Macrogenomics-Based Analysis of the Effects of Intercropped Soybean Photosynthetic Characteristics and Nitrogen-Assimilating Enzyme Activities on Yield at Different Nitrogen Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection
2.4. Measurements and Methods
2.4.1. Photosynthetic Characteristics
2.4.2. Determination of Nitrogen-Assimilating Enzymes
2.4.3. Soil Chemical Properties
2.4.4. Diversity of Soil Bacterial Communities
2.5. Statistical Analysis
3. Results
3.1. Photosynthetic Traits and Yield
3.2. Soil Chemistry and Nitrogen Content
3.3. Soil Chemistry and Nitrogen Content
3.4. Dynamics of the Soil Microbial Communities
3.4.1. Alpha Diversity of the Bacterial Community
3.4.2. Composition of Horizontal Communities of Dominant Bacterial Genera
3.4.3. Beta Diversity of the Bacterial Community
3.4.4. LEfSe Analysis of Differentiated Bacterial Communities
3.4.5. Correlation Analysis of Dominant Bacterial Genera with Soil Environment and Yield
3.4.6. Co-Occurrence Network Modelling of Soil Bacterial Communities
3.4.7. Structural Equation Modelling-Based Analysis of Intercropping and Nitrogen
Application Rates on Soybean Yield Trajectories
4. Discussion
4.1. Effects of Intercropping and Different Nitrogen Rates on Photosynthetic Characteristics and Yield of Soybean
4.2. Effects of Intercropping and Different Levels of Nitrogen Application on Soybean Soil N Content and N-Assimilating Enzyme Activity
4.3. Effects of Intercropping and Different Levels of Nitrogen Application on the Soil Bacterial Community in Soybean Inter-Roots
4.4. Relationships between Photosynthetic Properties, Soil Nitrogen, Nitrogen-Assimilating Enzymes, Microbes, and Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Du, J.B.; Han, T.F.; Gai, J.Y.; Yong, T.W.; Sun, X.; Wang, X.C.; Yang, F.; Liu, J.; Shu, K.; Liu, W.G.; et al. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef]
- Iqbal, N.; Hussain, S.; Ahmed, Z.; Yang, F.; Wang, X.C.; Liu, W.G.; Yong, T.W.; Du, J.B.; Shu, K.; Yang, W.Y.; et al. Comparative analysis of maize-soybean strip intercropping systems: A review. Plant Prod. Sci. 2019, 22, 131–142. [Google Scholar] [CrossRef]
- Wang, L.X.; Yu, B.H.; Ji, J.M.; Khan, I.; Li, G.L.; Rehman, A.; Liu, D.; Li, S. Assessing the impact of biochar and nitrogen application on yield, water-nitrogen use efficiency and quality of intercropped maize and soybean. Front. Plant Sci. 2023, 14, 15. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Meng, L.B.; Li, Y.; Wang, X.R.; Ogundeji, A.O.; Li, X.R.; Sang, P.; Mu, Y.; Wu, H.L.; Li, S.M. Yield and nutrient uptake dissected through complementarity and selection effects in the maize/soybean intercropping. Food Energy Secur. 2021, 10, 379–393. [Google Scholar] [CrossRef]
- Liu, X.D.; Meng, L.B.; Yin, T.J.; Wang, X.R.; Zhang, S.; Cheng, Z.Y.; Ogundeji, A.O.; Li, S.M. Maize/soybean intercrop over time has higher yield stability relative to matched monoculture under different nitrogen-application rates. Field Crops Res. 2023, 301, 109015. [Google Scholar] [CrossRef]
- Gazola, B.; Mariano, E.; Andrade, M.G.O.; Costa, V.E.; Rosolem, C.A. Fate of fertilizer N applied to maize intercropped with forage grass and recovery of residual N by soybean in a double cropping system. Plant Soil 2024, 496, 205–219. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.J.; Zhang, C.C.; Yu, Y.; van der Werf, W.; Zhang, F.S. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Res. 2020, 246, 107661. [Google Scholar] [CrossRef]
- Te, X.; Hassan, M.J.; Cui, K.S.; Xiao, J.H.; Aslam, M.N.; Saeed, A.; Yang, W.Y.; Ali, S. Effect of different planting pattern arrangements on soil organic matter and soil nitrogen content under a maize/soybean strip relay intercropping system. Front. Plant Sci. 2022, 13, 995750. [Google Scholar] [CrossRef]
- Gong, X.W.; Liu, C.J.; Li, J.; Luo, Y.; Yang, Q.H.; Zhang, W.L.; Yang, P.; Feng, B.L. Responses of rhizosphere soil properties, enzyme activities and microbial diversity to intercropping patterns on the Loess Plateau of China. Soil Tillage Res. 2019, 195, 104355. [Google Scholar] [CrossRef]
- Seger, M.; Ortega, J.L.; Bagga, S.; Gopalan, C.S. Repercussion of mesophyll-specific overexpression of a soybean cytosolic glutamine synthetase gene in alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.). Plant Sci. 2009, 176, 119–129. [Google Scholar] [CrossRef]
- Ilakiya, T.; Swarnapriya, R.; Pugalendhi, L.; Geethalakshmi, V.; Lakshmanan, A.; Kumar, M.; Lorenzo, J.M. Carbon Accumulation, Soil Microbial and Enzyme Activities in Elephant Foot Yam-Based Intercropping System. Agriculture 2023, 13, 187. [Google Scholar] [CrossRef]
- Chen, G.H.; Jiang, F.H.; Zhang, S.; Zhang, Q.; Jiang, G.J.; Gao, B.K.; Cao, G.J.; Islam, M.U.I.; Cao, Z.; Zhao, X.M. Potential crop yield gains under intensive soybean/maize intercropping in China. Plant Soil 2023. [Google Scholar] [CrossRef]
- Wang, G.W.; Jin, Z.X.; Wang, X.X.; George, T.S.; Feng, G.; Zhang, L. Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere. Appl. Soil Ecol. 2022, 170, 104274. [Google Scholar] [CrossRef]
- Modolo, L.V.; da-Silva, C.J.; Brandao, D.S.; Chaves, I.S. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Xiao, X.W.; Han, L.; Chen, H.R.; Wang, J.J.; Zhang, Y.P.; Hu, A. Intercropping enhances microbial community diversity and ecosystem functioning in maize fields. Front. Microbiol. 2023, 13, 1084452. [Google Scholar] [CrossRef]
- Saleem, S.; Ul Mushtaq, N.; Shah, W.H.; Rasool, A.; Hakeem, K.R.; Ul Rehman, R. Morpho-Physiological, Biochemical and Molecular Adaptation of Millets to Abiotic Stresses: A Review. Phyton Int. J. Exp. Bot. 2021, 90, 1363–1385. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, J.X.; Lu, Z.R.; Li, M.J.; Yang, J.F.; Fullen, M.; Li, Y.M.; Fan, M.P. Maize-soybean intercropping increases soil nutrient availability and aggregate stability. Plant Soil 2023. [Google Scholar] [CrossRef]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amezaga, I.; Garbisu, C. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef]
- Erythrina, E.; Susilawati, S.; Slameto, S.; Resiani, N.M.D.; Arianti, F.D.; Jumakir, J.; Fahri, A.; Bhermana, A.; Jannah, A.; Sembiring, H. Yield Advantage and Economic Performance of Rice-Maize, Rice-Soybean, and Maize-Soybean Intercropping in Rainfed Areas of Western Indonesia with a Wet Climate. Agronomy 2022, 12, 2326. [Google Scholar] [CrossRef]
- Yang, S.Q.; Zhao, Y.X.; Xu, Y.A.; Cui, J.X.; Li, T.; Hu, Y.M.; Qian, X.; Li, Z.X.; Sui, P.; Chen, Y.Q. Yield performance response to field configuration of maize and soybean intercropping in China: A meta-analysis. Field Crops Res. 2024, 306, 109235. [Google Scholar] [CrossRef]
- Layek, J.; Shivakumar, B.G.; Rana, D.S.; Munda, S.; Lakshman, K.; Panwara, S.; Das, A.; Ramkrushna, G.I. Performance of soybean (Glycine max) intercropped with different cereals under varying levels of nitrogen. Indian J. Agric. Sci. 2015, 85, 1571–1577. [Google Scholar] [CrossRef]
- Wang, R.T.; Liu, J.X.; Jiang, W.Y.; Ji, P.S.; Li, Y.G. Metabolomics and Microbiomics Reveal Impacts of Rhizosphere Metabolites on Alfalfa Continuous Cropping. Front. Microbiol. 2022, 13, 833968. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liao, K.H.; Lai, X.M.; Lv, L.G. Scale-dependent effects of environmental factors on soil organic carbon, soil nutrients and stoichiometry under two contrasting land-use types. Soil Use Manag. 2021, 37, 243–256. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhang, L.Q.; Meng, F.A.; Lou, Z.X.; An, X.Y.; Jiang, X.B.; Zhao, H.Y.; Zhang, W. Responses of Soil Microbial Communities in Soybean-Maize Rotation to Different Fertilization Treatments. Agronomy 2023, 13, 1590. [Google Scholar] [CrossRef]
- Faust, K. Open challenges for microbial network construction and analysis. ISME J. 2021, 15, 3111–3118. [Google Scholar] [CrossRef] [PubMed]
- Moore, V.M.; Schlautman, B.; Fei, S.Z.; Roberts, L.M.; Wolfe, M.; Ryan, M.R.; Wells, S.; Lorenz, A.J. Plant Breeding for Intercropping in Temperate Field Crop Systems: A Review. Front. Plant Sci. 2022, 13, 843065. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.D.; Zhou, H.L.; Zhu, Q.; Li, C.H.; Zhang, H.J.; Wu, J.J.; Xie, F.T. Photosynthetic Response of Soybean Leaf to Wide Light-Fluctuation in Maize-Soybean Intercropping System. Front. Plant Sci. 2017, 8, 1695. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.; Wang, G.Y.; Zhou, F.J.; Gitari, H.; Zhou, X.B.; Tabl, K.M.; Hasan, M.E.; Ali, H.; Waqas, M.M.; Ali, I.; et al. Nitrogen fertilization coupled with foliar application of iron and molybdenum improves shade tolerance of soybean under maize-soybean intercropping. Front. Plant Sci. 2022, 13, 1014640. [Google Scholar] [CrossRef]
- Su, B.Y.; Song, Y.X.; Song, C.; Cui, L.; Yong, T.W.; Yang, W.Y. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica 2014, 52, 332–340. [Google Scholar] [CrossRef]
- Hussain, S.; Shafiq, I.; Chattha, M.S.; Mumtaz, M.; Brestic, M.; Rastogi, A.; Chen, G.P.; Allakhverdiev, S.I.; Liu, W.G.; Yang, W.Y. Effect of Ti treatments on growth, photosynthesis, phosphorus uptake and yield of soybean (Glycine max L.) in maize-soybean relay strip intercropping. Environ. Exp. Bot. 2021, 187, 104476. [Google Scholar] [CrossRef]
- Fan, Y.F.; Chen, J.X.; Cheng, Y.J.; Raza, M.A.; Wu, X.L.; Wan, Z.L.; Liu, Q.L.; Wang, R.; Wan, X.C.; Yong, T.W.; et al. Effect of shading and light recovery on the growth, leaf structure, and photosynthetic performance of soybean in a maize-soybean relay-strip intercropping system. PLoS ONE 2018, 13, e0198159. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.M.; Su, Y.; Yu, P.; Yang, M.; Zhu, S.S.; Mei, X.Y.; He, X.H.; Pan, M.H.; Zhu, Y.Y.; Li, C.Y. Proteomic Analysis of the Relationship between Metabolism and Nonhost Resistance in Soybean Exposed to Bipolaris maydis. PLoS ONE 2015, 10, e0141264. [Google Scholar] [CrossRef]
- Knops, J.M.H.; Bradley, K.L.; Wedin, D.A. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol. Lett. 2002, 5, 454–466. [Google Scholar] [CrossRef]
- Raza, A.; Asghar, M.A.; Ahmad, B.; Bin, C.; Hussain, M.I.; Li, W.; Iqbal, T.; Yaseen, M.; Shafiq, I.; Yi, Z.; et al. Agro-Techniques for Lodging Stress Management in Maize-Soybean Intercropping System-A Review. Plants 2020, 9, 1592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.Y.; Deng, K.Y.; Zhou, Q.; Xu, R.K. Effect of nitrogen forms on reduction of manganese oxides in an Oxisol by plant root exudates. Arch. Agron. Soil Sci. 2017, 63, 1725–1735. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Mu, Y.; Li, X.R.; Li, S.M.; Sang, P.; Wang, X.R.; Wu, H.L.; Xu, N. Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Sci. Total Environ. 2020, 740, 139810. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Han, C.Q.; Yang, D.L.; Yang, J.J.; Cade-Menun, B.J.; Chen, Y.Q.; Sui, P. Maize-soybean intercropping facilitates chemical and microbial transformations of phosphorus fractions in a calcareous soil. Front. Microbiol. 2022, 13, 1028969. [Google Scholar] [CrossRef]
- Gálvez, S.; Lancien, M.; Hodges, M. Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? Trends Plant Sci. 1999, 4, 484–490. [Google Scholar] [CrossRef]
- Cheng, B.; Raza, A.; Wang, L.; Xu, M.; Lu, J.J.; Gao, Y.; Qin, S.S.; Zhang, Y.; Ahmad, I.; Zhou, T.; et al. Effects of Multiple Planting Densities on Lignin Metabolism and Lodging Resistance of the Strip Intercropped Soybean Stem. Agronomy 2020, 10, 1177. [Google Scholar] [CrossRef]
- Nasar, J.; Zhao, C.J.; Khan, R.; Gul, H.; Gitari, H.; Shao, Z.Q.; Abbas, G.; Haider, I.; Iqbal, Z.; Ahmed, W.; et al. Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes. Front. Plant Sci. 2023, 13, 1077948. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.C.; Zhou, Y.; Chen, P.; Zhang, X.N.; Du, Q.; Yang, H.; Wang, X.C.; Yang, F.; Xiao, T.; Li, L.; et al. Maize-legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. J. Integr. Agric. 2022, 21, 1755–1771. [Google Scholar] [CrossRef]
- Li, X.G.; Ding, C.F.; Hua, K.; Zhang, T.L.; Zhang, Y.N.; Zhao, L.; Yang, Y.R.; Liu, J.G.; Wang, X.X. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol. Biochem. 2014, 78, 149–159. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 9. [Google Scholar] [CrossRef]
- Weidner, S.; Koller, R.; Latz, E.; Kowalchuk, G.; Bonkowski, M.; Scheu, S.; Jousset, A. Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Funct. Ecol. 2015, 29, 1341–1349. [Google Scholar] [CrossRef]
- Trivedi, P.; He, Z.L.; Van Nostrand, J.D.; Albrigo, G.; Zhou, J.Z.; Wang, N. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 2012, 6, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Dong, Q.Q.; Han, Y.; Zhang, K.Z.; Shi, X.L.; Yang, X.; Yuan, Y.; Zhou, D.Y.; Wang, K.; Wang, X.G.; et al. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity. BMC Microbiol. 2022, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Zhang, Y.P.; Luo, G.W. Regulation of soil C-N-P stoichiometry by intercropping mitigates microbial resource limitations and contributes to maize productivity. Plant Soil 2023, 498, 21–38. [Google Scholar] [CrossRef]
- Zou, X.X.; Liu, Y.; Huang, M.M.; Li, F.; Si, T.; Wang, Y.F.; Yu, X.A.; Zhang, X.J.; Wang, H.X.; Shi, P.X. Rotational strip intercropping of maize and peanut enhances productivity by improving crop photosynthetic production and optimizing soil nutrients and bacterial communities. Field Crops Res. 2023, 291, 13. [Google Scholar] [CrossRef]
- Cheng, Z.Y.; Meng, L.B.; Yin, T.J.; Li, Y.; Zhang, Y.H.; Li, S.M. Changes in Soil Rhizobia Diversity and Their Effects on the Symbiotic Efficiency of Soybean Intercropped with Maize. Agronomy 2023, 13, 997. [Google Scholar] [CrossRef]
- Cuartero, J.; Pascual, J.A.; Vivo, J.M.; Özbolat, O.; Sánchez-Navarro, V.; Egea-Cortines, M.; Zornoza, R.; Mena, M.M.; Garcia, E.; Ros, M. A first-year melon/cowpea intercropping system improves soil nutrients and changes the soil microbial community. Agric. Ecosyst. Environ. 2022, 328, 107856. [Google Scholar] [CrossRef]
- Zhang, L.L.; Li, L.J.; Pan, X.G.; Shi, Z.; Feng, X.H.; Gong, B.; Li, J.; Wang, L.S. Enhanced Growth and Activities of the Dominant Functional Microbiota of Chicken Manure Composts in the Presence of Maize Straw. Front. Microbiol. 2018, 9, 1131. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Shi, F.F.; Du, J.Q.; Li, L.B.; Bai, T.; Xing, X.G. Soil factors that contribute to the abundance and structure of the diazotrophic community and soybean growth, yield, and quality under biochar amendment. Chem. Biol. Technol. Agric. 2023, 10, 54. [Google Scholar] [CrossRef]
- Guo, T.X.; Yao, X.H.; Wu, K.L.; Guo, A.M.; Yao, Y.H. Response of the rhizosphere soil microbial diversity to different nitrogen and phosphorus application rates in a hulless barley and pea mixed-cropping system. Appl. Soil Ecol. 2024, 195, 105262. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Sansupa, C.; Kongsurakan, P.; Hatano, R. Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand. Biology 2023, 12, 501. [Google Scholar] [CrossRef]
Types | Instruments/Reagents | Producers | Specification/Model/Lot Number |
---|---|---|---|
Amplicon extraction | MoBio PowerSoil DNA Isolation Kit (100) | QIAGEN | 100 times |
Amplifier amplification | KAPA 2G Robust Hot Start Ready Mix | KAPA | |
ABI 9700 PCR | ABI | ||
Amplicon purification | Agencourt® AMPure® XP | Beckman Coulter | Dispense 45 mL/bottle, total 450 mL/bottle |
Amplicon building | NEBNext Ultra II DNA Library Prep Kit | NEB | 96 reactions |
Agencourt® AMPure® XP | Beckman Coulter | Dispense 45 mL/bottle, total 450 mL/bottle | |
ABI 9700 PCR | ABI | ||
Library quality control instruments | Bioanalyzer (Agilent 2100) | Agilent | DE13806339 |
Biomolecule Analyzer (Labchip GX) | PerkinElmer | ||
ABI Qpcr | ABI | Step One Plus | |
Library quality control reagents | Agilent DNA 1000 Kit | Agilent | 300 samples |
HT DNA-Extended Range LabChip | PerkinElmer | ||
KAPA Library Quantification Kit | KAPA | 500 times | |
Sequencing equipment | High-throughput second-generation sequencer | illumina | MiSeq |
Sequencing reagents | MiSeq® Reagent Kit v3 (600 cycle) (PE300) | illumina | |
MiSeq Reagent Kit v2 (500 cycle) | illumina |
Treatment | Pn (umol·m2·s−1) | IR (mmol·m2·s−1) | SPAD * | LA (dm2) | Yield (kg·ha−1) | |
---|---|---|---|---|---|---|
MS * | N0 | 22.17 ± 3.68 b | 10.98 ± 1.05 b | 45.0 ± 3.7 cd | 10.07 ± 0.51 b | 1975 ± 121 c |
N1 | 26.33 ± 2.30 a | 12.61 ± 1.54 a | 49.1 ± 1.5 a | 11.82 ± 0.52 ab | 2268 ± 90 bc | |
N2 | 24.69 ± 0.88 ab | 12.55 ± 1.49 a | 47.1 ± 2.2 b | 14.12 ± 1.50 ab | 2497 ± 123 b | |
N3 | 25.48 ± 3.71 ab | 12.08 ± 1.71 a | 46.0 ± 3.1 bc | 11.46 ± 3.12 ab | 2562 ± 117 a | |
IS * | N0 | 20.55 ± 2.32 b | 10.24 ± 2.13 b | 44.4 ± 2.1 d | 15.26 ± 3.76 a | 1718 ± 79 d |
N1 | 21.88 ± 2.97 b | 10.69 ± 1.28 b | 45.4 ± 2.7 cd | 16.22 ± 3.47 a | 1931 ± 127 c | |
N2 | 21.82 ± 3.16 b | 10.84 ± 1.68 b | 48.7 ± 3.6 a | 16.34 ± 1.44 a | 2256 ± 81 bc | |
N3 | 23.94 ± 4.09 ab | 10.56 ± 1.94 b | 47.1 ± 3.3 b | 15.97 ± 1.85 a | 2241 ± 44 bc | |
Results of the two-way ANOVA test (F) | ||||||
N | 2.563 ns | 1.085 ns | 12.794 ** | 1.567 ns | 12.934 ** | |
C | 8.564 ** | 10.327 ** | 1.020 ns | 24.616 ** | 15.273 ** | |
N * C | 0.598 ns | 0.290 ns | 9.192 ** | 0.948 ns | 9.928 ** |
Treatment | Chao1 Index | Shannon Index | PD_Whole_Tree | Goods_Coverage | |
---|---|---|---|---|---|
MS | N0 | 8260 ± 764 ab | 10.43 ± 0.06 bc | 473.8 ± 6.09 a | 0.97 a |
N1 | 8130 ± 292 b | 10.41 ± 0.05 bc | 463.9 ± 8.38 b | 0.96 a | |
N2 | 7908 ± 160 c | 10.44 ± 0.04 bc | 455.7 ± 5.41 b | 0.97 a | |
N3 | 7847 ± 254 c | 10.38 ± 0.04 c | 442.6 ± 9.32 c | 0.97 a | |
IS | N0 | 8271 ± 589 ab | 10.64 ± 0.00 a | 475 ± 7.70 a | 0.97 a |
N1 | 8312 ± 280 a | 10.58 ± 0.06 ab | 473.4 ± 2.13 a | 0.96 a | |
N2 | 8418 ± 322 a | 10.51 ± 0.04 b | 477.6 ± 0.24 a | 0.97 a | |
N3 | 7977 ± 134 c | 10.34 ± 0.01 c | 446.1 ± 12.42 c | 0.97 a | |
Results of the two-way ANOVA test (F) | |||||
N | 9.732 ** | 11.283 ** | 9.965 ** | 0.928 ns | |
C | 14.821 ** | 10.487 ** | 5.728 * | 1.023 ns | |
N * C | 8.382 ** | 10.002 ** | 1.829 ns | 0.892 ns |
Treatment | Total Nodes | Edge | Positive (%) | Negative (%) | Average Degree | Average Weight | Cluster Coefficient | Modularity |
---|---|---|---|---|---|---|---|---|
N0 (MS, IS) * | 200 | 1721 | 54.21 | 45.79 | 17.21 | 15.15 | 0.50 | 0.52 |
N1 (MS, IS) | 200 | 1407 | 50.18 | 49.82 | 14.07 | 12.36 | 0.50 | 0.54 |
N2 (MS, IS) | 200 | 1515 | 50.69 | 49.31 | 15.15 | 13.27 | 0.49 | 0.53 |
N3 (MS, IS) | 200 | 1381 | 51.41 | 48.59 | 13.81 | 12.14 | 0.49 | 0.56 |
MS (N0–N3) | 200 | 1342 | 54.92 | 45.08 | 13.42 | 13.28 | 0.34 | 0.45 |
IS (N0–N3) | 200 | 2314 | 52.64 | 47.26 | 23.14 | 16.16 | 0.43 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Feng, Y.; Zhao, Z.; Baoyin, B.; Cui, Z.; Wang, H.; Li, Q.; Cui, J. Macrogenomics-Based Analysis of the Effects of Intercropped Soybean Photosynthetic Characteristics and Nitrogen-Assimilating Enzyme Activities on Yield at Different Nitrogen Levels. Microorganisms 2024, 12, 1220. https://doi.org/10.3390/microorganisms12061220
Zhang L, Feng Y, Zhao Z, Baoyin B, Cui Z, Wang H, Li Q, Cui J. Macrogenomics-Based Analysis of the Effects of Intercropped Soybean Photosynthetic Characteristics and Nitrogen-Assimilating Enzyme Activities on Yield at Different Nitrogen Levels. Microorganisms. 2024; 12(6):1220. https://doi.org/10.3390/microorganisms12061220
Chicago/Turabian StyleZhang, Liqiang, Yudi Feng, Zehang Zhao, Bate Baoyin, Zhengguo Cui, Hongyu Wang, Qiuzhu Li, and Jinhu Cui. 2024. "Macrogenomics-Based Analysis of the Effects of Intercropped Soybean Photosynthetic Characteristics and Nitrogen-Assimilating Enzyme Activities on Yield at Different Nitrogen Levels" Microorganisms 12, no. 6: 1220. https://doi.org/10.3390/microorganisms12061220