Paraclostridium tenue Causing an Anaerobic Brain Abscess Identified by Whole-Metagenome Sequencing: A Case Report
Abstract
:1. Introduction
2. Materials and Methods
3. Case Description
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brouwer, M.C.; Coutinho, J.M.; van de Beek, D. Clinical characteristics and outcome of brain abscess: Systematic review and meta-analysis. Neurology 2014, 82, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Bodilsen, J.; Dalager-Pedersen, M.; van de Beek, D.; Brouwer, M.C.; Nielsen, H. Incidence and mortality of brain abscess in Denmark: A nationwide population-based study. Clin. Microbiol. Infect. 2020, 26, 95–100. [Google Scholar] [CrossRef]
- Seydoux, C.; Francioli, P. Bacterial brain abscesses: Factors influencing mortality and sequelae. Clin. Infect. Dis. 1992, 15, 394–401. [Google Scholar] [CrossRef]
- Bodilsen, J.; Dalager-Pedersen, M.; van de Beek, D.; Brouwer, M.C.; Nielsen, H. Long-term mortality and epilepsy in patients after brain abscess: A nationwide population-based matched cohort study. Clin. Infect. Dis. 2020, 71, 2825–2832. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bliss, C.M.; Bennett, J.S.; Bratcher, H.B.; Brehony, C.; Colles, F.M.; Wimalarathna, H.; Harrison, O.B.; Sheppard, S.K.; Cody, A.J.; et al. Ribosomal multilocus sequence typing: Universal characterization of bacteria from domain to strain. Microbiology 2012, 158, 1005–1015. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- Linhuan, W.; Juncai, M. The Global Catalogue of Microorganisms (GCM) 10K type strain sequencing project: Providing services to taxonomists for standard genome sequencing and annotation. Int. J. Syst. Evol. Microbiol. 2019, 69, 895–898. [Google Scholar]
- Cano, R.J.; Tiefenbrunner, F.; Ubaldi, M.; Del Cueto, C.; Luciani, S.; Cox, T.; Orkand, P.; Künzel, K.H.; Rollo, F. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean iceman. Am. J. Phys. Anthropol. 2000, 112, 297–309. [Google Scholar] [CrossRef]
- Lau, S.K.P.; Woo, P.C.Y.; Fung, A.M.Y.; Chan, K.M.; Woo, G.K.S.; Yuen, K.Y. Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. J. Med. Microbiol. 2004, 53, 1247–1253. [Google Scholar] [CrossRef]
- Lee, M.R.; Huang, Y.T.; Liao, C.H.; Chuang, T.Y.; Wang, W.J.; Lee, S.W.; Lee, L.N.; Hsueh, P.R. Clinical and microbiological characteristics of bacteremia caused by Eggerthella, Paraeggerthella, and Eubacterium species at a University Hospital in Taiwan from 2001 to 2010. J. Clin. Microbiol. 2012, 50, 2053–2055. [Google Scholar] [CrossRef]
- Genua, F.; Raghunathan, V.; Jenab, M.; Gallagher, W.M.; Hughes, D.J. The role of gut barrier dysfunction and microbiome dysbiosis in colorectal cancer development. Front. Oncol. 2021, 11, 626349. [Google Scholar] [CrossRef]
- Ma, X.; Xu, T.; Qian, M.; Zhang, Y.; Yang, Z.; Han, X. Faecal microbiota transplantation alleviates early-life antibiotic-induced gut microbiota dysbiosis and mucosa injuries in a neonatal piglet model. Microbiol. Res. 2021, 255, 126942. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Yan, S.; Dong, H.; Wang, H.; Luo, Y.; Wang, X. Case report: Metagenomics next-generation sequencing can help define the best therapeutic strategy for brain abscesses caused by oral pathogens. Front. Med. 2021, 8, 644130. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, K.; Li, H.; Zhang, X. Idiopathic thrombocytopenic purpura with brain abscess caused by Nocardia farcinica diagnosed using metagenomics next-generation sequencing of the cerebrospinal fluid: A case report. BMC Infect. Dis. 2021, 21, 380. [Google Scholar] [CrossRef]
- Yang, J.; Xie, S.; Li, J.; Xia, H.; Liu, X. Brain abscess caused by Nocardia farcinica and diagnosed by metagenomic next-generation sequencing: A case report. Front. Med. 2022, 9, 803554. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Wan, H. Case report: Multiple abscesses caused by Porphyromonas gingivalis diagnosed by metagenomic next-generation sequencing. Front. Med. 2022, 9, 1089863. [Google Scholar]
- Li, X.; Zhuang, S.; He, L.; Wang, S.; Zhao, M.; Lyu, X. Brain abscess caused by Nocardia brevicatena in an immunocompetent patient: A case report. Infect. Drug Resist. 2022, 15, 7693–7697. [Google Scholar] [CrossRef]
- Gao, S.; Ma, X.; Kang, Y.; Zhang, Z.; Zhang, Y.; Zhou, W.; Shen, H. Brain abscess caused by Scedosporium boydii in a systemic lupus erythematosus patient: A case report and literature review. Indian. J. Med. Microbiol. 2022, 40, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Chen, S.; Yu, Z.; Yu, T. Multifocal brain abscesses caused by invasive Streptococcus intermedia: A case report. Front. Neurol. 2022, 13, 893627. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Xue, X.H. Coinfection of Streptococcus suis and Nocardia asiatica in the human central nervous system: A case report. World J. Clin. Cases 2022, 10, 6283–6288. [Google Scholar] [CrossRef]
- Hu, H.L.; Guo, L.Y.; Wu, H.L.; Feng, W.Y.; Chen, T.M.; Liu, G. Evaluation of next-generation sequencing for the pathogenic diagnosis of children brain abscesses. J. Infect. 2019, 78, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Chen, Y.; Zhang, J.; He, R.; Qu, D.; Ye, Q.; Chen, X. Rapid and accurate diagnosis of brain abscess caused by Nocardia asiatica with a combination of Ziehl-Neelsen staining and metagenomics next-generation sequencing. Eur. J. Neurol. 2021, 28, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhu, H.; Li, Y.; Zhao, F.; Ocak, U.; Gong, Y. An unusual case report of brain abscess caused by Prevotella loescheii identified using the metagenomic next-generation sequencing. IDCases 2020, 20, e00758. [Google Scholar] [CrossRef] [PubMed]
- Lars, W.; Lamoureux, C.; Picard, J.; Rodriguez, C.; Beauruelle, C.; Quaesaet, L.; Héry-Arnaud, G.; Ansart, S.; Coste, A. Is metagenomics the future routine diagnosis tool for brain abscesses? About a case. Biologics 2023, 3, 335–341. [Google Scholar] [CrossRef]
- Lin, J.H.; Wu, Z.Y.; Gong, L.; Wong, C.H.; Chao, W.C.; Yen, C.M.; Wang, C.P.; Wei, C.L.; Huang, Y.T.; Liu, P.Y. Complex microbiome in brain abscess revealed by whole-genome culture-independent and culture-based sequencing. J. Clin. Med. 2019, 8, 351. [Google Scholar] [CrossRef] [PubMed]
- Greninger, A.L.; Langelier, C.; Cunningham, G.; Keh, C.; Melgar, M.; Chiu, C.Y.; Miller, S. Two rapidly growing mycobacterial species isolated from a brain abscess: First whole-genome sequences of Mycobacterium immunogenum and Mycobacterium llatzerense. J. Clin. Microbiol. 2015, 53, 2374–2377. [Google Scholar] [CrossRef] [PubMed]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Haris, M.; Gupta, R.K.; Husain, N.; Hasan, K.M.; Husain, M.; Narayana, P.A. Measurement of DTI metrics in hemorrhagic brain lesions: Possible implication in MRI interpretation. J. Magn. Reson. Imaging 2006, 24, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Tomar, V.; Awasthi, R.; Yadav, A.; Husain, N.; Bharadwaj, V.; Ojha, B.K.; Behari, S.; Prasad, K.N.; Rathore, R.K.S. T2*-weighted MR angiography substantially increases the detection of hemorrhage in the wall of brain abscess: Implications in clinical interpretation. Neuroradiology 2012, 54, 565–572. [Google Scholar] [CrossRef]
- Jensen, E.S.; Cayé-Thomasen, P.; Bodilsen, J.; Nielsen, H.; Friis-Hansen, L.; Christensen, T.; Christiansen, M.; Kirchmann, M.; Brandt, C.T. Hearing loss in bacterial meningitis revisited-evolution and recovery. Open Forum Infect. Dis. 2023, 10, ofad056. [Google Scholar] [CrossRef]
- Kay, R. The site of the lesion causing hearing loss in bacterial meningitis: A study of experimental streptococcal meningitis in guinea-pigs. Neuropathol. Appl. Neurobiol. 1991, 17, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Brandt, C.T.; Cayé-Thomasen, P.; Lund, S.P.; Worsøe, L.; Ostergaard, C.; Frimodt-Møller, N.; Espersen, F.; Thomsen, J.; Lundgren, J.D. Hearing loss and cochlear damage in experimental pneumococcal meningitis, with special reference to the role of neutrophil granulocytes. Neurobiol. Dis. 2006, 23, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Cayé-Thomasen, P.; Worsøe, L.; Brandt, C.T.; Miyazaki, H.; Ostergaard, C.; Frimodt-Møller, N.; Thomsen, J. Routes, dynamics, and correlates of cochlear inflammation in terminal and recovering experimental meningitis. Laryngoscope 2009, 119, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Møller, M.N.; Brandt, C.; Østergaard, C.; Caye-Thomasen, P. Bacterial invasion of the inner ear in association with pneumococcal meningitis. Otol. Neurotol. 2014, 35, e178–e186. [Google Scholar] [CrossRef]
- Møller, M.N.; Brandt, C.; Østergaard, C.; Caye-Thomasen, P. Endolymphatic sac involvement in bacterial meningitis. Eur. Arch. Otorhinolaryngol. 2015, 272, 843–851. [Google Scholar] [CrossRef]
This Study | JCM 6486 [7] | |
---|---|---|
Isolation source | human CSF | Post-abortion abscess |
Number of contigs | 28 | 64 |
N50 contig length [bp] | 263,515 | 163,012 |
Max contig length [bp] | 864,437 | 342,076 |
No. of bases, total [bp] | 2,995,440 | 2,943,107 |
GC content [%] | 27 | 26.9 |
Number of CDSs | 2963 | 2875 |
Paraclostridium tenue JCM6486 (GCA_039521565.1) | Paraclostridium sordellii ATCC9714 (GCA_000953675.1) | Paraclostridium ghonii DSM15049 (GCA_030815085.1) | |
---|---|---|---|
This case | 95.1 | 85.3 | 83.4 |
Paraclostridium tenue JCM6486 (GCA_039521565.1) | NA | 85.1 | 83.4 |
Paraclostridium sordellii ATCC9714 (GCA_000953675.1) | NA | NA | 82.6 |
References | Age (Years) | Specimen | Antibiotics Therapy Prior to Sampling | Culture Results | 16S rRNA Analysis Results | Whole-Metagenomic Analysis | Whole-Metagenomic Analysis Results |
---|---|---|---|---|---|---|---|
Our case | 57 | CSF | No | Negative | P. tenue, P. ghonii, P. sordellii | SMg | P. tenue |
[13] | 75 | CSF | No: prior to culture, Yes: prior to metagenomic analysis | Negative | NA | SMg | Prevotella denticola, Fusobacterium nucleatum |
[14] | 50 | CSF | No: prior to culture, Yes: prior to metagenomic analysis | Negative | NA | SMg | Nocardia farcinica |
[15] | 58 | CSF | Yes | Positive | NA | SMg | N. farcinica |
[16] | 65 | CSF | Yes | Negative | NA | SMg | Porphyromonas gingivalis |
[17] | 49 | CSF | Yes | Positive | NA | SMg | N. brevicatena |
[18] | 30 | CSF | Yes | Positive | NA | SMg | Scedosporium boydii |
[19] | 67 | CSF | Yes | Negative | NA | SMg | Streptococcus intermedia, N. asiatica |
[20] | 66 | CSF | Yes | Negative | NA | SMg | S. suis |
[21] | 2 months | Pus from brain abscess | Yes | Bacteroides fragilis | NA | SMg | Bacteroides fragilis |
[21] | 5 | Pus from brain abscess | Yes | S. intermedius | NA | SMg | S. intermedius, S. constellatus |
[21] | 10 | Pus from brain abscess | Yes | Negative | NA | SMg | S. intermedius |
[21] | 13 | Pus from brain abscess | Yes | Negative | NA | SMg | P. oris, F. nucleatum, S. intermedius |
[22] | 61 | Pus from brain abscess | Yes | Negative | NA | SMg | N. asiatica |
[23] | 27 | Pus from brain abscess | Yes | Negative | NA | SMg | P. loescheii |
[24] | 70 | Pus from brain abscess | Yes | Negative | Negative | SMg | S. anginosus, F. nucleatum |
[25] | 60 | Pus from brain abscess | NA | NA | Streptococcus sp., Prevotella sp. | SMg | S. constellatus, Prevotella sp. |
[26] | 40 | Pus from brain abscess | No | S. anginosus group, Peptostreptococcus. | Mycobacterium llatzerense, M. immunogenum | SMg | Mycobacterium chubuense, M. abscessus subsp. bolletii |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiba, T.; Hattori, Y.; Motooka, D.; Tanaka, T.; Ihara, M. Paraclostridium tenue Causing an Anaerobic Brain Abscess Identified by Whole-Metagenome Sequencing: A Case Report. Microorganisms 2024, 12, 1692. https://doi.org/10.3390/microorganisms12081692
Chiba T, Hattori Y, Motooka D, Tanaka T, Ihara M. Paraclostridium tenue Causing an Anaerobic Brain Abscess Identified by Whole-Metagenome Sequencing: A Case Report. Microorganisms. 2024; 12(8):1692. https://doi.org/10.3390/microorganisms12081692
Chicago/Turabian StyleChiba, Tetsuya, Yorito Hattori, Daisuke Motooka, Tomotaka Tanaka, and Masafumi Ihara. 2024. "Paraclostridium tenue Causing an Anaerobic Brain Abscess Identified by Whole-Metagenome Sequencing: A Case Report" Microorganisms 12, no. 8: 1692. https://doi.org/10.3390/microorganisms12081692
APA StyleChiba, T., Hattori, Y., Motooka, D., Tanaka, T., & Ihara, M. (2024). Paraclostridium tenue Causing an Anaerobic Brain Abscess Identified by Whole-Metagenome Sequencing: A Case Report. Microorganisms, 12(8), 1692. https://doi.org/10.3390/microorganisms12081692