Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Substrates’ Preparation
2.2. Analytical Methods
2.3. In Vitro Digestion Protocol and Digests’ Fractionation
2.4. Cell Culture and Activation of THP-1
2.5. Quantification of Gene Expression in LPS-Stimulated Macrophage THP-1 Cells
2.6. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of Different Substrates for P. citrinopileatus Cultivation
3.2. Nutrient Composition of Fruit Bodies/Macronutrients of P. citrinopileatus
3.3. TPC, TFC, Scavenging Activity of DPPH Radical, Scavenging Activity of ABTS Radical and Ferric Reducing Antioxidant Power (FRAP˙) in Methanol Extracts
3.4. Fatty Acid (FA) Composition and Individual Saccharide Profile
3.5. Effect of Protein and Carbohydrate Extracts on Expression of Antioxidant Genes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Bertoldi, F.C.; Sant’Anna, E.; Barcelos-Oliveira, J.L. Chlorella vulgaris cultivated in hydroponic wastewater. Acta Hortic. 2009, 843, 203–210. [Google Scholar] [CrossRef]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef] [PubMed]
- Prado-Acebo, I.; Cubero-Cardoso, J.; Lu-Chau, T.A.; Eibes, G. Integral multi-valorization of agro-industrial wastes: A review. Waste Manag. 2024, 183, 42–52. [Google Scholar] [CrossRef]
- Philippoussis, A.; Diamantopoulou, P.; Papadopoulou, K.; Lakhtar, H.; Roussos, S.; Parissopoulos, G.; Papanikolaou, S. Biomass, laccase and endoglucanase production by Lentinula edodes during solid state fermentation of reed grass, bean stalks and wheat straw residues. World J. Microbiol. Biotechnol. 2011, 27, 285–297. [Google Scholar] [CrossRef]
- Stamets, P. Growth Parameters for Gourmet and Medicinal Mushroom Species, Growing Gourmet and Medicinal Mushrooms; Ten Speed Press: Berkeley, CA, USA, 2000. [Google Scholar]
- Alam, N.; Amin, R.; Khan, A.; Ara, I.; Shim, M.J.; Lee, M.W.; Lee, T.S. Nutritional analysis of cultivated mushrooms in bangladesh—Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus florida and Calocybe indica. Mycobiology 2008, 36, 228–232. [Google Scholar] [CrossRef]
- Ghosh, N.; Mitra, D.K.; Chakravarty, D.K. Composition analysis of tropical white oyster mushroom (Pleurotus citrinopileatus). Ann. Appl. Biol. 1991, 118, 527–531. [Google Scholar] [CrossRef]
- Rodriguez, A.; Kildegaard, K.R.; Li, M.; Borodina, I.; Nielsen, J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab. Eng. 2015, 31, 181–188. [Google Scholar] [CrossRef]
- Rathod, M.G.; Gadade, R.B.; Thakur, G.M.; Pathak, A.P. Oyster mushroom: Cultivation, bioactive significance and commercial status. Front. Life Sci. 2021, 2, 21. [Google Scholar]
- Zhang, J.; Wang, G.; Li, H.; Zhuang, C.; Mizuno, T.; Ito, H.; Suzuki, C.; Okamoto, H.; Li, J. Antitumor polysaccharides from a Chinese mushroom, “yuhuangmo”, the fruiting body of Pleurotus citrinopileatus. Biosci. Biotechnol. Biochem. 1994, 58, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Minato, K. Immunomodulation Activity of a polysaccharide fraction of a culinary-medicinal mushroom, Pleurotus citrinopileatus Singer (Agaricomycetideae), in Vitro. Int. J. Med. Mushrooms 2008, 10, 235–244. [Google Scholar] [CrossRef]
- Rushita, S.; Vijayakumar, M.; Noorlidah, A.; Abdulla, M.A.; Vikineswary, S. Effect of Pleurotus citrinopileatus on blood glucose, insulin and catalase of streptozotocin-induced type 2 diabetes mellitus rats. J. Anim. Plant Sci. 2013, 23, 1566–1571. [Google Scholar]
- Liu, X.; Pang, H.; Gao, Z.; Zhao, H.; Zhang, J.; Jia, L. Antioxidant and hepatoprotective activities of residue polysaccharides by Pleurotus citrinopileatus. Int. J. Biol. Macromol. 2019, 131, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Minato, K.; Laan, L.C.; Ohara, A.; Van Die, I. Pleurotus citrinopileatus polysaccharide induces activation of human dendritic cells through multiple pathways. Int. Immunopharmacol. 2016, 40, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Minato, K.; Laan, L.C.; Van Die, I.; Mizuno, M. Pleurotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation. Int. J. Biol. Macromol. 2019, 122, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; He, X. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57 BL/6J mice. Food Sci. Nutr. 2019, 7, 1295–1301. [Google Scholar] [CrossRef]
- Musieba, F.; Okoth, S.; Mibey, R.K.; Wanjiku, S.; Moraa, K. Proximate composition, amino acids and vitamins profile of Pleurotus citrinopileatus Singer: An indigenous mushroom in Kenya. Am. J. Food Technol. 2013, 8, 200–206. [Google Scholar] [CrossRef]
- Antunes, F.; Marçal, S.; Taofiq, O.; Morais, A.M.M.B.; Freitas, A.C.; Ferreira, I.C.F.R.; Pintado, M. Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef]
- Arunachalam, K.; Sreeja, P.S.; Yang, X. The antioxidant properties of mushroom polysaccharides can potentially mitigate oxidative stress, beta-cell dysfunction and insulin resistance. Front. Pharmacol. 2022, 13, 874474. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.; Zhang, Y.; Jin, X.; Zhu, Y.; Li, L.; Huang, X.; Wang, D.; Lin, Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr. Polym. 2023, 303, 120453. [Google Scholar] [CrossRef] [PubMed]
- Muszynska, B.; Grzywacz, A.; Kala, K.; Gdula-Argasinska, J. Anti-inflammatory potential of in vitro cultures of the white button mushroom, Agaricus bisporus (Agaricomycetes), in Caco-2 Cells. Int. J. Med. Mushrooms 2018, 20, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ng, T.B.; Song, M.; Yuan, F.; Liu, Z.K.; Wang, C.L.; Jiang, Y.; Fu, M.; Liu, F. A polysaccharide-peptide complex from abalone mushroom (Pleurotus abalonus) fruiting bodies increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice. Appl. Microbiol. Biotechnol. 2007, 75, 863–869. [Google Scholar] [CrossRef] [PubMed]
- Philippoussis, A.; Diamantopoulou, P.; Zervakis, G. Monitoring of mycelium growth and fructification of Lentinula edodes on several agricultural residues. In Mushroom Biology and Mushroom Products; UAEM: Cuernavaca, Mexico, 2002. [Google Scholar]
- Philippoussis, A.; Diamantopoulou, P.; Zervakis, G. Correlation of the properties of several lignocellulosic substrates to the crop performance of the shiitake mushroom Lentinula edodes. World J. Microbiol. Biotechnol. 2003, 19, 551–557. [Google Scholar] [CrossRef]
- Sparks, D.L. Methods of Soil Analysis Part 3: Chemical Methods; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Apha, A. Standard Methods for the Examination of Water and Wastewater: Apha; American Public Health Association: Washington, DC, USA, 1985. [Google Scholar]
- Bradford, M.M. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S.; Kapoti, M.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part I: Screening various mushroom species. Appl. Biochem. Biotechnol. 2012, 167, 536–551. [Google Scholar] [CrossRef]
- Diamantopoulou, P.; Papanikolaou, S.; Komaitis, M.; Aggelis, G.; Philippoussis, A. Patterns of major metabolites biosynthesis by different mushroom fungi grown on glucose-based submerged cultures. Bioprocess Biosyst. Eng. 2014, 37, 1385–1400. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Boonsong, S.; Klaypradit, W.; Wilaipun, P. Antioxidant activities of extracts from five edible mushrooms using different extractants. Agric. Nat. Resour. 2016, 50, 89–97. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Fan, J.-P.; He, C.-H. Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-performance liquid chromatography method. J. Pharm. Biomed. Anal. 2006, 41, 950–956. [Google Scholar] [CrossRef]
- González, A.; Nobre, C.; Simões, L.S.; Cruz, M.; Loredo, A.; Rodríguez-Jasso, R.M.; Contreras, J.; Texeira, J.; Belmares, R. Evaluation of functional and nutritional potential of a protein concentrate from Pleurotus ostreatus mushroom. Food Chem. 2021, 346, 128884. [Google Scholar] [CrossRef]
- Gardeli, A.; Mela, N.; Dedousi, M.; Kandyliari, A.; Kaparakou, E.; Diamantopoulou, P.; Pappas, C.; Mallouchos, A. The influence of substrate and strain on protein quality of Pleurotus ostreatus. Appl. Sci. 2024, 14, 4040. [Google Scholar] [CrossRef]
- Li, X.; Zhao, R.; Zhou, H.; Wu, D. Deproteinization of polysaccharide from the stigma maydis by sevag method. Adv. Mater. Res. 2011, 340, 416–420. [Google Scholar] [CrossRef]
- Dalaka, E.; Politis, I.; Theodorou, G. Antioxidant activity of sweet whey derived from bovine, ovine and caprine milk obtained from various small-scale cheese plants in greece before and after in vitro simulated gastrointestinal digestion. Antioxidants 2023, 12, 1676. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, W.; Chen, Z.; Gao, X.; Yuan, G.; Pan, Y.; Chen, H. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res. Int. 2018, 103, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [PubMed]
- Templeton, G. A two-step approach for transforming continuous variables to normal: Implications and recommendations for is research. Commun. Assoc. Inf. Syst. 2011, 28, 41–58. [Google Scholar] [CrossRef]
- Liang, Z.-C.; Wu, C.-Y.; Shieh, Z.-L.; Cheng, S.-L. Utilization of grass plants for cultivation of Pleurotus citrinopileatus. Int. Biodeterior. Biodegrad. 2009, 63, 509–514. [Google Scholar] [CrossRef]
- Wang, S.; Xu, F.; Li, Z.; Zhao, S.; Song, S.; Rong, C.; Geng, X.; Liu, Y. The spent mushroom substrates of Hypsizigus marmoreus can be an effective component for growing the oyster mushroom Pleurotus ostreatus. Sci. Hortic. 2015, 186, 217–222. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.-M.; Karayannis, D.; Kaminarides, E.-I.; Diamantopoulou, P. Utilization of spent substrates and waste products of mushroom cultivation to produce new crops of Pleurotus ostreatus, Pleurotus eryngii and Agaricus bisporus. Carbon Resour. Convers. 2024, 7, 100196. [Google Scholar] [CrossRef]
- Economou, C.; Philippoussis, A.; Diamantopoulou, P. Spent mushroom substrate for a second cultivation cycle of Pleurotus ostreatus and dephenolization of agro-industrial wastewaters. FEMS Microbiol. Lett. 2020, 367, fnaa060. [Google Scholar] [CrossRef]
- Kulshreshtha, S.; Mathur, N.; Bhatnagar, P.; Kulshreshtha, S. Cultivation of Pleurotus citrinopileatus on handmade paper and cardboard industrial wastes. Ind. Crops Prod. 2013, 41, 340–346. [Google Scholar] [CrossRef]
- Atila, F.; Rasiah, V. Evaluation of suitability of various agro-wastes for productivity of Pleurotus djamor, Pleurotus citrinopileatus and Pleurotus eryngii mushrooms. J. Exp. Agric. Int. 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Tagkouli, D.; Bekiaris, G.; Kaliora, A.; Tsiaka, T.; Tsiantas, K.; Chatzipavlidis, I.; Zoumpoulakis, P.; Kalogeropoulos, N.; Zervakis, G. Enhancing the nutritional and functional properties of Pleurotus citrinopileatus mushrooms through the exploitation of winery and olive mill wastes. Food Chem. 2022, 370, 131022. [Google Scholar] [CrossRef]
- Magdziak, Z.; Gąsecka, M.; Stuper-Szablewska, K.; Siwulski, M.; Budzyńska, S.; Jasińska, A.; Niedzielski, P.; Kalač, P.; Mleczek, M. A possibility to use selected crop post-extraction wastes to improve the composition of cultivated mushroom Pleurotus citrinopileatus. J. Fungi 2021, 7, 894. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Jaitly, A.K. Morphological and biochemical characterization of different oyster mushroom (Pleurotus spp.). J. Phytol. 2011, 3, 18–20. [Google Scholar]
- Oh, M.-J.; Shin, P.-G.; Oh, Y.-L.; Jang, K.Y.; Woo, S.-I.; Kong, W.-S. Characteristics and breeding of a cultivar Pleurotus citrinopileatus ‘Jangdari’. J. Mushroom 2017, 15, 73–77. [Google Scholar]
- Merrill, A.L.; Watt, B.K. Energy Value of Foods: Basis and Derivation; ARS United States Department of Agriculture: Washington, DC, USA, 1973. [Google Scholar]
- Singh, M.; Singh, V. Yield performance and nutritional analysis of Pleurotus citrinopileatus on different agrowastes and vegetable wastes. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 4–7 October 2011. [Google Scholar]
- Bandopadhyay, S. Effect of supplementing rice straw with water hyacinth on the yield and nutritional qualities of oyster mushrooms (Pleurotus spp.). Micol. Apl. Int. 2013, 25, 15–21. [Google Scholar]
- Freitas, A.C.; Antunes, M.B.; Rodrigues, D.; Sousa, S.; Amorim, M.; Barroso, M.F.; Carvalho, A.; Ferrador, S.M.; Gomes, A.M. Use of coffee by-products for the cultivation of Pleurotus citrinopileatus and Pleurotus salmoneo-stramineus and its impact on biological properties of extracts thereof. Int. J. Food Sci. Technol. 2018, 53, 1914–1924. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdullah, N.; Ahmed, K.U.; Bhuyan, M.H.M.B. Yield and nutritional composition of oyster mushroom strains newly introduced in Bangladesh. Pesq. Agropec. Bras. 2013, 2, 197–202. [Google Scholar] [CrossRef]
- Ragunathan, R.; Swaminathan, K. Nutritional status of Pleurotus sgrown on various agro-wastes. Food Chem. 2003, 80, 371–375. [Google Scholar] [CrossRef]
- Preeti, A.; Pushpa, S.; Sakshi, S. Antioxidant mushrooms: A review. Int. Res. J. Pharm. 2012, 3, 65–70. [Google Scholar]
- Sardar, H.; Ali, M.A.; Anjum, M.A.; Nawaz, F.; Hussain, S.; Naz, S.; Karimi, S.M. Agro-industrial residues influence mineral elements accumulation and nutritional composition of king oyster mushroom (Pleurotus eryngii). Sci. Hortic. 2017, 225, 327–334. [Google Scholar] [CrossRef]
- Da Paz, M.F.; Breyer, C.A.; Longhi, R.F.; Oviedo, M.S.V.P. Determining the basic composition and total phenolic compounds of Pleurotus sajor-caju cultivated in three different substrates by solid state bioprocess. J. BioSci. Biotechnol. 2012, 3, 11–14. [Google Scholar] [CrossRef]
- Pan, W.; Xu, H.; Cui, Y.; Song, D.; Feng, Y.-Q. Improved liquid-liquid-liquid microextraction method and its application to analysis of four phenolic compounds in water samples. J. Chromatogr. 2008, 1203, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Rangkadilok, N.; Sitthimonchai, S.; Worasuttayangkurn, L.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J. Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2007, 45, 328–336. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takamura, H.; Matoba, T.; Terao, J. HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotechnol. Biochem. 1998, 62, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-L.; Huang, G.-W.; Liang, Z.-C.; Mau, J.-L. Antioxidant properties of three extracts from Pleurotus citrinopileatus. LWT Food Sci. Technol. 2007, 40, 823–833. [Google Scholar] [CrossRef]
- Nattoh, G.; Gatebe, E.; Musieba, F.; Mathara, J. Bioprospecting optimal phenology for bioactive molecules in native golden yellow Pleurotus citrinopileatus Singer. Asian Pac. J. Trop. Biomed. 2016, 6, 132–142. [Google Scholar] [CrossRef]
- Arbaayah, H.; Kalsom, Y. Antioxidant properties in the Oyster mushrooms (Pleurotus spp.) and split gill mushroom (Schizophyllum commune) ethanolic extracts. Mycosphere 2013, 4, 661–673. [Google Scholar] [CrossRef]
- Yeh, J.-Y.; Hsieh, L.-H.; Wu, K.-T.; Tsai, C.-F. Antioxidant properties and antioxidant compounds of various extracts from the edible basidiomycete Grifola frondosa (Maitake). Molecules 2011, 16, 3197–3211. [Google Scholar] [CrossRef]
- Sudha, G.; Vadivukkarasi, S.; Shree, R.B.I.; Lakshmanan, P. Antioxidant activity of various extracts from an edible mushroom Pleurotus eous. Food Sci. Biotechnol. 2012, 21, 661–668. [Google Scholar] [CrossRef]
- Gil-Ramírez, A.; Pavo-Caballero, C.; Baeza, E.; Baenas, N.; Garcia-Viguera, C.; Marín, F.R.; Soler-Rivas, C. Mushrooms do not contain flavonoids. J. Funct. Foods 2016, 25, 1–13. [Google Scholar] [CrossRef]
- Castellano, G.; Torrens, F. Information entropy-based classification of triterpenoids and steroids from Ganoderma. Phytochemistry 2015, 116, 305–313. [Google Scholar] [CrossRef]
- Devi, K.S.P.; Roy, B.; Patra, P.; Sahoo, B.; Islam, S.S.; Maiti, T.K. Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia. Carbohydr. Polym. 2013, 94, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-J.; Hu, X.-Q.; Zhang, X.-F.; Liu, J.-J.; Cao, L.-S. Study on variation of main ingredients from spores and fruiting bodies of Ganoderma lucidum. China J. Chin. Mater. Medica 2014, 39, 4246–4251. [Google Scholar]
- Podgornik, B.B.; Damjanhoar; Dolni, D.; Berovic, M.; Pohleven, F. Isolation and quantification of triterpenoid acids from Ganoderma applanatum of Istrian origin. Food Technol. Biotechnol. 2000, 38, 11–18. [Google Scholar]
- Feng, Z.-R.; Li, H.-J.; Xu, J.-W. Ganoderic acid accumulation and biosynthetic gene expression during fruiting body development in Ganoderma lucidum. In Proceedings of the 2015 Asia-Pacific Energy Equipment Engineering Research Conference, Zhuhai, China, 13–14 June 2015. [Google Scholar]
- Diamantopoulou, P.; Fourtaka, K.; Melanouri, E.M.; Dedousi, M.; Diamantis, I.; Gardeli, C.; Papanikolaou, S. Examining the impact of substrate composition on the biochemical properties and antioxidant activity of Pleurotus and Agaricus mushrooms. Fermentation 2023, 9, 689. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Akata, I.; Kalyoncu, F.; Ergönül, B. Fatty acid compositions of six wild edible mushroom species. Sci. World J. 2013, 2013, 163964. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Analytical methods applied to the chemical characterization and antioxidant properties of three wild edible mushroom species from northeastern Portugal. Food Anal. Methods 2014, 7, 645–652. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Rippe, J.M.; Angelopoulos, T.J. Relationship between added sugars consumption and chronic disease risk factors: Current understanding. Nutrients 2016, 8, 697. [Google Scholar] [CrossRef] [PubMed]
- Bantle, J.P.; Raatz, S.K.; Thomas, W.; Georgopoulos, A. Effects of dietary fructose on plasma lipids in healthy subjects. Am. J. Clin. Nutr. 2000, 72, 1128–1134. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gautam, N. Chemical, Bioactive and antioxidant potential of twenty wild culinary mushroom species. BioMed Res. Int. 2015, 2015, 346508. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.J.; Chen, Z.J.; Fan, W.X.; Chang, M.C.; Meng, J.L.; Liu, J.Y.; Feng, C.P. Research on the physicochemical and digestive properties of Pleurotus eryngii protein. Int. J. Food Prop. 2018, 21, 2785–2806. [Google Scholar] [CrossRef]
- Xiao, J.-H.; Xiao, D.-M.; Chen, D.-X.; Xiao, Y.; Liang, Z.-Q.; Zhong, J.-J. Polysaccharides from the medicinal mushroom cordyceps taii show antioxidant and immunoenhancing activities in a D-galactose-induced aging mouse model. Evid. Based Complement. Altern. Med. 2012, 2012, 273435. [Google Scholar] [CrossRef] [PubMed]
- Ulasov, A.V.; Rosenkranz, A.A.; Georgiev, G.P.; Sobolev, A.S. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 2022, 291, 120111. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, L.; Wang, Y.; Zhai, J.; Chen, G.; Hu, K. Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-κB and MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells. Biomed. Pharmacother. 2019, 109, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, J.; Duan, H.; Li, R.; Peng, W.; Wu, C. Activation of Nrf2/HO-1 signaling: An important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J. Adv. Res. 2021, 34, 43–63. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrović, P.; Niksic, M.; Vrvic, M.M.; van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, X.; Hu, Y.-S.; Wu, Y.; Wang, Q.-Z.; Li, N.-N.; Guo, Q.-C.; Dong, X.-C. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats. Food Chem. 2009, 115, 32–36. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Li, S.; Chen, Y.; Lan, J.; Liu, L. Free radical scavenging of Ganoderma lucidum polysaccharides and its effect on antioxidant enzymes and immunity activities in cervical carcinoma rats. Carbohydr. Polym. 2009, 77, 389–393. [Google Scholar]
- Chuang, W.Y.; Liu, C.L.; Tsai, C.F.; Lin, W.C.; Chang, S.C.; Shih, H.; Shy, Y.M.; Lee, T.T. Evaluation of waste mushroom compost as a feed supplement and its effects on the fat metabolism and antioxidant capacity of broilers. Animals 2020, 10, 445. [Google Scholar] [CrossRef]
- Lee, M.; Lin, W.; Wang, S.-Y.; Lin, L.-J.; Yu, B.; Lee, T. Evaluation of potential antioxidant and anti-inflammatory effects of Antrodia cinnamomea powder and the underlying molecular mechanisms via Nrf2- and NF-κB-dominated pathways in broiler chickens. Poult. Sci. 2018, 97, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
Substrate | Substrate Composition (%, w/w) | C (% d.w.) | N (% d.w.) | C/N | pH | EC (μS/cm) |
---|---|---|---|---|---|---|
SMS 100% | SMS 100% | 27.2 ± 0.5 * | 0.8 ± 0.1 | 35.2 ± 1.3 | 6.8 ± 0.0 | 475 ± 1.4 |
SMS 90% | SMS 90% | 29.5 ± 0.3 | 1.1 ± 0.3 | 27.8 ± 2.1 | 5.9 ± 0.7 | 655 ± 57.3 |
WB 5% | ||||||
SF 5% | ||||||
SMS 80% | SMS 80% | 29.9 ± 0.6 | 1.4 ± 0.2 | 23.4 ± 2.0 | 5.8 ± 0.8 | 680 ± 123.0 |
WB 15% | ||||||
SF 5% | ||||||
SMS 90%-HRL 10% | SMS 90% | 26.9 ± 0.2 | 0.9 ± 0.0 | 27.2 ± 1.4 | 6.3 ± 0.7 | 730 ± 122.3 |
HRL 10% | ||||||
SMS 80%-HRL 10% | SMS 80% | 29.2 ± 1.2 | 1.3 ± 0.1 | 23.3 ± 0.9 | 6.5 ± 0.9 | 594 ± 50.9 |
HRL 10% | ||||||
WB 5% | ||||||
SF 5% | ||||||
SMS 80%-HRL 20% | SMS 80% | 26.6 ± 0.9 | 1.1 ± 0.2 | 25.3 ± 0.7 | 7.1 ± 0.5 | 624 ± 52.3 |
HRL 20% | ||||||
SMS 70%-HRL 20% | SMS 70% | 28.9 ± 0.2 | 1.5 ± 0.3 | 20.6 ± 1.1 | 6 ± 1.4 | 721 ± 64.3 |
HRL 20% | ||||||
WB 5% | ||||||
SF 5% | ||||||
SMS 70%-HRL 30% | SMS 70% | 26.3 ± 0.5 | 1.3 ± 0.1 | 21.2 ± 0.8 | 7.4 ± 0.5 | 756 ± 33.2 |
HRL 30% | ||||||
SMS 60%-HRL 30% | SMS 60% | 28.6 ± 0.4 | 1.7 ± 0.1 | 19.1 ± 1.4 | 6.6 ± 0.1 | 814 ± 73.2 |
HRL 30% | ||||||
WB 5% | ||||||
SF 5% | ||||||
SMS 60%-HRL 40% | SMS 60% | 26 ± 1.2 | 1.5 ± 0.1 | 19.9 ± 1.6 | 7.7 ± 0.0 | 1068 ± 27.6 |
HRL 40% | ||||||
SMS 50%-HRL 40% | SMS 50% | 28.3 ± 0.8 | 1.9 ± 0.1 | 17.2 ± 2.2 | 7.0 ± 0.5 | 1016 ± 65.8 |
HRL 40% | ||||||
WB 5% | ||||||
SF 5% | ||||||
WS | WS 80% | 33.3 ± 1.1 | 1.3 ± 0.2 | 25.1 ± 1.2 | 6.0 ± 0.2 | 561 ± 107.5 |
WB 15% | ||||||
SF 5% |
Gene (Accession Number) | Primer Direction | Sequence (5′-3′) | Reaction Efficiency | Amplicon Size |
---|---|---|---|---|
B2M (NM_004048.4) | Forward | GCTATCCAGCGTACTCCA | 103 | 285 |
Reverse | CTTAACTATCTTGGGCTGTGAC | |||
RPS18 (NM_022551.3) | Forward | CTGAGGATGAGGTGGAACG | 98 | 240 |
Reverse | CAGTGGTCTTGGTGTGCT | |||
RPL37a (NM_000998.5) | Forward | AGTACACTTGCTCTTTCTGTGG | 106 | 119 |
Reverse | GGAAGTGGTATTGTACGTCCAG | |||
NFE2L2 (NM_006164.5) | Forward | GATCTGCCAACTACTCCCA | 90 | 121 |
Reverse | GCCGAAGAAACCTCATTGTC | |||
SOD1 (NM_000454.5) | Forward | CGAGCAGAAGGAAAGTAATGG | 95 | 194 |
Reverse | CCAAGTCTCCAACATGCC | |||
CAT (NM_001752.4) | Forward | TGCCTATCCTGACACTCACC | 92 | 137 |
Reverse | GAGCACCACCCTGATTGTC | |||
HMOX1 (NM_002133.3) | Forward | GCTTCAAGCTGGTGATGG | 90 | 112 |
Reverse | AGCTCTTCTGGGAAGTAGAC | |||
GSR (NM_001195102.3) | Forward | CTTGCGTGAATGTTGGATGTG | 98 | 102 |
Reverse | CACAACTTGGAAAGCCATAATCAG |
Substrate | Earliness (Days) | B.E. (%) | Pileus Diameter (cm) | Stipe Length (cm) |
---|---|---|---|---|
SMS 100% | 30 ± 5 | 47.5 ± 2.2 | 5.2 ± 0.7 | 2.2 ± 0.0 |
SMS 90% | 30 ± 5 | 45.9 ± 2.1 | 4.1 ± 0.2 | 1.9 ± 0.4 |
SMS 80% | 30 ± 3 | 50.0 ± 1.9 | 3.7 ± 0.2 | 2.2 ± 0.3 |
SMS 90%-HRL 10% | 30 ± 5 | 41.9 ± 3.6 | 4.6 ± 0.7 | 1.9 ± 0.4 |
SMS 80%-HRL 10% | 26 ± 3 | 52.7 ± 2.4 | 4.1 ± 0.7 | 2.8 ± 0.0 |
SMS 80%-HRL 20% | 26 ± 3 | 55.9 ± 2.8 | 4.1 ± 0.2 | 2.0 ± 0.4 |
SMS 70%-HRL 20% | 27 ± 2 | 61.0 ± 4.1 | 4.4 ± 0.8 | 2.7 ± 0.2 |
SMS 70%-HRL 30% | 26 ± 2 | 47.7 ± 1.8 | 5.2 ± 0.5 | 3.2 ± 0.2 |
SMS 60%-HRL 30% | 30 ± 4 | 47.0 ± 1.5 | 4.3 ± 0.5 | 2.9 ± 0.8 |
SMS 60%-HRL 40% | 27 ± 6 | 39.2 ± 3.2 | 3.7 ± 0.7 | 2.6 ± 0.2 |
SMS 50%-HRL 40% | 27 ± 5 | 47.9 ± 3.4 | 5.1 ± 0.7 | 3.2 ± 0.3 |
WS | 27 ± 6 | 73.5 ± 5.3 | 5.2 ± 0.7 | 2.0 ± 0.0 |
Substrate | Moisture | Ash | Carbohydrates | Proteins | Lipids |
---|---|---|---|---|---|
(%) | (%) | (%, w/w) | (%, w/w) | (%, w/w) | |
SMS 100% | 89.9 ± 3.1 | 7.1 ± 0.9 | 62.6 ± 3.1 | 25.8 ± 1.2 | 4.5 ± 0.6 |
SMS 90% | 90.3 ± 2.9 | 6.7 ± 0.8 | 60.9 ± 2.9 | 28.9 ± 1.1 | 3.5 ± 0.6 |
SMS 80% | 89.4 ± 2.3 | 7.6 ± 1.0 | 61.4 ± 3.2 | 27.4 ± 0.9 | 3.6 ± 0.6 |
SMS 90%-HRL 10% | 89.5 ± 2.4 | 7.6 ± 0.9 | 63.0 ± 2.5 | 25.6 ± 1.2 | 3.9 ± 0.3 |
SMS 80%-HRL 10% | 89.0 ± 2.1 | 8.0 ± 1.1 | 57.0 ± 3.2 | 32.1 ± 1.1 | 3.0 ± 0.5 |
SMS 80%-HRL 20% | 88.8 ± 2.3 | 8.2 ± 1.1 | 58.2 ± 3.1 | 31.0 ± 2.1 | 2.6 ± 0.5 |
SMS 70%-HRL 20% | 89.7 ± 3.2 | 7.3 ± 0.9 | 62.9 ± 2.1 | 26.1 ± 1.4 | 3.6 ± 0.4 |
SMS 70%-HRL 30% | 88.6 ± 1.9 | 8.4 ± 0.9 | 55.5 ± 2.4 | 32.5 ± 1.0 | 3.6 ± 0.2 |
SMS 60%-HRL 30% | 88.6 ± 1.8 | 8.4 ± 0.7 | 56.2 ± 3.5 | 32.7 ± 0.9 | 2.8 ± 1.1 |
SMS 60%-HRL 40% | 89.3 ± 2.9 | 7.8 ± 0.9 | 56.2 ± 3.2 | 31.9 ± 1.1 | 4.1 ± 0.9 |
SMS 50%-HRL 40% | 88.8 ± 2.8 | 8.2 ± 0.8 | 52.0 ± 2.9 | 34.7 ± 0.8 | 5.1 ± 0.7 |
WS | 90.4 ± 2.8 | 6.6 ± 1.0 | 65.7 ± 3.4 | 24.4 ± 1.0 | 3.3 ± 0.5 |
Substrate/FA % w/w | C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C20:0 | C20:2 | C22:0 | C22:1 | C22:6 | C24:0 | Other | Polyunsaturated | U.I. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMS 100% | 13.3 ± 1.0 | 0.5 ± 0.1 | 1.3 ± 0.2 | 6.2 ± 1.0 | 69.5 ± 2.1 | 0.6 ± 0.0 | 0.5 ± 0.1 | 0.5 ± 0.0 | 1.0 ± 0.1 | 0.8 ± 0.1 | 0.4 ± 0.1 | 4.3 | 78.5 | 1.5 |
SMS 90% | 10.6 ± 0.9 | 0.3 ± 0.0 | 1.6 ± 0.1 | 6.0 ± 1.1 | 68.7 ± 2.0 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.4 ± 0.1 | 0.5 ± 0.0 | 0.8 ± 0.1 | 0.7 ± 0.1 | 7.3 | 76.7 | 1.5 |
SMS 80% | 13.4 ± 1.3 | 0.2 ± 0.1 | 1.0 ± 0.1 | 6.4 ± 1.0 | 68.6 ± 3.0 | 0.4 ± 0.1 | 0.7 ± 0.0 | 0.6 ± 0.1 | 1.1 ± 0.1 | 0.8 ± 0.1 | 1.5 ± 0.1 | 4.7 | 77.6 | 1.5 |
SMS 90%-HRL 10% | 10.9 ± 0.1 | 0.3 ± 0.1 | 1.1 ± 0.1 | 5.8 ± 1.1 | 68.4 ± 2.4 | 0.2 ± 0.1 | 0.6 ± 0.0 | 1.1 ± 0.1 | 0.6 ± 0.0 | 0.7 ± 0.1 | 0.3 ± 0.0 | 8.8 | 76.3 | 1.5 |
SMS 80%-HRL 10% | 10.2 ± 0.1 | 0.5 ± 0.1 | 1.2 ± 0.1 | 4.6 ± 1.0 | 69.2 ± 2.4 | 0.4 ± 0.0 | 0.5 ± 0.1 | 1.0 ± 0.7 | 0.7 ± 0.1 | 0.9 ± 0.1 | 0.7 ± 0.0 | 8.9 | 76.3 | 1.5 |
SMS 80%-HRL 20% | 10.1 ± 1.2 | 0.3 ± 0.0 | 1.2 ± 0.1 | 4.7 ± 0.9 | 63.8 ± 1.7 | 0.6 ± 0.0 | 0.7 ± 0.0 | 0.8 ± 0.0 | 0.9 ± 0.1 | 1.0 ± 0.1 | 0.6 ± 0.0 | 14.6 | 71.2 | 1.4 |
SMS 70%-HRL 20% | 11.8 ± 1.1 | 0.3 ± 0.0 | 1.3 ± 0.2 | 5.5 ± 0.9 | 68.6 ± 1.9 | 0.5 ± 0.0 | 0.3 ± 0.1 | 0.7 ± 0.0 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.0 | 7.7 | 76.0 | 1.5 |
SMS 70%-HRL 30% | 13.6 ± 1.1 | 0.3 ± 0.0 | 1.0 ± 0.1 | 5.6 ± 1.2 | 74.4 ± 2.1 | 0.4 ± 0.1 | 0.6 ± 0.0 | 0.6 ± 0.1 | 0.8 ± 0.1 | 0.5 ± 0.0 | 0.6 ± 0.0 | 0.9 | 82.1 | 1.6 |
SMS 60%-HRL 30% | 12.4 ± 1.0 | 0.3 ± 0.1 | 0.1 ± 0.1 | 4.8 ± 1.0 | 75.2 ± 2.4 | 0.4 ± 0.0 | 0.5 ± 0.1 | 0.6 ± 0.0 | 0.8 ± 0.0 | 0.6 ± 0.1 | 0.4 ± 0.0 | 2.3 | 82.1 | 1.6 |
SMS 60%-HRL 40% | 11.2 ± 1.3 | 0.6 ± 0.1 | 1.2 ± 0.1 | 9.4 ± 1.0 | 66.3 ± 2.4 | 0.6 ± 0.1 | 0.5 ± 0.1 | 1.4 ± 0.0 | 1.3 ± 0.1 | 0.6 ± 0.0 | 0.9 ± 0.0 | 4.6 | 78.5 | 1.5 |
SMS 50%-HRL 40% | 12.6 ± 0.5 | 0.29 ± 0.1 | 0.1 ± 0.1 | 5.0 ± 1.1 | 75.1 ± 1.9 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 1.0 ± 0.1 | 0.7 ± 0.1 | 0.5 ± 0.1 | 1.9 | 82.5 | 1.6 |
WS | 13.9 ± 0.1 | 0.3 ± 0.0 | 1.2 ± 0.1 | 6.9 ± 1.1 | 69.4 ± 2.5 | 0.3 ± 0.1 | 0.3 ± 0.0 | 0.7 ± 0.1 | 0.8 ± 0.1 | 0.6 ± 0.1 | 0.3 ± 0.0 | 3.8 | 78.4 | 1.5 |
Substrate | Glucose | Fructose | Mannose |
---|---|---|---|
SMS 100% | 43.9 ± 1.2 | 56.1 ± 1.2 | nd |
SMS 90% | 40.5 ± 1.1 | 54.6 ± 1.7 | 4.8 ± 0.9 |
SMS 80% | 37.9 ± 0.9 | 62.1 ± 2.3 | nd |
SMS 90%-HRL 10% | 51.5 ± 2.1 | 48.5 ± 2.7 | nd |
SMS 80%-HRL 10% | 29.5 ± 2.4 | 70.5 ± 3.1 | nd |
SMS 80%-HRL 20% | 29.3 ± 1.0 | 70.7 ± 3.2 | nd |
SMS 70%-HRL 20% | 18.5 ± 1.4 | 81.5 ± 1.2 | nd |
SMS 70%-HRL 30% | 1.6 ± 0.5 | 98.4 ± 2.8 | nd |
SMS 60%-HRL 30% | 7.7 ± 1.1 | 92.3 ± 2.2 | nd |
SMS 60%-HRL 40% | 3.6 ± 0.9 | 96.4 ± 2.6 | nd |
SMS 50%-HRL 40% | 12.8 ± 1.1 | 87.2 ± 1.9 | nd |
WS | 30.0 ± 1.1 | 70.0 ± 1.7 | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamantis, I.; Dedousi, M.; Melanouri, E.-M.; Dalaka, E.; Antonopoulou, P.; Adelfopoulou, A.; Papanikolaou, S.; Politis, I.; Theodorou, G.; Diamantopoulou, P. Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties. Microorganisms 2024, 12, 1807. https://doi.org/10.3390/microorganisms12091807
Diamantis I, Dedousi M, Melanouri E-M, Dalaka E, Antonopoulou P, Adelfopoulou A, Papanikolaou S, Politis I, Theodorou G, Diamantopoulou P. Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties. Microorganisms. 2024; 12(9):1807. https://doi.org/10.3390/microorganisms12091807
Chicago/Turabian StyleDiamantis, Ilias, Marianna Dedousi, Eirini-Maria Melanouri, Eleni Dalaka, Paraskevi Antonopoulou, Alexandra Adelfopoulou, Seraphim Papanikolaou, Ioannis Politis, Georgios Theodorou, and Panagiota Diamantopoulou. 2024. "Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties" Microorganisms 12, no. 9: 1807. https://doi.org/10.3390/microorganisms12091807
APA StyleDiamantis, I., Dedousi, M., Melanouri, E. -M., Dalaka, E., Antonopoulou, P., Adelfopoulou, A., Papanikolaou, S., Politis, I., Theodorou, G., & Diamantopoulou, P. (2024). Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties. Microorganisms, 12(9), 1807. https://doi.org/10.3390/microorganisms12091807