Microbiological Quality and Antibiotic Resistance of Relevant Bacteria from Horsemeat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Horsemeat Samples and Microbiological Determinations
2.2. Isolation and Identification
2.3. Phenotypic Antimicrobial Resistance of Y. enterocolitica Isolates
2.4. Phenotypic Antimicrobial Resistance of Staphylococcus spp.
2.5. Phenotypic Antimicrobial Resistance of Enterococci
2.6. Phenotypic Antimicrobial Resistance of L. monocytogenes
2.7. Phenotypic Antimicrobial Resistance of Stenotrophomonas maltophilia
2.8. Phenotypic Antimicrobial Resistance of Vagococcus fluvialis
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balji, Y.; Knicky, M.; Zamaratskaia, G. Perspectives and safety of horsemeat consumption. Int. J. Food Sci. Technol. 2020, 55, 942–952. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Bò, C.D.; Simonetti, P.; Gardana, C.; Riso, P.; Lucchini, G.; Ciappellano, S. Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers. Int. J. Food Sci. Nutr. 2013, 64, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 31 July 2024).
- de Agricultura, M.; Alimentación, P.Y. Anuario de Estadística 2022; MAPA: Madrid, Spain, 2022. [Google Scholar]
- Pavlidis, D.E.; Mallouchos, A.; Nychas, G.J. Microbiological assessment of aerobically stored horse fillets through predictive microbiology and metabolomic approach. Meat Sci. 2021, 172, 108323. [Google Scholar] [CrossRef]
- Geeraerts, W.; De Vuyst, L.; Leroy, F. Mapping the dominant microbial species diversity at expiration date of raw meat and processed meats from equine origin, an underexplored meat ecosystem, in the Belgian retail. Int. J. Food Microbiol. 2019, 289, 189–199. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Gómez, M. Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Sci. 2012, 92, 610–618. [Google Scholar] [CrossRef]
- Furuhata, K.; Ishizaki, N.; Sugi, Y.; Fukuyama, M. Isolation and identification of enterobacteriaceae from raw horsemeat intended for human consumption (Basashi). Biocontrol. Sci. 2014, 19, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O. Safety and storage stability of horse meat for human consumption. Meat Sci. 2005, 71, 506–513. [Google Scholar] [CrossRef]
- Assis, M.A.; Destro, M.T.; Franco, B.D.; Landgraf, M. Incidence of Listeria spp. and Salmonella spp. in horsemeat for human consumption. Int. J. Food Microbiol. 2000, 62, 161–164. [Google Scholar] [CrossRef]
- Cattabiani, F.; Ossiprandi, M.C.; Freschi, E. Isolamento di Yersinia enterocolitica da cavalli. L’Igiene Mod. 1995, 103, 675–682. [Google Scholar]
- Boyen, F.; Smet, A.; Hermans, K.; Butaye, P.; Martens, A.; Martel, A.; Haesebrouck, F. Methicillin resistant staphylococci and broad-spectrum β-lactamase producing Enterobacteriaceae in horses. Vet. Microbiol. 2013, 167, 67–77. [Google Scholar] [CrossRef]
- Colligon, P.J.; McEwen, S.A. One Health. Its importance in helping to better control antimicrobial resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Dandachi, I.; Chabou, S.; Daoud, Z.; Rolain, J.M. Prevalence and emergence of extended-spectrum cephalosporin, carbapenem and colistin-resistant Gram negative bacteria of animal origin in the Mediterranean basin. Front. Microbiol. 2018, 9, 2299. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef] [PubMed]
- Unal, N.; Bal, E.; Kapagoz, A.; ALtun, B.; Kozag, N. Detection of vancomycin-resistant enterococci in samples from broiler flocks and houses. Acta Vet. Hung. 2020, 68, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Anwaar, F.; Ijaz, M.; Rasheed, H.; Shah, S.F.A.; Haider, S.A.R.; Sabir, M.J. Evidence and molecular characterization of multidrug resistant Staphylococcus aureus isolated from equines in Pakistan. J. Equine Vet. Sci. 2023, 126, 104498. [Google Scholar] [CrossRef] [PubMed]
- Apostolakos, I.; Franz, E.; van Hoek, A.H.A.M.; Florijn, A.; Veenman, C.; Sloet-van Oldruitenborgh-Oosterbaan, M.M.; Dierikx, C.; van Duijkeren, E. Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J. Antimicrob. Chemother. 2017, 72, 1915–1921. [Google Scholar] [CrossRef]
- da Silva-Guedes, J.; Martinez-Laorden, A.; Gonzalez-Fandos, E. Effect of the Presence of Antibiotic residues on the microbiological quality and antimicrobial resistance in fresh goat meat. Foods 2022, 11, 3030. [Google Scholar] [CrossRef]
- Simón, A.; González-Fandos, E. Influence of modified atmosphere packaging and storage temperature on the sensory and microbiological quality of fresh peeled white asparagus. Food Control. 2011, 22, 369–374. [Google Scholar] [CrossRef]
- González-Fandos, E.; Herrera, B. Efficacy of propionic acid against Listeria monocytogenes attached in poultry skin during refrigerated storage. Food Control. 2013, 34, 601–606. [Google Scholar] [CrossRef]
- González-Fandos, E.; Martínez-Laorden, A.; Abad-Fau, A.; Sevilla, E.; Bolea, R.; Serrano, M.J.; Mitjana, O.; Bonastre, C.; Laborda, A.; Falceto, M.V.; et al. Effect of intramuscularly administered oxytetracycline or enrofloxacin on vancomycin-resistant enterococci, extended espectrum beta-lactamase and carbapenemase-producing Enterobacteriaceae in pigs. Animals 2022, 12, 622. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Document M 100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Gómez, M.; Lorenzo, J.M. Effect of packaging conditions on shelf-life of fresh foal meat. Meat Sci. 2012, 91, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Cullere, M.; Dalle Zotte, A.; Tasoniero, G.; Giaccone, V.; Szendrő, Z.; Szín, M.; Odermatt, M.; Gerencsér, Z.; Dal Bosco, A.; Matics, Z. Effect of diet and packaging system on the microbial status, pH, color and sensory traits of rabbit meat evaluated during chilled storage. Meat Sci. 2018, 141, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.C.; Furbeck, R.A.; Fernando, S.C.; Chaves, B.D.; Sullivan, G.A. Spoilage Pseudomonas survive common thermal processing schedules and grow in emulsified meat during extended vacuum storage. J. Food Sci. 2023, 88, 2162–2167. [Google Scholar] [CrossRef] [PubMed]
- Emamjomeh, M.; Mohd Hashim, A.; Abdul-Mutalib, N.A.; Khairil Mokhtar, N.F.; Mustapha, N.A.; Maeda, T.; Amin-Nordin, S. Profiling bacterial communities and foodborne pathogens on food-associated surface following contact with raw beef, chicken and pork using 16S amplicon metagenomics. Food Control. 2023, 149, 109698. [Google Scholar] [CrossRef]
- Zarei, M.; Rahimi, S.; Fazlara, A.; Anvari, S.E. High biofilm-forming Pseudomonas strains isolated from poultry slaughterhouse surfaces: Their importance in the persistence of Salmonella enteritidis in slaughterhouses. Int. J. Food Microbiol. 2023, 390, 110126. [Google Scholar] [CrossRef]
- Tyrnenopoulou, P.; Fthenakis, G.C. Clinical Aspects of Bacterial Distribution and Antibiotic Resistance in the Reproductive System of Equids. Antibiotics 2023, 12, 664. [Google Scholar] [CrossRef]
- Barco, L.; Belluco, S.; Roccato, A.; Ricci, A. A systematic review of studies on Escherichia coli and Enterobacteriaceae on beef carcasses at the slaughterhouse. Int. J. Food Microbiol. 2015, 207, 30–39. [Google Scholar] [CrossRef]
- Seakamela, E.M.; Diseko, L.; Malatji, D.; Makhado, L.; Motau, M.; Jambwa, K.; Magwedere, K.; Ntushelo, N.; Matle, I. Characterization and antibiotic resistance of Yersinia enterocolitica from various meat categories, South Africa’, Onderstepoort. J. Vet. Res. 2022, 89, a2006. [Google Scholar]
- Terentjeva, M.; Ķibilds, J.; Meistere, I.; Gradovska, S.; Alksne, L.; Streikiša, M.; Ošmjana, J.; Valciņa, O. Virulence Determinants and Genetic Diversity of Yersinia Species Isolated from Retail Meat. Pathogens 2022, 11, 37. [Google Scholar] [CrossRef]
- European Medicine Agency (EMA). Categorisation of Antibiotics for Use in Animals for Prudent and Responsible Use. 2020. Available online: https://www.ema.europa.eu/en/documents/report/infographic-categorisation-antibiotics-use-animals-prudent-and-responsible-use_en.pdf (accessed on 1 August 2024).
- Schleifer, K.H.; Kilpper-Balz, R.; Devriese, L.A. Staphylococcus arlettae sp. nov., S. equorum sp. nov. and S. kloosii sp. nov.: Three new coagulase-negative, novobiocin resistant species from animals. Syst. Appl. Microbiol. 1984, 5, 501–509. [Google Scholar] [CrossRef]
- Devriese, L.A.; Nzuambe, D.; Godard, C. Identification and characteristics of staphylococci isolated from lesions and normal skin of horses. Vet. Microbiol. 1985, 10, 269–277. [Google Scholar] [CrossRef]
- Stull, J.W. Staphylococcus delphini and Methicillin-Resistant S. pseudintermedius in horses, Canada. Emerg. Infect. Dis. 2014, 20, 485–486. [Google Scholar] [CrossRef]
- Islam, M.Z.; Espinosa-Gongora, C.; Damborg, P.; Sieber, R.N.; Munk, R.; Husted, L.; Moodley, A.; Skov, R.; Larsen, J.; Guardabassi, L. Horses in Denmark are a reservoir of diverse clones of methicillin-resistant and -susceptible Staphylococcus aureus. Front. Microbiol. 2017, 8, 543. [Google Scholar] [CrossRef]
- Nwobi, O.C.; Anyanwu, M.U.; Jaja, I.F.; Nwankwo, I.O.; Okolo, C.C.; Nwobi, C.A.; Ezenduka, E.V.; Oguttu, J.W. Staphylococcus aureus in horses in Nigeria: Occurrence, antimicrobial, methicillin and heavy metal resistance and virulence potentials. Antibiotics 2023, 12, 242. [Google Scholar] [CrossRef] [PubMed]
- Roudaud, M.; Allano, M.; Fairbrother, J.-H.; Sauvé, F. A retrospective study on methicillin-resistant Staphylococcus spp. isolated from horses admitted to a Canadian veterinary teaching hospital between 2008 and 2018. Can Vet. J. 2020, 61, 1197–12022. [Google Scholar]
- Léon, A.; Castagnet, S.; Maillard, K.; Paillot, R.; Giard, J.C. Evolution of in vitro antimicrobial susceptibility of equine clinical isolates in France between 2016 and 2019. Anim. Open Access J. 2020, 10, 812. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Laorden, A.; Arraíz-Fernandez, C.; Gonzalez-Fandos, E. Identification and characterisation of antimicrobial resistance of Enterococcus spp. Isolated from pork and poultry meat. Int. J. Food Sci. Technol. 2023, 58, 4455–4463. [Google Scholar] [CrossRef]
- Martinez-Laorden, A.; Arraíz-Fernandez, C.; Cantalejo, M.J.; Gonzalez-Fandos, E. Prevalence, identification and antimicrobial resistance of Listeria monocytogenes and Listeria spp. isolated from poultry and pork meat. Int. J. Food Sci. Technol. 2024, 59, 2667–2675. [Google Scholar] [CrossRef]
- Cufaoglu, G.; Ambarcioglu, P.; Ayaz, N.D. Meta-analysis of the prevalence of Listeria spp. and antibiotic resistant L. monocytogenes isolates from foods in Turkey. Food Sci. Technol. 2021, 144, 111210. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, W.; Sun, T.; Gorris, L.G.; Wang, X.; Liu, B.; Dong, Q. The prevalence of Listeria monocytogenes in meat products in China: A systematic literature eview and novel meta-analysis approach. Int. J. Food Microbiol. 2020, 312, 108358. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, G.; Yang, J.; Zhao, L.; Jiang, Y.; Guo, D.; Wang, X.; Zhi, S.; Xu, X.; Dong, Q.; et al. Prevalence, antibiotic resistance, and molecular epidemiology of Listeria monocytogenes isolated from imported foods in China during 2018 to 2020. Int. J. Food Microbiol. 2023, 382, 109916. [Google Scholar] [CrossRef] [PubMed]
- Kayode, A.J.; Okoh, A.I. Antibiotic resistance profile of Listeria monocytogenes recovered from ready-to-eat foods surveyed in South Africa. J. Food Prot. 2022, 85, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- Collobert, J.F.; Guyon, R.; Dieuleveux, V.; Dorey, F. Etude de la contamination de carcasses de chevaux par Salmonella spp. Campylobacter spp. et Escherichia coli O157:H7. Bull. Soc. Vet. Prat. Fr. 2001, 85, 186–191. [Google Scholar]
- Moriarty, E.M.; MDowning, M.; Bellamy, J.; Gilpin, B.J. Concentrations of faecal coliforms, Escherichia coli, enterococci and Campylobacter spp. in equine faeces. N. Z. Vet. J. 2015, 63, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. 2012, 25, 2–41. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Advances in the microbiology of Stenotrophomonas maltophilia. Clin. Microbiol. Rev. 2021, 34, e00030-19. [Google Scholar] [CrossRef] [PubMed]
- Winther, L.; Andersen, R.M.; Baptiste, K.E.; Aalbæk, B.; Guardabassi, L. Association of Stenotrophomonas maltophilia infection with lower airway disease in the horse: A retrospective case series. Vet. J. 2010, 186, 358–363. [Google Scholar] [CrossRef]
- Singh, F.; Hirpurkar, S.D.; Rawat, N.; Shakya, S.; Kumar, R.; Rajput, P.K.; Kumar, S. Occurrence of the genes encoding carbapenemases, ESBLs and class 1 integron-integrase among fermenting and non-fermenting bacteria from retail goat meat. Lett. Appl. Microbiol. 2020, 71, 611–619. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakayama, T.; Asakura, H. Draft genome sequence of Stenotrophomonas maltophilia CRB139-1, isolated from poultry meat in Japan. Microbiol. Resour. Announc. 2020, 12, e00075. [Google Scholar] [CrossRef]
- da Silva Guedes, J.; Velilla-Rodriguez, D.; González-Fandos, E. Microbiological quality and safety of fresh rabbit meat with special reference to methicillin-resistant S. aureus (MRSA) and ESBL-producing E. coli. Antibiotics 2024, 13, 256. [Google Scholar] [CrossRef] [PubMed]
- Deredjian, A.; Alliot, N.; Blanchard, L.; Brothier, E.; Anane, M.; Cambier, P.; Jolivet, C.; Khelil, M.N.; Nazaret, S.; Saby, N.; et al. Occurrence of Stenotrophomonas maltophilia in agricultural soils and antibiotic resistance properties. Res. Microbiol. 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious diseases Society of America Guidance on the treatment of AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2021, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, L.; Zhang, Y.; Liang, R.; Luo, X. Microbial community dynamics analysis by high-throughput sequencing in chilled beef longissimus steaks packaged under modified atmospheres. Meat Sci. 2018, 141, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Lee, J.J.; Lee, M.J.; Kim, B.S. Analysis of microbiome in raw chicken meat from butcher shops and packaged products in South Korea to detect the potential risk of foodborne illness. Food Res. Int. 2019, 122, 517–527. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Houf, K.; Joossens, M.; Yu, Z.; Proroga, Y.T.R.; Murru, N. Evaluation of microbial contamination of different pork carcass areas through culture-dependent and independent methods in small-scale slaughterhouses. Int. J. Food Microbiol. 2021, 336, 108902. [Google Scholar] [CrossRef]
- Matajira, C.E.C.; Poor, A.P.; Moreno, L.Z.; Monteiro, M.S.; Dalmutt, A.C.; Gomes, V.T.M.; Dutra, M.C.; Barbosa, M.R.F.; Sato, M.I.Z.; Moreno, A.M. Vagococcus sp. a porcine pathogen: Molecular and phenotypic characterization of strains isolated from diseased pigs in Brazil. J. Infect. Develop. Ctries 2020, 14, 1314–1319. [Google Scholar] [CrossRef]
- Pot, B.; Devriese, L.A.; Hommez, J. Characterization and identification of Vagococcus fluvialis strains isolated from domestic animals. J. Appl. Microbiol. 1994, 77, 362–369. [Google Scholar] [CrossRef]
- Brunswick, J.; Spiro, J.; Wisniewski, P. Vagococcus: An under-recognized and emerging cause of antibiotic-resistant infection. IDCases 2024, 36, e01995. [Google Scholar] [CrossRef]
- Chen, Q.; Tan, S.; Long, S.; Wang, K.; Liu, Q. Vagococcus fluvialis isolation from the urine of a bladder cancer patient: A case report. BMC Infect. Dis. 2024, 24, 261. [Google Scholar] [CrossRef]
- Racero, L.; Barberis, C.; Traglia, G.; Loza, M.S.; Vay, C.; Almuzara, M. Infections due to Vagococcus spp. Microbiological and clinical aspects and literature review. Enfermedades Infecc. Y Microbiol. Clin. (Engl. Ed.) 2021, 39, 335–339. [Google Scholar] [CrossRef]
- Teixeira, L.M.; Carvalho, M.D.G.; Merquior, V.L.; Steigerwalt, A. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J. Clin. Microbiol. 1997, 39, 1241–1246. [Google Scholar]
Culture Media | Microbial Group | Incubation Time (h) | Incubation Temperature (°C) |
---|---|---|---|
Plate Count Agar | Mesophiles | 48 | 30 |
Chromogenic Agar for Pseudomonas | Pseudomonas | 72 | 30 |
MacConkey Agar | Enterobacteriaceae | 24 | 37 |
Mannitol Salt Agar | Staphylococci | 36 | 35 |
Kanamycin Esculin Azide Agar | Enterococci | 48 | 37 |
ALOA Agar | Listeria spp. and L. monocytogenes | 24 | 30 |
Brilliance Campy Count Agar 1 | Campylobacter spp. | 48 | 42 |
ChromID ESBL Agar | ESBL-producing E. coli | 24 | 37 |
ChromID CARBA Agar | Enterobacteriaceae carbapenemase-producers | 24 | 37 |
ChromID Colistin Agar | Colistin-resistant Enterobacteriaceae | 24 | 37 |
ChromID VRE Agar | Vancomycin-resistant enterococci | 24 | 37 |
ChromID MRSA Agar | Methicillin-resistant S. aureus | 24 | 37 |
Microbial Group | Place of Purchase | Distribution of Microbial Counts 2 | Minimum Counts | Maximum Counts | Means± Standard Deviation 4 | ||
---|---|---|---|---|---|---|---|
Mesophiles | <1 3 | 1–7 3 | >7 3 | ||||
A (n 1 = 12) | 0 | 12 | 0 | 3.05 | 6.30 | 4.92 ± 1.06 A 5 | |
B (n = 7) | 0 | 6 | 1 | 2.78 | 7.03 | 4.84 ± 1.13 A | |
A + B (n = 19) | 0 | 18 | 1 | 2.78 | 7.03 | 4.89 ± 1.08 | |
Pseudomonas spp. | <1 3 | 1–6 3 | >6 3 | ||||
A (n = 12) | 5 | 7 | 0 | 1.30 | 2.84 | 2.18 ± 0.00 A | |
B (n = 7) | 4 | 3 | 0 | 2.00 | 2.47 | 2.26 ± 0.70 A | |
A + B (n = 19) | 9 | 10 | 0 | 1.30 | 2.84 | 2.20 ± 0.40 | |
Enterobacteriaceae | <1 3 | 1–4 3 | >4 3 | ||||
A (n = 12) | 6 | 6 | 0 | 1.78 | 3.83 | 2.31 ± 0.79 A | |
B (n = 7) | 6 | 0 | 1 | 4.10 | 4.10 | 4.10 ± 0.00 A | |
A + B (n = 19) | 12 | 6 | 1 | 1.78 | 4.10 | 2.56 ± 0.97 | |
Staphylococcus spp. | <1 3 | 1–4 3 | >4 3 | ||||
A (n = 12) | 9 | 3 | 0 | 1.30 | 3.41 | 2.32 ± 0.30 A | |
B (n = 7) | 6 | 1 | 0 | 1.60 | 1.60 | 1.60 ± 0.00 A | |
A + B (n = 19) | 15 | 4 | 0 | 1.30 | 3.41 | 2.14 ± 0.69 | |
Enterococcus spp. | <1 3 | 1–3 3 | >3 3 | ||||
A (n = 12) | 9 | 3 | 0 | 1.30 | 1.60 | 1.40 ± 0.13 | |
B (n = 7) | 7 | 0 | 0 | - | - | - | |
A + B (n = 19) | 16 | 3 | 0 | 1.30 | 1.60 | 1.40 ± 0.13 |
Place of Purchase | Microbial Group | Percentage (%) | Species | Percentage (%) |
---|---|---|---|---|
Brochothrix sp. | 10.20 | Brochothrix thermosphacta | 10.20 | |
A | Lactic acid bacteria | 42.86 | Carnobacterium divergens | 18.37 |
Lactobacillus sp. | 16.33 | |||
Lactococcus lactis | 4.08 | |||
Carnobacterium maltaromaticum | 4.08 | |||
Pseudomonas spp. | 14.28 | P. fragi | 8.16 | |
P. extremorientalis | 2.04 | |||
P. gessardii | 2.04 | |||
P. lundensis | 2.04 | |||
Enterobacteriaceae | 8.16 | Serratia proteamaculans | 6.12 | |
Buttiauxella gaviniae | 2.04 | |||
Micrococcaceae | 2.04 | Staphylococcus saprophyticus | 2.04 | |
Other Gram-negative bacteria | 16.33 | Acinetobacter guillouiae | 4.08 | |
Chryseobacterium scophthalmum | 4.08 | |||
Acinetobacter harbinensis | 2.04 | |||
Chryseobacterium indologenes | 2.04 | |||
Stenotrophomonas rhizophila | 2.04 | |||
Stenotrophomonas maltophilia | 2.04 | |||
B | Brochothrix sp. | 3.33 | Brochothrix thermosphacta | 3.33 |
Lactic acid bacteria | 56.67 | Carnobacterium divergens | 16.67 | |
Lactobacillus sp. | 16.67 | |||
Carnobacterium maltaromaticum | 10.00 | |||
Lactococcus lactis | 6.67 | |||
Lactococcus piscium | 3.33 | |||
Lactobacillus sakei | 3.33 | |||
Pseudomonas spp. | 20.00 | P. fragi | 6.67 | |
P. fluorescens | 6.67 | |||
P. antarctica | 3.33 | |||
P. extremorientalis | 3.33 | |||
Enterobacteriaceae | 3.33 | Serratia proteamaculans | 3.33 | |
Micrococcaceae | 6.66 | Staphylococcus warneri | 3.33 | |
Kocuria rhizophila | 3.33 | |||
Other Gram-negative bacteria | 9.99 | Chryseobacterium indologenes | 3.33 | |
Chryseobacterium shigense | 3.33 | |||
Microbacterium liquefaciens | 3.33 |
Species | Antibiotic Resistance Phenotype 1 | Sample 2 | Place of Purchase |
---|---|---|---|
S. maltophilia | AMP-ATM-CTX-CPD-CZ-IPM-PRL | H11(PCA) | A |
H11 (CARB) | A | ||
Y. enterocolitica | AUG-AMP-SAM-ATM-FEP-CTX-FOX-CPD-CRO-NA-F-W | H07 (COL) | A |
S. delphini | PUM-FOX | H02 (MSA) | A |
susceptible to all antibiotics tested | H03 (MSA) | A | |
S. saprophyticus | DO-P-TE | H06 (MSA) | B |
P | H11 (PCA) | A | |
S. warneri | susceptible to all antibiotics tested | H03 (MSA) | A |
H06(PCA) | B | ||
H06 (MSA) | B | ||
S. fleuretti | susceptible to all antibiotics tested | H02 (MSA) | A |
S. succinus | susceptible to all antibiotics tested | H06 (MSA) | A |
S. equorum | susceptible to all antibiotics tested | H05 (MSA) | A |
E. maldoratus | susceptible to all antibiotics tested | H13 (KN) | A |
V. fluvialis | CMN-LZD-F-OX-P-QD-TEC-VA | H14 (MRSA) | A |
L. monocytogenes | AMP-PNG-CTX-MEM-OX | H13 (ALOA) | A |
AMP-PNG-CTX-MEM-OX | H14 (ALOA) | A | |
CTX-F-OX | H11 (ALOA) | B | |
AMP-PNG-CTX-OX | H16 (ALOA) | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Fandos, E.; da Silva Guedes, J. Microbiological Quality and Antibiotic Resistance of Relevant Bacteria from Horsemeat. Microorganisms 2024, 12, 1775. https://doi.org/10.3390/microorganisms12091775
Gonzalez-Fandos E, da Silva Guedes J. Microbiological Quality and Antibiotic Resistance of Relevant Bacteria from Horsemeat. Microorganisms. 2024; 12(9):1775. https://doi.org/10.3390/microorganisms12091775
Chicago/Turabian StyleGonzalez-Fandos, Elena, and Jessica da Silva Guedes. 2024. "Microbiological Quality and Antibiotic Resistance of Relevant Bacteria from Horsemeat" Microorganisms 12, no. 9: 1775. https://doi.org/10.3390/microorganisms12091775
APA StyleGonzalez-Fandos, E., & da Silva Guedes, J. (2024). Microbiological Quality and Antibiotic Resistance of Relevant Bacteria from Horsemeat. Microorganisms, 12(9), 1775. https://doi.org/10.3390/microorganisms12091775