Ciliated Epibionts Modify the Cardiac Stress Reaction to Perceived Predation in Daphnia
Abstract
:1. Introduction
2. Methods
2.1. Study Organisms
2.2. Stress Procedure
2.3. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cote, J.; Clobert, J.; Meylan, S.; Fitze, P.S. Experimental enhancement of corticosterone levels positively affects subsequent male survival. Horm. Behav. 2006, 49, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, J.C.; Romero, L.M. Adrenocortical responses to stress and their modulation in free-living vertebrates. In Handbook of Physiology, Section 7: The Endocrine System, Vol. IV: Coping with the Environment: Neural and Endocrine Mechanisms; McEwen, B.S., Goodman, H.M., Eds.; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Angelier, F.; Holberton, R.L.; Marra, P.P. Does stress response predict return rate in a migratory bird species? A study of American redstarts and their non-breeding habitat. Proc. R. Soc. B-Biol. Sci. 2009, 276, 3545–3551. [Google Scholar]
- Cabezas, S.; Blas, J.; Marchant, T.A.; Moreno, S. Physiological stress levels predict survival probabilities in wild rabbits. Horm. Behav. 2007, 51, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Coogler, B.; Johnson, I. The heartrate reaction to acute stress in horned passalus beetles (Odontotaenius disjunctus) is negatively affected by a naturally-occurring nematode parasite. Insects 2017, 8, 110. [Google Scholar] [CrossRef] [PubMed]
- DuRant, S.E.; Romero, L.M.; Davis, A.K.; Hopkins, W.A. Evidence of ectoparasite-induced endocrine disruption in an imperiled giant salamander, the eastern hellbender (Cryptobranchus alleganiensis). J. Exp. Biol. 2015, 218, 2297–2304. [Google Scholar] [CrossRef] [PubMed]
- Ruane, N.M.; Nolan, D.T.; Rotllant, J.; Costelloe, J.; Bonga, S.E.W. Experimental exposure of rainbow trout Oncorhynchus mykiss (Walbaum) to the infective stages of the sea louse Lepeophtheirus salmonis (Kroyer) influences the physiological response to an acute stressor. Fish Shellfish Immunol. 2000, 10, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Lindström, K.; Hawley, D.; Davis, A.K.; Wikelski, M. Stress responses and disease in three wintering house finch (Carpodacus mexicanus) populations along a latitudinal gradient. Gen. Comp. Endocrinol. 2005, 143, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Peñalva-Arana, D.C.; Forshay, K.; Johnson, P.T.J.; Strickler, J.R.; Dodson, S.I. Chytrid infection reduces thoracic beat and heart rate of Daphnia pulicaria. Hydrobiologia 2011, 668, 147–154. [Google Scholar] [CrossRef]
- Fernandez-Leborans, G.; Tato-Porto, M.L. A review of the species of protozoan epibionts on crustaceans. I. Peritrich ciliates. Crustaceana 2000, 73, 643–683. [Google Scholar] [CrossRef]
- Green, J. Parasites and epibionts of Cladocera. Trans. Zool. Soc. Lond. 1974, 32, 417–515. [Google Scholar] [CrossRef]
- Bielecka, L.; Boehnke, R. Epibionts and parasites on crustaceans (Copepoda, Cladocera, Cirripedia larvae) inhabiting the Gulf of Gdansk (Baltic Sea) in very large numbers. Oceanologia 2014, 56, 629–638. [Google Scholar] [CrossRef]
- Fernandez-Leborans, G. Epibiosis in crustacea: An overview. Crustaceana 2010, 83, 549–640. [Google Scholar] [CrossRef]
- Sun, P.; Clamp, J.; Xu, D.P.; Kusuoka, Y.; Miao, W. Vorticella Linnaeus, 1767 (Ciliophora, Oligohymenophora, Peritrichia) is a Grade not a Clade: Redefinition of Vorticella and the Families Vorticellidae and Astylozoidae using Molecular Characters Derived from the Gene Coding for Small Subunit Ribosomal RNA. Protist 2012, 163, 129–142. [Google Scholar] [PubMed]
- Vorce, C.M. Microscopic forms observed in water of Lake Erie. Proc. Am. Soc. Microsc. 1882, 4, 187–196. [Google Scholar] [CrossRef]
- Whipple, G.C. Biological Studies in Massachusetts No. 2. Am. Nat. 1897, 31, 576–581. [Google Scholar] [CrossRef]
- Kankaala, P.; Eloranta, P. Epizooic ciliates (Vorticella sp.) complete for food with their host Daphnia longispina in a small polyhumic lake. Oecologia 1987, 73, 203–206. [Google Scholar]
- Burris, Z.P.; Dam, H.G. Deleterious effects of the ciliate epibiont Zoothamnium sp. on fitness of the copepod Acartia tonsa. J. Plankton Res. 2014, 36, 788–799. [Google Scholar]
- Willey, R.L.; Cantrell, P.A.; Threlkeld, S.T. Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol. Oceanogr. 1990, 35, 952–959. [Google Scholar] [CrossRef]
- Gilbert, J.J.; Schröder, T. The ciliate epibiont Epistylis pygmaeum: Selection for zooplankton hosts, reproduction and effect on two rotifers. Freshw. Biol. 2003, 48, 878–893. [Google Scholar] [CrossRef]
- Strauss, A.T.; Suh, D.C.; Galbraith, K.; Coker, S.M.; Schroeder, K.; Brandon, C.; Warburton, E.M.; Yabsley, M.J.; Cleveland, C.A. Mysterious microsporidians: Springtime outbreaks of disease in Daphnia communities in shallow pond ecosystems. Oecologia 2024, 204, 303–314. [Google Scholar] [CrossRef]
- Weigl, S.; Körner, H.; Petrusek, A.; Seda, J.; Wolinska, J. Natural distribution and co-infection patterns of microsporidia parasites in the Daphnia longispina complex. Parasitology 2012, 139, 870–880. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.R.; Becker, C.R.; Duffy, M.A.; Cáceres, C.E. Epidemic size determines population-level effects of fungal parasites on Daphnia hosts. Oecologia 2011, 166, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Decaestecker, E.; Declerck, S.; De Meester, L.; Ebert, D. Ecological implications of parasites in natural Daphnia populations. Oecologia 2005, 144, 382–390. [Google Scholar] [CrossRef]
- Lari, E.; Steinkey, D.; Pyle, G.G. A novel apparatus for evaluating contaminant effects on feeding activity and heart rate in Daphnia spp. Ecotoxicol. Environ. Saf. 2017, 135, 381–386. [Google Scholar] [CrossRef]
- Guan, R.; Wang, W.X. Comparison between two clones of Daphnia magna: Effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics. Aquat. Toxicol. 2006, 76, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Weltens, R.; Goossens, R.; Van Puymbroeck, S. Ecotoxicity of contaminated suspended solids for filter feeders (Daphnia magna). Arch. Environ. Contam. Toxicol. 2000, 39, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Folt, C.; Guarda, S. Characterizing individual, population and community effects of sublethal levels of aquatic toxicants—An experimental case-study using Daphnia. Freshw. Biol. 1991, 26, 35–44. [Google Scholar] [CrossRef]
- Pestana, J.L.T.; Baird, D.J.; Soares, A. Predator threat assessment in Daphnia magna: The role of kairomones versus conspecific alarm cues. Mar. Freshw. Res. 2013, 64, 679–686. [Google Scholar] [CrossRef]
- Pijanowska, J.; Kowalczewski, A. Predators can induce swarming behaviour and locomotory responses in Daphnia. Freshw. Biol. 1997, 37, 649–656. [Google Scholar] [CrossRef]
- Pijanowska, J. Alarm signals in Daphnia? Oecologia 1997, 112, 12–16. [Google Scholar] [CrossRef]
- Wang, M.J.; Wang, W.X. Selective ingestion and response by Daphnia magna to environmental challenges of microplastics. J. Hazard. Mater. 2023, 458, 131864. [Google Scholar] [CrossRef] [PubMed]
- Santoso, F.; Krylov, V.V.; Castillo, A.L.; Saputra, F.; Chen, H.-M.; Lai, H.-T.; Hsiao, C.-D. Cardiovascular performance measurement in water fleas by utilizing high-speed videography and ImageJ software and its application for pesticide toxicity assessment. Animals 2020, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Présing, M.; Véró, M. A new method for determining the heart beat rate of Daphnia magna. Water Res. 1983, 17, 1245–1248. [Google Scholar] [CrossRef]
- Sherr, B.F.; Sherr, E.B.; Rassoulzadegan, F. Rates of digestion of bacteria by marine phagotrophic protozoa: Temperature-dependence. Appl. Environ. Microbiol. 1988, 54, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Laybourn, J.; Finlay, B.J. Respiratory energy-losses related to cell weight and temperature in ciliated protozoa. Oecologia 1976, 24, 349–355. [Google Scholar] [CrossRef]
- Paul, R.J.; Colmorgen, M.; Pirow, R.; Chen, Y.H.; Tsai, M.C. Systemic and metabolic responses in Daphnia magna to anoxia. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 1998, 120, 519–530. [Google Scholar] [CrossRef]
- Baylor, E.R. Cardiac pharmacology of the Cladoceran, Daphnia. Biol. Bull. 1942, 83, 165–172. [Google Scholar] [CrossRef]
- Foster, R. A stroboscopic method to investigate the effect of caffeine on Daphnia heart rate. J. Biol. Educ. 1997, 31, 253–255. [Google Scholar] [CrossRef]
- Villegas-Navarro, A.; Rosas-L, E.; Reyes, J.L. The heart of Daphnia magna: Effects of four cardioactive drugs. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2003, 136, 127–134. [Google Scholar] [CrossRef]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Davis, A.K.; Vasquez, D.; LeFeuvre, J.; Sims, S.; Craft, M.; Vizurraga, A. Parasite manipulation of its host’s physiological reaction to acute stress: Experimental results from a natural beetle-nematode system. Physiol. Biochem. Zool. 2017, 90, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, P.A.; Rillich, J. The decision to fight or flee-insights into underlying mechanism in crickets. Front. Neurosci. 2012, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Adamo, S.A. Norepinephrine and octopamine: Linking stress and immune function across phyla. Invertebr. Surviv. J. 2008, 5, 12–19. [Google Scholar]
- Hopkins, W.A.; DuRant, S.E. Innate immunity and stress physiology of eastern hellbenders (Cryptobranchus alleganiensis) from two stream reaches with differing habitat quality. Gen. Comp. Endocrinol. 2011, 174, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.M.; Wikelski, M. Stress physiology as a predictor of survival in Galapagos marine iguanas. Proc. R. Soc. B-Biol. Sci. 2010, 277, 3157–3162. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, M.N.; Taff, C.C.; Hallinger, K.K.; Zimmer, C.; Winkler, D.W. Hormones and Fitness: Evidence for Trade-Offs in Glucocorticoid Regulation Across Contexts. Front. Ecol. Evol. 2018, 6, 42. [Google Scholar] [CrossRef]
- Zimmer, C.; Taff, C.C.; Ardia, D.R.; Ryan, T.A.; Winkler, D.W.; Vitousek, M.N. On again, off again: Acute stress response and negative feedback together predict resilience to experimental challenges. Funct. Ecol. 2019, 33, 619–628. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, A.K.; Gloege, H. Ciliated Epibionts Modify the Cardiac Stress Reaction to Perceived Predation in Daphnia. Microorganisms 2024, 12, 1219. https://doi.org/10.3390/microorganisms12061219
Davis AK, Gloege H. Ciliated Epibionts Modify the Cardiac Stress Reaction to Perceived Predation in Daphnia. Microorganisms. 2024; 12(6):1219. https://doi.org/10.3390/microorganisms12061219
Chicago/Turabian StyleDavis, Andrew K., and Helen Gloege. 2024. "Ciliated Epibionts Modify the Cardiac Stress Reaction to Perceived Predation in Daphnia" Microorganisms 12, no. 6: 1219. https://doi.org/10.3390/microorganisms12061219