Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract against Vancomycin-Resistant Enterococcus faecium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Growth Conditions
2.2. Preparation of Plant Extracts
2.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
2.4. Antibiotic Susceptibility of VREF
2.5. Evaluation of the Antibacterial Effects of GIE
2.5.1. Disk Diffusion Assay
2.5.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.6. Morphology Study of VREF by Scanning Electron Microscopy (SEM)
2.7. Biofilm-Forming Ability of E. faecium ATCC 700221
2.8. Biofilm Inhibition Assay
2.9. Biofilm Eradication Assay
2.10. Determination of Antioxidant Activity
2.10.1. Total Phenolic Content (TPC) Assay
2.10.2. Free Radical Scavenging Assay
- 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity
- 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt radical scavenging activity
2.11. Statistical Analysis
3. Results
3.1. Identification of the Phytochemicals in Gymnema inodorum Extract Using GC–MS Analysis
3.2. Antibiotic Susceptibility and Biofilm Formation of VREF
3.3. Antibacterial Activity of GIE
3.4. Effect of GIE on VREF Morphology
3.5. Antibiofilm Potential of GIE
3.6. TPC Content of GIE
3.7. DPPH and ABTS Radical Scavenging Activity of GIE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, S.; Shallal, A.; Zervos, M. Vancomycin-Resistant Enterococci: Epidemiology, Infection Prevention, and Control. Infect. Dis. Clin. N. Am. 2021, 35, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Schultz, F.; Anywar, G.; Tang, H.; Chassagne, F.; Lyles, J.T.; Garbe, L.-A.; Quave, C.L. Targeting ESKAPE pathogens with anti-infective medicinal plants from the Greater Mpigi region in Uganda. Sci. Rep. 2020, 10, 11935. [Google Scholar] [CrossRef] [PubMed]
- van Hal, S.J.; Willems, R.J.L.; Gouliouris, T.; Ballard, S.A.; Coque, T.M.; Hammerum, A.M.; Hegstad, K.; Westh, H.T.; Howden, B.P.; Malhotra-Kumar, S.; et al. The global dissemination of hospital clones of Enterococcus faecium. Genome Med. 2021, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.W.; Kozak, R.A.; Eshaghi, A.; Avaness, M.; Salt, N.; Patel, S.N.; Simor, A.E.; Leis, J.A. Nosocomial outbreak of vanD-carrying vancomycin-resistant Enterococcus faecium. Infect. Control Hosp. Epidemiol. 2018, 39, 1266–1268. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, L.D.R.; Furlan, J.P.R.; Gallo, I.F.L.; Ramos, M.S.; Savazzi, E.A.; Stehling, E.G. Occurrence of multidrug-resistant Enterococcus faecium isolated from environmental samples. Lett. Appl. Microbiol. 2021, 73, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Sattari-Maraji, A.; Jabalameli, F.; Node Farahani, N.; Beigverdi, R.; Emaneini, M. Antimicrobial resistance pattern, virulence determinants and molecular analysis of Enterococcus faecium isolated from children infections in Iran. BMC Microbiol. 2019, 19, 156. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Palacios Araya, D.; Palmer, K.L. Enterococcus faecium: Evolution, adaptation, pathogenesis and emerging therapeutics. Nat. Rev. Microbiol. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Ribeiro, M.; Gomes, B.; Arruda-Vasconcelos, R.; Monteiro, I.A.; Costa, M.J.F.; Sette-de-Souza, P.H. Antibiotic Resistance Profile of Clinical Strains of Enterococci from Secondary/Persistent Endodontic Infections: What do We Know? A Systematic Review of Clinical Studies. J. Endod. 2024, 50, 299–309. [Google Scholar] [CrossRef]
- Saeloh, D.; Visutthi, M. Efficacy of Thai Plant Extracts for Antibacterial and Anti-Biofilm Activities against Pathogenic Bacteria. Antibiotics 2021, 10, 1470. [Google Scholar] [CrossRef]
- Kohno, J.; Kawamura, T.; Kikuchi, A.; Akaishi, T.; Takayama, S.; Ishii, T. A Japanese traditional medicine Hochuekkito promotes negative conversion of vancomycin-resistant Enterococci. Sci. Rep. 2021, 11, 11300. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Cybulska, K.; Makuch, E.; Kucharski, Ł.; Różewicka-Czabańska, M.; Prowans, P.; Czapla, N.; Bargiel, P.; Petriczko, J.; Klimowicz, A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.). Molecules 2021, 26, 329. [Google Scholar] [CrossRef]
- Satdive, R.K.; Abhilash, P.; Fulzele, D.P. Antimicrobial activity of Gymnema sylvestre leaf extract. Fitoterapia 2003, 74, 699–701. [Google Scholar] [CrossRef] [PubMed]
- Tajuddeen, N.; Sani Sallau, M.; Muhammad Musa, A.; James Habila, D.; Muhammad Yahaya, S. Flavonoids with antimicrobial activity from the stem bark of Commiphora pedunculata (Kotschy & Peyr. ) Engl. Nat. Prod. Res. 2014, 28, 1915–1918. [Google Scholar] [PubMed]
- Kahksha; Alam, O.; Naaz, S.; Sharma, V.; Manaithiya, A.; Khan, J.; Alam, A. Recent developments made in the assessment of the antidiabetic potential of gymnema species—From 2016 to 2020. J. Ethnopharmacol. 2022, 286, 114908. [Google Scholar] [CrossRef]
- Ounjaijean, S.; Romyasamit, C.; Somsak, V. Evaluation of Antimalarial Potential of Aqueous Crude Gymnema Inodorum Leaf Extract against Plasmodium berghei Infection in Mice. Evid. Based Complement. Alternat. Med. 2021, 2021, 9932891. [Google Scholar] [CrossRef]
- Jeytawan, N.; Yadoung, S.; Jeeno, P.; Yana, P.; Sutan, K.; Naksen, W.; Wongkaew, M.; Sommano, S.R.; Hongsibsong, S. Antioxidant and Phytochemical Potential of and Phytochemicals in Gymnema inodorum (Lour.) Decne in Northern Thailand. Plants 2022, 11, 3498. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef]
- Arun, L.B.; Arunachalam, A.M.; Arunachalam, K.D.; Annamalai, S.K.; Kumar, K.A. In vivo anti-ulcer, anti-stress, anti-allergic, and functional properties of gymnemic acid isolated from Gymnema sylvestre R Br. BMC Complement. Altern. Med. 2014, 14, 70. [Google Scholar] [CrossRef]
- Nunta, R.; Khemacheewakul, J.; Sommanee, S.; Mahakuntha, C.; Chompoo, M.; Phimolsiripol, Y.; Jantanasakulwong, K.; Kumar, A.; Leksawasdi, N. Extraction of gymnemic acid from Gymnema inodorum (Lour.) Decne. leaves and production of dry powder extract using maltodextrin. Sci. Rep. 2023, 13, 11193. [Google Scholar] [CrossRef] [PubMed]
- Boonyapranai, K.; Surinkaew, S.; Somsak, V.; Rattanatham, R. Protective Effects of Gymnema inodorum Leaf Extract on Plasmodium berghei-Induced Hypoglycemia, Dyslipidemia, Liver Damage, and Acute Kidney Injury in Experimental Mice. J. Parasitol. Res. 2021, 2021, 1896997. [Google Scholar] [CrossRef] [PubMed]
- Ounjaijean, S.; Sukati, S.; Somsak, V.; Sarakul, O. The Potential Role of Gymnema inodorum Leaf Extract Treatment in Hematological Parameters in Mice Infected with Plasmodium berghei. J. Trop. Med. 2021, 2021, 9989862. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2021.
- Kulnanan, P.; Chuprom, J.; Thomrongsuwannakij, T.; Romyasamit, C.; Sangkanu, S.; Manin, N.; Nissapatorn, V.; Pereira, M.d.L.; Wilairatana, P.; Kitpipit, W.; et al. Antibacterial, antibiofilm, and anti-adhesion activities of Piper betle leaf extract against Avian pathogenic Escherichia coli. Arch. Microbiol. 2021, 204, 49. [Google Scholar] [CrossRef] [PubMed]
- Sornsenee, P.; Chatatikun, M.; Mitsuwan, W.; Kongpol, K.; Kooltheat, N.; Sohbenalee, S.; Pruksaphanrat, S.; Mudpan, A.; Romyasamit, C. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ. 2021, 9, e12586. [Google Scholar] [CrossRef] [PubMed]
- Zongo, C.; Savadogo, A.; Ouattara, L.; Bassole, I.; Ouattara, C.; Ouattara, A.; Barro, N.; Koudou, J.; Traore, A. Polyphenols content, antioxidant and antimicrobial activities of Ampelocissus grantii (Baker) Planch. (Vitaceae): A medicinal plant from Burkina Faso. Int. J. Pharmacol. 2010, 6, 880–887. [Google Scholar] [CrossRef]
- Dunkhunthod, B.; Talabnin, C.; Murphy, M.; Thumanu, K.; Sittisart, P.; Eumkeb, G. Gymnema inodorum (Lour.) Decne. Extract Alleviates Oxidative Stress and Inflammatory Mediators Produced by RAW264.7 Macrophages. Oxid. Med. Cell. Longev. 2021, 2021, 8658314. [Google Scholar] [CrossRef]
- Sato, M.; Tanaka, H.; Oh-Uchi, T.; Fukai, T.; Etoh, H.; Yamaguchi, R. Antibacterial activity of phytochemicals isolated from Erythrina zeyheri against vancomycin-resistant enterococci and their combinations with vancomycin. Phytother. Res. 2004, 18, 906–910. [Google Scholar] [CrossRef]
- Miller, W.R.; Murray, B.E.; Rice, L.B.; Arias, C.A. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect. Dis. Clin. N. Am. 2016, 30, 415–439. [Google Scholar] [CrossRef]
- Plupjeen, S.N.; Chawjiraphan, W.; Charoensiddhi, S.; Nitisinprasert, S.; Nakphaichit, M. Lactococcus lactis KA-FF 1-4 reduces vancomycin-resistant enterococci and impacts the human gut microbiome. 3 Biotech. 2020, 10, 295. [Google Scholar] [CrossRef]
- Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. N. Am. 2004, 18, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Janta, K.; Thaharn, W. Antibacterial activity of medicinal plant extracts against some pathogenic bacteria causing skin diseases. Prog. Appl. Sci. Technol. 2018, 8, 141–151. [Google Scholar]
- Wirasathien, L. Anti-Helicobacter pylori activity of local edible plants. Planta Medica 2013, 79, 118. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- Pangprasit, N.; Srithanasuwan, A.; Suriyasathaporn, W.; Pikulkaew, S.; Bernard, J.K.; Chaisri, W. Antibacterial Activities of Acetic Acid against Major and Minor Pathogens Isolated from Mastitis in Dairy Cows. Pathogens 2020, 9, 961. [Google Scholar] [CrossRef] [PubMed]
- Tiamyom, K.; Sirichaiwetchakoon, K.; Hengpratom, T.; Kupittayanant, S.; Srisawat, R.; Thaeomor, A.; Eumkeb, G. The Effects of Cordyceps sinensis (Berk.) Sacc. and Gymnema inodorum (Lour.) Decne. Extracts on Adipogenesis and Lipase Activity In Vitro. Evid. Based Complement. Altern. Med. 2019, 2019, 5370473. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Inpan, R.; Srinuanchai, W.; Karinchai, J.; Pitchakarn, P.; Wongnoppavich, A.; Imsumran, A. Phytosome Supplements for Delivering Gymnema inodorum Phytonutrients to Prevent Inflammation in Macrophages and Insulin Resistance in Adipocytes. Foods 2023, 12, 2257. [Google Scholar] [CrossRef]
- Ramalingam, R.; Dhand, C.; Leung, C.M.; Ong, S.T.; Annamalai, S.K.; Kamruddin, M.; Verma, N.K.; Ramakrishna, S.; Lakshminarayanan, R.; Arunachalam, K.D. Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater. Sci. Eng. C 2019, 98, 503–514. [Google Scholar] [CrossRef]
- Gomathi, M.; Prakasam, A.; Rajkumar, P.V.; Rajeshkumar, S.; Chandrasekaran, R.; Anbarasan, P.M. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. South Afr. J. Chem. Eng. 2020, 32, 1–4. [Google Scholar] [CrossRef]
- Ngobeni, B.; Mashele, S.S.; Malebo, N.J.; van der Watt, E.; Manduna, I.T. Disruption of microbial cell morphology by Buxus macowanii. BMC Complement. Med. Ther. 2020, 20, 266. [Google Scholar] [CrossRef]
- Tafroji, W.; Margyaningsih, N.I.; Khoeri, M.M.; Paramaiswari, W.T.; Winarti, Y.; Salsabila, K.; Putri, H.F.M.; Siregar, N.C.; Soebandrio, A.; Safari, D. Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae. PLoS ONE 2022, 17, e0274174. [Google Scholar] [CrossRef]
- Del Pozo, J.L. Biofilm-related disease. Expert Rev. Anti Infect. Ther. 2018, 16, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, J.; Sun, X.; Xu, G.; Li, P.; Deng, Q.; Yu, Z.; Chen, Z.; Zheng, J. The Antibacterial and Antibiofilm Activity of Telithromycin Against Enterococcus spp. Isolated From Patients in China. Front. Microbiol. 2020, 11, 616797. [Google Scholar] [CrossRef] [PubMed]
- Tolker-Nielsen, T. Biofilm Development. Microbiol Spectr. 2015, 3, 51–66. [Google Scholar] [CrossRef]
- Zeng, X.; She, P.; Zhou, L.; Li, S.; Hussain, Z.; Chen, L.; Wu, Y. Drug repurposing: Antimicrobial and antibiofilm effects of penfluridol against Enterococcus faecalis. Microbiologyopen 2021, 10, e1148. [Google Scholar] [CrossRef]
- Alam, K.; Al Farraj, D.A.; Mah-E-Fatima, S.; Yameen, M.A.; Elshikh, M.S.; Alkufeidy, R.M.; Mustafa, A.E.-Z.M.; Bhasme, P.; Alshammari, M.K.; Alkubaisi, N.A.; et al. Anti-biofilm activity of plant derived extracts against infectious pathogen-Pseudomonas aeruginosa PAO1. J. Infect. Public Health 2020, 13, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Altern. Med. 2019, 19, 141. [Google Scholar] [CrossRef]
- Fathi, M.; Ghane, M.; Pishkar, L. Phytochemical Composition, Antibacterial, and Antibiofilm Activity of Malva sylvestris Against Human Pathogenic Bacteria. Jundishapur J. Nat. Pharm. Prod. 2021, 17, e114164. [Google Scholar] [CrossRef]
- Chanwitheesuk, A.; Teerawutgulrag, A.; Rakariyatham, N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005, 92, 491–497. [Google Scholar] [CrossRef]
- Caturla, N.; Vera-Samper, E.; Villalaín, J.; Mateo, C.R.; Micol, V. The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic. Biol. Med. 2003, 34, 648–662. [Google Scholar] [CrossRef]
Component RT | Percentage of Total (%) | Formula | Compound Name |
---|---|---|---|
6.2696 | 2.3 | C8H17N | 1-Propanamine, 2-methyl-N-(2-methylpropylidene)- |
7.8194 | 2.31 | C9H19N | 2-Butyl-(2-methylbutylidene)-amine |
17.2102 | 2.37 | C3H6O2 | 2-Propanone, 1-hydroxy- |
18.1513 | 0.5 | C6H8N2 | Pyrazine, 2,5-dimethyl- |
23.3098 | 12.8 | C2H4O2 | Acetic acid |
26.8357 | 2.55 | C3H6O2 | Propanoic acid |
30.3095 | 1.04 | C4H6O2 | 2(3H)-Furanone, dihydro- |
31.5388 | 0.95 | C11H18N2 | Pyrazine, 2,5-dimethyl-3-(3-methylbutyl)- |
31.8858 | 0.86 | C5H10O2 | Pentanoic acid |
43.4793 | 0.62 | C6H6O | Phenol |
44.3675 | 0.54 | C6H8O3 | Hydroxy dimethyl furanone |
44.5557 | 9.35 | C4H7NO | 2-Pyrrolidinone |
48.6026 | 1.04 | C4H6O3 | 2-Hydroxy-gamma-butyrolactone |
49.3853 | 2.31 | C9H10O2 | 2-Methoxy-4-vinylphenol |
51.3848 | 1.33 | C6H8O4 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- |
52.6847 | 6.89 | C3H8O3 | 1,2,3-Propanetriol |
55.0081 | 5.9 | C8H8O | Benzofuran, 2,3-dihydro- |
55.7081 | 0.84 | C5H5NO | 3-Pyridinol |
61.1372 | 1.45 | C20H40O | Phytol |
64.2782 | 1.76 | C11H11N | 3-Methyl-4-phenyl-1H-pyrrole |
68.1604 | 3.83 | C16H32O2 | n-Hexadecanoic acid |
71.5484 | 2.08 | C10H16N2O2 | Cyclo(L-prolyl-L-valine) |
73.4013 | 0.8 | C18H36O2 | Octadecanoic acid |
74.2189 | 4.64 | C11H18N2O2 | Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- |
75.8247 | 4.4 | C11H18N2O2 | Pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- |
78.5245 | 2.42 | C18H30O2 | 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- |
Zone of Inhibition (mm) | ||
---|---|---|
GIE (50 µg/disk) | 8.33 ± 0.58 | |
GIE (100 µg/disk) | 8.67 ± 0.29 | |
DW | - | |
Tetracycline | 25 ± 0.00 | |
MIC (mg/mL) | MBC (mg/mL) | |
GIE | 125 | ≥250 |
Tetracycline | ≤0.025 | ≤0.025 |
Sample | DPPH Radical Scavenging Activity (%) | ABTS+ Radical Scavenging Activity (%) |
---|---|---|
GIE | 76.39 ± 1.90 | 17.47 ± 0.75 a |
Ascorbic acid | 87.20 ± 0.45 | 99.84 ± 0.48 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ounjaijean, S.; Somsak, V.; Saki, M.; Mitsuwan, W.; Romyasamit, C. Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract against Vancomycin-Resistant Enterococcus faecium. Microorganisms 2024, 12, 1399. https://doi.org/10.3390/microorganisms12071399
Ounjaijean S, Somsak V, Saki M, Mitsuwan W, Romyasamit C. Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract against Vancomycin-Resistant Enterococcus faecium. Microorganisms. 2024; 12(7):1399. https://doi.org/10.3390/microorganisms12071399
Chicago/Turabian StyleOunjaijean, Sakaewan, Voravuth Somsak, Morteza Saki, Watcharapong Mitsuwan, and Chonticha Romyasamit. 2024. "Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract against Vancomycin-Resistant Enterococcus faecium" Microorganisms 12, no. 7: 1399. https://doi.org/10.3390/microorganisms12071399
APA StyleOunjaijean, S., Somsak, V., Saki, M., Mitsuwan, W., & Romyasamit, C. (2024). Antibacterial, Antibiofilm, and Antioxidant Activities of Aqueous Crude Gymnema inodorum Leaf Extract against Vancomycin-Resistant Enterococcus faecium. Microorganisms, 12(7), 1399. https://doi.org/10.3390/microorganisms12071399