 7, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-p.; Kuo, C.-c.; Barnes, R.C.; Stephens, R.S.; Grayston, J.T. Immunotyping of Chlamydia trachomatis with Monoclonal Antibodies. J. Infect. Dis. 1985, 152, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Carlson, E.J.; Peterson, E.M.; de la Maza, L.M. Cloning and Characterization of a Chlamydia trachomatis L3 DNA Fragment That Codes for an Antigenic Region of the Major Outer Membrane Protein and Specifically Hybridizes to the C- and C-Related-Complex Serovars. Infect. Immun. 1989, 57, 487–494. [Google Scholar] [CrossRef] [PubMed]
- de Vries, H.J.C.; Pannekoek, Y.; Dean, D.; Bavoil, P.M.; Borel, N.; Greub, G.; Morré, S.A. Call for Consensus in Chlamydia trachomatis Nomenclature: Moving from Biovars, Serovars, and Serotypes to Genovariants and Genotypes. Clin. Microbiol. Infect. 2022, 28, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Brunham, R.C.; Peeling, R.W. Chlamydia trachomatis Antigens: Role in Immunity and Pathogenesis. Infect. Agents Dis. 1994, 3, 218–233. [Google Scholar] [PubMed]
- Jiang, P.; Cai, Y.; Chen, J.; Ye, X.; Mao, S.; Zhu, S.; Xue, X.; Chen, S.; Zhang, L. Evaluation of Tandem Chlamydia trachomatis MOMP Multi-Epitopes Vaccine in BALB/c Mice Model. Vaccine 2017, 35, 3096–3103. [Google Scholar] [CrossRef]
- Jiang, P.; Du, W.; Xiong, Y.; Lv, Y.; Feng, J.; Zhu, S.; Xue, X.; Chen, S.; Zhang, L. Hepatitis B Virus Core Antigen as a Carrier for Chlamydia trachomatis MOMP Multi-Epitope Peptide Enhances Protection against Genital Chlamydial Infection. Oncotarget 2015, 6, 43281–43292. [Google Scholar] [CrossRef]
- Aslam, S.; Ahmad, S.; Noor, F.; Ashfaq, U.A.; Shahid, F.; Rehman, A.; Ul Qamar, M.T.; Alatawi, E.A.; Alshabrmi, F.M.; Allemailem, K.S. Designing a Multi-Epitope Vaccine against Chlamydia trachomatis by Employing Integrated Core Proteomics, Immuno-Informatics and in Silico Approaches. Biology 2021, 10, 997. [Google Scholar] [CrossRef]
- He, Q.; Martinez-Sobrido, L.; Eko, F.O.; Palese, P.; Garcia-Sastre, A.; Lyn, D.; Okenu, D.; Bandea, C.; Ananaba, G.A.; Black, C.M.; et al. Live-Attenuated Influenza Viruses as Delivery Vectors for Chlamydia Vaccines. Immunology 2007, 122, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Jensen, K.T.; Follmann, F.; Agger, E.M.; Theisen, M.; Andersen, P. Liposome Delivery of Chlamydia Muridarum Major Outer Membrane Protein Primes a Th1 Response That Protects against Genital Chlamydial Infection in a Mouse Model. J. Infect. Dis. 2008, 198, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Dong-Ji, Z.; Yang, X.I.; Shen, C.; Lu, H.; Murdin, A.; Brunham, R.C. Priming with Chlamydia trachomatis Major Outer Membrane Protein (MOMP) DNA Followed by MOMP ISCOM Boosting Enhances Protection and Is Associated with Increased Immunoglobulin A and Th1 Cellular Immune Responses. Infect. Immun. 2000, 68, 3074–3078. [Google Scholar] [CrossRef]
- Toye, B.; Zhong, G.; Peeling, R.; Brunham, R.C. Immunologic Characterization of a Cloned Fragment Containing the Species-Specific Epitope from the Major Outer Membrane Protein of Chlamydia trachomatis. Infect. Immun. 1990, 58, 3909–3913. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Pal, S.; de la Maza, L.M.; Peterson, E.M. Characterization of the Humoral Response Induced by a Peptide Corresponding to Variable Domain IV of the Major Outer Membrane Protein of Chlamydia trachomatis Serovar E. Infect. Immun. 1992, 60, 3428–3432. [Google Scholar] [CrossRef]
- Su, H.; Caldwell, H.D. Immunogenicity of a Synthetic Oligopeptide Corresponding to Antigenically Common T-Helper and B-Cell Neutralizing Epitopes of the Major Outer Membrane Protein of Chlamydia trachomatis. Vaccine 1993, 11, 1159–1166. [Google Scholar] [CrossRef]
- Hayes, L.J.; Conlan, J.W.; Everson, J.S.; Ward, M.E.; Clarke, I.N. Chlamydia trachomatis Major Outer Membrane Protein Epitopes Expressed as Fusions with LamB in an Attenuated AroA Strain of Salmonella Typhimurium; Their Application as Potential Immunogens. J. Gen. Microbiol. 1991, 137, 1557–1564. [Google Scholar] [CrossRef]
- Motin, V.L.; de la Maza, L.M.; Peterson, E.M. Immunization with a Peptide Corresponding to Chlamydial Heat Shock Protein 60 Increases the Humoral Immune Response in C3H Mice to a Peptide Representing Variable Domain 4 of the Major Outer Membrane Protein of Chlamydia trachomatis. Clin. Diagn. Lab. Immunol. 1999, 6, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Murdin, A.D.; Su, H.; Manning, D.S.; Klein, M.H.; Parnell, M.J.; Caldwell, H.D. A Poliovirus Hybrid Expressing a Neutralization Epitope from the Major Outer Membrane Protein of Chlamydia trachomatis Is Highly Immunogenic. Infect. Immun. 1993, 61, 4406–4414. [Google Scholar] [CrossRef]
- Knight, S.C.; Iqball, S.; Woods, C.; Stagg, A.; Ward, M.E.; Tuffreyt Antigen, M. A Peptide of Chlamydia trachomatis Shown to Be a Primary T-Cell Epitope in Vitro Induces Cell-Mediated Immunity in Vivo. Immunology 1995, 85, 8–15. [Google Scholar] [PubMed]
- Dixit, S.; Singh, S.R.; Yilma, A.N.; Agee, R.D.; Taha, M.; Dennis, V.A. Poly(Lactic Acid)-Poly(Ethylene Glycol) Nanoparticles Provide Sustained Delivery of a Chlamydia trachomatis Recombinant MOMP Peptide and Potentiate Systemic Adaptive Immune Responses in Mice. Nanomedicine 2014, 10, 1311–1321. [Google Scholar] [CrossRef]
- Taha, M.A.; Singh, S.R.; Hulett, K.; Pillai, S.R.; Agee, R.; Dennis, V.A. A Peptide Containing T-Cell Epitopes of Chlamydia trachomatis Recombinant MOMP Induces Systemic and Mucosal Antibody Responses in Mice. World J. Vaccines 2011, 01, 138–147. [Google Scholar] [CrossRef]
- Verma, R.; Sahu, R.; Dixit, S.; Duncan, S.A.; Giambartolomei, G.H.; Singh, S.R.; Dennis, V.A. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(Lactic Acid)-Poly(Ethylene Glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice against a Chlamydia Muridarumgenital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front. Immunol. 2018, 9, 400511. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.W.; Rosenkrands, I.; Holland, M.J.; Andersen, P.; Follmann, F. A Chlamydia trachomatis VD1-MOMP Vaccine Elicits Cross-Neutralizing and Protective Antibodies against C/C-Related Complex Serovars. NPJ Vaccines 2021, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Tuffrey, M.; Alexander, F.; Conlan, W.; Woods, C.; Ward, M. Heterotypic Protection of Mice against Chlamydial Salpingitis and Colonization of the Lower Genital Tract with a Human Serovar F Isolate of Chlamydia trachomatis by Prior Immunization with Recombinant Serovar L1 Major Outer-Membrane Protein. J. Gen. Microbiol. 1992, 138, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Cheng, X.; de la Maza, L.M.; Peterson, E.M. Analysis of the Humoral Response Elicited in Mice by a Chimeric Peptide Representing Variable Segments I and IV of the Major Outer Membrane Protein of Chlamydia trachomatis. Vaccine 1994, 12, 557–564. [Google Scholar] [CrossRef]
- Peterson, E.M.; Cheng, X.; Qu, Z.; de la Maza, L.M. The Effect of Orientation within a Chimeric Peptide of the Immunogenicity of Chlamydia trachomatis Epitopes. Mol. Immunol. 1996, 33, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Hadad, R.; Marks, E.; Kalbina, I.; Schön, K.; Unemo, M.; Lycke, N.; Strid, Å.; Andersson, S. Protection against Genital Tract Chlamydia trachomatis Infection Following Intranasal Immunization with a Novel Recombinant MOMP VS2/4 Antigen. APMIS 2016, 124, 1078–1086. [Google Scholar] [CrossRef]
- Su, H.; Pamell, M.; Caldwell, H.D. Protective Efficacy of a Parenterally Administered MOMP-Derived Synthetic Oligopeptide Vaccine in a Murine Model of Chlamydia trachomatis Genital Tract Infection: Serum Neutralizing IgG Antibodies Do Not Protect against Chlamydial Genital Tract Infection. Vaccine 1995, 13, 1023–1032. [Google Scholar] [CrossRef]
- Olsen, A.W.; Lorenzen, E.K.; Rosenkrands, I.; Follmann, F.; Andersen, P. Protective Effect of Vaccine Promoted Neutralizing Antibodies against the Intracellular Pathogen Chlamydia trachomatis. Front. Immunol. 2017, 8, 311120. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.W.; Rosenkrands, I.; Jacobsen, C.S.; Cheeseman, H.M.; Kristiansen, M.P.; Dietrich, J.; Shattock, R.J.; Follmann, F. Immune Signature of Chlamydia Vaccine CTH522/CAF®01 Translates from Mouse-to-Human and Induces Durable Protection in Mice. Nat. Commun. 2024, 15, 1665. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.; Verma, R.; Dixit, S.; Igietseme, J.U.; Black, C.M.; Duncan, S.; Singh, S.R.; Dennis, V.A. Future of Human Chlamydia Vaccine: Potential of Self-Adjuvanting Biodegradable Nanoparticles as Safe Vaccine Delivery Vehicles. Expert. Rev. Vaccines 2018, 17, 217–227. [Google Scholar] [CrossRef]
- Karlsson, I.; Brandt, L.; Vinner, L.; Kromann, I.; Andreasen, L.V.; Andersen, P.; Gerstoft, J.; Kronborg, G.; Fomsgaard, A. Adjuvanted HLA-Supertype Restricted Subdominant Peptides Induce New T-Cell Immunity during Untreated HIV-1-Infection. Clin. Immunol. 2013, 146, 120–130. [Google Scholar] [CrossRef] [PubMed]
- van Dissel, J.T.; Joosten, S.A.; Hoff, S.T.; Soonawala, D.; Prins, C.; Hokey, D.A.; O’Dee, D.M.; Graves, A.; Thierry-Carstensen, B.; Andreasen, L.V.; et al. A Novel Liposomal Adjuvant System, CAF01, Promotes Long-Lived Mycobacterium Tuberculosis-Specific T-Cell Responses in Human. Vaccine 2014, 32, 7098–7107. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Juel, H.B.; Bang, P.; Cheeseman, H.M.; Dohn, R.B.; Cole, T.; Kristiansen, M.P.; Korsholm, K.S.; Lewis, D.; Olsen, A.W.; et al. Safety and Immunogenicity of the Chlamydia Vaccine Candidate CTH522 Adjuvanted with CAF01 Liposomes or Aluminium Hydroxide: A First-in-Human, Randomised, Double-Blind, Placebo-Controlled, Phase 1 Trial. Lancet Infect. Dis. 2019, 19, 1091–1100. [Google Scholar] [CrossRef]
- Lu, S. Heterologous Prime-Boost Vaccination. Curr. Opin. Immunol. 2009, 21, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.; Mortensen, R.; Rosenkrands, I.; Dietrich, J.; Andersen, P. Vaccine-Induced Th17 Cells Are Established as Resident Memory Cells in the Lung and Promote Local IgA Responses. Mucosal Immunol. 2017, 10, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Miquel-Clopés, A.; Bentley, E.G.; Stewart, J.P.; Carding, S.R. Mucosal Vaccines and Technology. Clin. Exp. Immunol. 2019, 196, 205–214. [Google Scholar] [CrossRef]
- Schwartz, R.H. The Value of Synthetic Peptides as Vaccines for Eliciting T-Cell Immunity. Curr. Top. Microbiol. Immunol. 1986, 130, 79–85. [Google Scholar]
- Tifrea, D.F.; Pal, S.; de la Maza, L.M. A Recombinant Chlamydia trachomatis MOMP Vaccine Elicits Cross-Serogroup Protection in Mice against Vaginal Shedding and Infertility. J. Infect. Dis. 2020, 221, 191–200. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Clinical Trials Registry Platform (ICTRP). Available online: https://www.who.int/clinical-trials-registry-platform (accessed on 8 April 2024).
- Badamchi-Zadeh, A.; McKay, P.F.; Korber, B.T.; Barinaga, G.; Walters, A.A.; Nunes, A.; Gomes, J.P.; Follmann, F.; Tregoning, J.S.; Shattock, R.J. A Multi-Component Prime-Boost Vaccination Regimen with a Consensus MOMP Antigen Enhances Chlamydia trachomatis Clearance. Front. Immunol. 2016, 7, 162. [Google Scholar] [CrossRef]
- Pal, S.; Favaroni, A.; Tifrea, D.F.; Hanisch, P.T.; Luczak, S.E.T.; Hegemann, J.H.; de la Maza, L.M. Comparison of the Nine Polymorphic Membrane Proteins of Chlamydia trachomatis for Their Ability to Induce Protective Immune Responses in Mice against a C. Muridarum Challenge. Vaccine 2017, 35, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Karunakaran, K.P.; Jiang, X.; Brunham, R.C. Evaluation of a Multisubunit Recombinant Polymorphic Membrane Protein and Major Outer Membrane Protein T Cell Vaccine against Chlamydia Muridarum Genital Infection in Three Strains of Mice. Vaccine 2014, 32, 4672–4680. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.R.; Wu, X.L.; Yang, Y.; Sun, J.H.; Lu, J.R.; Yu, Y.L.; Wang, L.Y. Protective Effects of Fusion Protein of Hsp65-MOMP-T-Epitopes on C. Trachomatis Genital Tract Infection of Mice. J. Jilin Univ. Med. Ed. 2007, 33, 440–444. [Google Scholar]
- Finco, O.; Frigimelica, E.; Buricchi, F.; Petracca, R.; Galli, G.; Faenzi, E.; Meoni, E.; Bonci, A.; Agnusdei, M.; Nardelli, F.; et al. Approach to Discover T- and B-Cell Antigens of Intracellular Pathogens Applied to the Design of Chlamydia trachomatis Vaccines. Proc. Natl. Acad. Sci. USA 2011, 108, 9969–9974. [Google Scholar] [CrossRef] [PubMed]
- Eko, F.O.; He, Q.; Brown, T.; Mcmillan, L.; Ifere, G.O.; Ananaba, G.A.; Lyn, D.; Lubitz, W.; Kellar, K.L.; Black, C.M.; et al. A Novel Recombinant Multisubunit Vaccine against Chlamydia. J. Immunol. 2004, 173, 3375–3382. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, C.P.; Armitage, C.W.; Andrew, D.W.; Kollipara, A.; Lycke, N.Y.; Potter, A.A.; Gerdts, V.; Petrovsky, N.; Beagley, K.W. Multistage Vaccines Containing Outer Membrane, Type III Secretion System and Inclusion Membrane Proteins Protects against a Chlamydia Genital Tract Infection and Pathology. Vaccine 2017, 35, 3883–3888. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, D.; Zhong, Y.; Wang, S.; Zhong, G. The Chlamydial Plasmid-Encoded Protein Pgp3 Is Secreted into the Cytosol of Chlamydia-Infected Cells. Infect. Immun. 2008, 76, 3415–3428. [Google Scholar] [CrossRef]
- Slepenkin, A.; Pal, S.; Hoang-Phou, S.; Abisoye-Ogunniyan, A.; Rasley, A.; D’haeseleer, P.; Coleman, M.A.; de la Maza, L.M. The Polymorphic Membrane Protein G Has a Neutral Effect and the Plasmid Glycoprotein 3 an Antagonistic Effect on the Ability of the Major Outer Membrane Protein to Elicit Protective Immune Responses against a Chlamydia Muridarum Respiratory Challenge. Vaccines 2023, 11, 504. [Google Scholar] [CrossRef]
- Maxion, H.K.; Liu, W.; Chang, M.H.; Kelly, K.A. The Infecting Dose of Chlamydia Muridarum Modulates the Innate Immune Response and Ascending Infection. Infect. Immun. 2004, 72, 6330–6340. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.I.; Lyons, J.M.; Airo-Brown, L.P. Variation in Virulence among Oculogenital Serovars of Chlamydia trachomatis in Experimental Genital Tract Infection. Infect. Immun. 1990, 58, 2021–2023. [Google Scholar] [CrossRef] [PubMed]
- Lyons, J.M.; Morré, S.A.; Airo-Brown, L.P.; Peña, A.S.; Ito, J.I. Comparison of Multiple Genital Tract Infections with Chlamydia trachomatis in Different Strains of Female Mice. J. Microbiol. Immunol. Infect. 2005, 38, 383–393. [Google Scholar] [PubMed]
- Darville, T.; Andrews, C.W.; Laffoon, K.K.; Shymasani, W.; Kishen, L.R.; Rank, R.G. Mouse Strain-Dependent Variation in the Course and Outcome of Chlamydial Genital Tract Infection Is Associated with Differences in Host Response. Infect. Immun. 1997, 65, 3065–3073. [Google Scholar] [CrossRef]
- Igietseme, J.U.; Ananaba, G.A.; Bolier, J.; Bowers, S.; Moore, T.; Belay, T.; Eko, F.O.; Lyn, D.; Black, C.M. Suppression of Endogenous IL-10 Gene Expression in Dendritic Cells Enhances Antigen Presentation for Specific Th1 Induction: Potential for Cellular Vaccine Development. J. Immunol. 2000, 164, 4212–4219. [Google Scholar] [CrossRef]
Vaccine Type | Efficacy | Safety | Mechanism of Action | Cost | Accessibility |
---|---|---|---|---|---|
Live attenuated vaccine | High, often strong and long-lasting immunity | Risk of reversion, not suitable for immunocompromised individuals | Mimics natural infection (humoral and cellular responses) | High, cultivation and ensuring vaccine remains attenuated | Cold chain storage, careful handling |
Inactivated vaccine | Moderate, may require boosters and/or adjuvants | Considered safe | Mainly humoral immune responses | Moderate | Cold chain storage |
Subunit vaccine (protein based, vector vaccines, …) | Moderate to high, with right antigen and delivery system/adjuvant combination | Considered safe | Targeted immune response, depending on platform | Variable, depending on platform | Often requires cold chain storage |
DNA vaccine | Moderate, optimization necessary | Considered safe (low risk of integration in genome) | Targeted humoral and cellular response | Low to moderate, scalable | Stable at room temperature |
RNA vaccine | High | Considered safe | Targeted humoral and cellular response | Low to moderate, scalable | Ultra-cold storage, ongoing research to improve stability |
MOMP-Derived Antigen Construct | Immune Responses | Protective Efficacy |
---|---|---|
Non-chimeric MOMP fragment | ||
VD4 (complete/partial) | Serum antibody response [58,78,79,80,81,82]—low local antibody response, T cell response [58,82] | In vitro neutralization [78,79]—reduced colonization [58] |
VD1 | Serum antibody response [83] | In vitro and passive in vivo neutralization [83] |
TINK | No antibody response, T cell response [84] | Reduced salpingitis [84] |
MOMP370–387 | Serum and local antibody response, cytotoxic T cell response, IFN-γ and IL-4 [73] | Reduced colonization and histopathology [73] |
MOMP278 | Serum and local antibody response [85,86,87]—IFN-γ [85,87] | Reduced in vitro infectivity macrophages [85]—in vitro neutralization and reduced colonization [87] |
ExtVD4 | Serum antibody response [23] | In vitro neutralization [23] |
ExtVD1 | Serum and local antibody response, IFN-γ [88] | In vitro and passive in vivo neutralization, reduced colonization and enhanced clearance [88] |
¾ or ½ rMOMP | Serum antibody response [89] | Enhanced clearance and reduced salpingitis [89] |
Chimeric MOMP fragments | ||
VD4-VD1 | Serum antibody response [90,91]—T cell response [90] | In vitro neutralization [90]—no in vitro neutralization [91] |
VD1-VD4 | Serum antibody response [91] | In vitro neutralization [91] |
VD2-VD4 | Serum and local antibody response, IFN-γ, IL-13 and IL-17 [92] | Reduced shedding, better protection against infertility [92] |
A8-VD4 | Serum antibody response [80,93]—local antibody response [93] | In vitro neutralization, no protection in NHPs [80]—no significant reduction in colonization, shedding or enhanced clearance [93] |
Hirep1/2 ExtVD4*4 | Serum antibody response [23,27,94]—low local antibody response [27]—Th1/Th17 response [23]—IFN-γ [27]—broad CMI response [94] | In vitro and passive in vivo neutralization [23,94]—reduced colonization and pathology [23]—short- and long-term protection [94] |
TINK + P12 | Th1 response [75] | Reduced shedding and enhanced clearance [75] |
MOMP168 | Serum and local antibody response [42,52,59,61]—IFN-γ [42,59]—cytotoxic T cell response [42,52,61] | Reduced shedding and enhanced clearance [42,52,59,61]—no salpingitis [52]—no histopathology [61] |
MOMP370–387+261–276+70–81 | Serum and local antibody response, cytotoxic T cell response, IFN-γ and IL-4 [72] | Reduced shedding and oviduct pathology, enhanced clearance [72] |
CTH522 | Serum antibody response [23,28,34,36,38,39,40,95]—local antibody response [34,36,38,39,95]—IFN-γ [28,40]—IL-17 [28,36,38,95]—Tissue-resident Th1/Th17 response [39]—broad CD4+ (and CD8+) T cell response [34,95] | In vitro neutralization [23,34] and passive in vivo neutralization [95]—reduced colonization [23,39]—enhanced clearance [34]—long-term protection against ascending infection and pathology [95] |
Combinatorial approach | ||
Hirep + CTH93 | Serum and local antibody response, IFN-γ [24,28,35]—IL17A [24,28] | In vitro neutralization [24]—enhanced clearance [24,28] |
Vaccine Type | Delivery System | (Extra) Adjuvant | References |
---|---|---|---|
Protein vaccine | None | None | [34,73,84,86,88] |
Hydrogel suspension | [34,36,89,93] | ||
Oil-in-water emulsion | [80,90,91] | ||
Toxin | [92] | ||
Fusion protein | Oil-in-water emulsion | [42,78,79,90,91] | |
Vector | None | [34] | |
Fusion protein + Vector | None | [27,75,81] | |
Oil-in-water emulsion | [83] | ||
Nanoparticles | None | [85,87] | |
On surface nanoparticles | [23,24,27,28,34,35,36,38,39,40,82,88,94,95] | ||
Fusion protein + Nanoparticles | None | [58,72,73] | |
DNA vaccine | Plasmid | None | [34,60,61] |
Plasmid + Fusion protein + Nanoparticles | None | [52,59,60,61] |
Immunization Route | References | |
---|---|---|
Systemic | Intramuscular | [24,34,35,52,58,59,60,61,78,80,82,83,86,89] |
Subcutaneous | [23,27,28,36,38,39,42,72,73,78,83,85,87,88,89,93,94,95] | |
Intravenous | [78,81] | |
Intraperitoneal | [79,80,89,90,91] | |
Intradermal | [34,84] | |
Presacral | [82,89] | |
Mucosal | Oral | [38,81,89] |
Intranasal | [23,24,27,28,34,40,75,82,88,92,94,95] | |
Intravaginal | [89,92] | |
Intrauterine | [39] | |
Sublingual | [36] | |
Peyer’s patch | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiekens, C.; Morré, S.A.; Vanrompay, D. Advances in Chlamydia trachomatis Vaccination: Unveiling the Potential of Major Outer Membrane Protein Derivative Constructs. Microorganisms 2024, 12, 1196. https://doi.org/10.3390/microorganisms12061196
Kiekens C, Morré SA, Vanrompay D. Advances in Chlamydia trachomatis Vaccination: Unveiling the Potential of Major Outer Membrane Protein Derivative Constructs. Microorganisms. 2024; 12(6):1196. https://doi.org/10.3390/microorganisms12061196
Chicago/Turabian StyleKiekens, Celien, Servaas A. Morré, and Daisy Vanrompay. 2024. "Advances in Chlamydia trachomatis Vaccination: Unveiling the Potential of Major Outer Membrane Protein Derivative Constructs" Microorganisms 12, no. 6: 1196. https://doi.org/10.3390/microorganisms12061196
APA StyleKiekens, C., Morré, S. A., & Vanrompay, D. (2024). Advances in Chlamydia trachomatis Vaccination: Unveiling the Potential of Major Outer Membrane Protein Derivative Constructs. Microorganisms, 12(6), 1196. https://doi.org/10.3390/microorganisms12061196