Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Extraction
2.2. Sequencing and Sequence Data Processing
2.3. Bacterial Composition Calculation
2.4. Molecular Phylogenetic Analysis
2.5. Strain-Level Diversity of Burkholderia
2.6. Symbiotic Microbial Community Analysis
3. Results
3.1. Bacterial Composition of Riptortus Stinkbugs
3.2. Phylogenetic Placement of Burkholderia Associated with Riptortus Stinkbugs
3.3. Strain-Level Diversity of Burkholderia
3.4. Factors Influencing Burkholderia Communities of Riptortus Stinkbugs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salem, H.; Bauer, E.; Strauss, A.S.; Vogel, H.; Marz, M.; Kaltenpoth, M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc. R. Soc. B Biol. Sci. 2014, 281, 10. [Google Scholar] [CrossRef] [PubMed]
- Chong, R.A.; Park, H.; Moran, N.A. Genome evolution of the obligate endosymbiont Buchnera aphidicola. Mol. Biol. Evol. 2019, 36, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Ann. Rev. Entomol. 1998, 43, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Multiorganismal insects: Diversity and function of resident microorganisms. Ann. Rev. Entomol. 2015, 60, 17–34. [Google Scholar] [CrossRef]
- Luan, J.B. Insect bacteriocytes: Adaptation, development, and evolution. Ann. Rev. Entomol. 2024, 69, 81–98. [Google Scholar] [CrossRef]
- Hosokawa, T.; Kikuchi, Y.; Nikoh, N.; Shimada, M.; Fukatsu, T. Strict host-symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol. 2006, 4, 1841–1851. [Google Scholar] [CrossRef]
- Kaltenpoth, M.; Flórez, L.V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Ann. Rev. Entomol. 2020, 65, 145–170. [Google Scholar] [CrossRef]
- Moriyama, M.; Fukatsu, T. Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model. Front. Physiol. 2022, 13, 14. [Google Scholar] [CrossRef]
- Compant, S.; Nowak, J.; Coenye, T.; Clement, C.; Barka, E.A. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 2008, 32, 607–626. [Google Scholar] [CrossRef]
- Suárez-Moreno, Z.R.; Caballero-Mellado, J.; Coutinho, B.G.; Mendonça-Previato, L.; James, E.K.; Venturi, V. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microbiol. Ecol. 2012, 63, 249–266. [Google Scholar] [CrossRef]
- Depoorter, E.; Bull, M.J.; Peeters, C.; Coenye, T.; Vandamme, P.; Mahenthiralingam, E. Burkholderia: An update on taxonomy and biotechnological potential as antibiotic producers. Appl. Microbiol. Biotechnol. 2016, 100, 5215–5229. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, K.; Kikuchi, Y. Riptortus pedestris and Burkholderia symbiont: An ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 2017, 168, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Jang, S.; Takeshita, K.; Ohbayashi, T.; Ohnishi, N.; Meng, X.Y.; Mitani, Y.; Kikuchi, Y. Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc. Natl. Acad. Sci. USA 2019, 116, 22673–22682. [Google Scholar] [CrossRef] [PubMed]
- Sawana, A.; Adeolu, M.; Gupta, R.S. Molecular signatures and phylogenomic analysis of the genus Burkholderia: Proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov harboring environmental species. Front. Genet. 2014, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Dobritsa, A.P.; Samadpour, M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int. J. Syst. Evol. Microbiol. 2016, 66, 2836–2846. [Google Scholar] [CrossRef]
- Beukes, C.W.; Palmer, M.; Manyaka, P.; Chan, W.Y.; Avontuur, J.R.; van Zyl, E.; Huntemann, M.; Clum, A.; Pillay, M.; Palaniappan, K.; et al. Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front. Microbiol. 2018, 9, 373. [Google Scholar] [CrossRef]
- Lopes-Santos, L.; Castro, D.B.A.; Ferreira-Tonin, M.; Corrêa, D.B.A.; Weir, B.S.; Park, D.; Ottoboni, L.M.M.; Neto, J.R.; Destéfano, S.A.L. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Anton. Leeuw. Int. J. G. 2017, 110, 727–736. [Google Scholar] [CrossRef]
- Estrada-de los Santos, P.; Palmer, M.; Chávez-Ramírez, B.; Beukes, C.; Steenkamp, E.T.; Briscoe, L.; Khan, N.; Maluk, M.; Lafos, M.; Humm, E.; et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): Implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 2018, 9, 389. [Google Scholar] [CrossRef]
- Lin, Q.H.; Lv, Y.Y.; Gao, Z.H.; Qiu, L.H. Pararobbsia silviterrae gen. nov., sp. nov., isolated from forest soil and reclassification of Burkholderia alpina as Pararobbsia alpina comb. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 1412–1420. [Google Scholar] [CrossRef]
- Takeshita, K.; Kikuchi, Y. Genomic comparison of insect gut symbionts from divergent Burkholderia subclades. Genes 2020, 11, 744. [Google Scholar] [CrossRef]
- Bach, E.; Sant’Anna, F.H.; Seger, G.D.D.; Passaglia, L.M.P. Pangenome inventory of Burkholderia sensu lato, Burkholderia sensu stricto, and the Burkholderia cepacian complex reveals the uniqueness of Burkholderia catarinensis. Genomics 2022, 114, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Jouan, R.; Lextrait, G.; Lachat, J.; Yokota, A.; Cossard, R.; Naquin, D.; Timchenko, T.; Kikuchi, Y.; Ohbayashi, T.; Mergaert, P. Transposon sequencing reveals the essential gene set and genes enabling gut symbiosis in the insect symbiont Caballeronia insecticola. ISME Commun. 2024, 4, ycad001. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Hayatsu, M.; Hosokawa, T.; Nagayama, A.; Tago, K.; Fukatsu, T. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
- Ohbayashi, T.; Itoh, H.; Lachat, J.; Kikuchi, Y.; Mergaert, P. Burkholderia gut symbionts associated with European and Japanese populations of the dock bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ. 2019, 34, 219–222. [Google Scholar] [CrossRef]
- Sato, Y.; Jang, S.; Takeshita, K.; Itoh, H.; Koike, H.; Tago, K.; Hayatsu, M.; Hori, T.; Kikuchi, Y. Insecticide resistance by a host-symbiont reciprocal detoxification. Nat. Commun. 2021, 12, 6432. [Google Scholar] [CrossRef]
- Shan, H.W.; Wu, W.; Sun, Z.T.; Chen, J.P.; Li, H.J. The gut microbiota of the insect infraorder Pentatomomorpha (Hemiptera: Heteroptera) for the light of ecology and evolution. Microorganisms 2021, 9, 464. [Google Scholar] [CrossRef]
- Takeshita, K.; Matsuura, Y.; Itoh, H.; Navarro, R.; Hori, T.; Sone, T.; Kamagata, Y.; Mergaert, P.; Kikuchi, Y. Burkholderia of plant-beneficial group are symbiotically associated with bordered plant bugs (Heteroptera: Pyrrhocoroidea: Largidae). Microbes Environ. 2015, 30, 321–329. [Google Scholar] [CrossRef]
- Ohbayashi, T.; Futahashi, R.; Terashima, M.; Barrière, Q.; Lamouche, F.; Takeshita, K.; Meng, X.Y.; Mitani, Y.; Sone, T.; Shigenobu, S.; et al. Comparative cytology, physiology and transcriptomics of Burkholderia insecticola in symbiosis with the bean bug Riptortus pedestris and in culture. ISME J. 2019, 13, 1469–1483. [Google Scholar] [CrossRef]
- Itoh, H.; Aita, M.; Nagayama, A.; Meng, X.Y.; Kamagata, Y.; Navarro, R.; Hori, T.; Ohgiya, S.; Kikuchi, Y. Evidence of environmental and vertical transmission of Burkholderia Symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae). Appl. Environ. Microbiol. 2014, 80, 5974–5983. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hosokawa, T.; Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011, 5, 446–460. [Google Scholar] [CrossRef]
- Hosokawa, T.; Kikuchi, Y.; Nikoh, N.; Meng, X.Y.; Hironaka, M.; Fukatsu, T. Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis. Appl. Environ. Microbiol. 2010, 76, 4130–4135. [Google Scholar] [CrossRef]
- Ohbayashi, T.; Takeshita, K.; Kitagawa, W.; Nikoh, N.; Koga, R.; Meng, X.Y.; Tago, K.; Hori, T.; Hayatsu, M.; Asano, K.; et al. Insect’s intestinal organ for symbiont sorting. Proc. Natl. Acad. Sci. USA 2015, 112, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Ohbayashi, T.; Jang, S.; Mergaert, P. Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J. 2020, 14, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Gook, D.H.; Jung, M.; Kim, S.; Lee, D.H. Species diversity of environmentally transmitted bacteria colonizing Riptortus pedestris (Hemiptera: Alydidae) and symbiotic effects of the most dominant bacteria. Sci. Rep. 2023, 13, 15166. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl. Environ. Microbiol. 2013, 79, 2088–2091. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, D.H. Abundance and diversity of gut-symbiotic bacteria, the genus Burkholderia in overwintering Riptortus pedestris (Hemiptera: Alydidae) populations and soil in South Korea. PLoS ONE 2019, 14, 10. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, M.; Lee, D.H. Characterization of Burkholderia bacteria clade compositions in soil and Riptortus pedestris (Hemiptera: Alydidae) in South Korea. J. Asia-Pac. Entomol. 2022, 25, 8. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Kuechler, S.M.; Matsuura, Y.; Dettner, K.; Kikuchi, Y. Phylogenetically diverse Burkholderia associated with midgut crypts of spurge bugs, Dicranocephalus spp. (Heteroptera: Stenocephalidae). Microbes Environ. 2016, 31, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating Maximum-Likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Anisimova, M.; Gil, M.; Dufayard, J.F.; Dessimoz, C.; Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 2011, 60, 685–699. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree (Version 1.4.4). 2018. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 6 July 2022).
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 29, 1657–1659. [Google Scholar] [CrossRef]
- Corp, I. IBM SPSS Statistics for Windows, Version 20.0; IBM Corp: New York, NY, USA, 2013; Volume 440, p. 394. [Google Scholar]
- Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2023, 14, 927–930. [Google Scholar] [CrossRef]
- Ginestet, C. ggplot2: Elegant graphics for data analysis. J. R. Stat. Soc. A Stat. Soc. 2011, 174, 245. [Google Scholar] [CrossRef]
- Hammer, Y.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2011, 4, 1–9. [Google Scholar]
- Mantel, N. The detection of disease clustering as a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Ohbayashi, T.; Cossard, R.; Lextrait, G.; Hosokawa, T.; Lesieur, V.; Takeshita, K.; Tago, K.; Mergaert, P.; Kikuchi, Y. Intercontinental diversity of Caballeronia gut symbionts in the conifer pest bug Leptoglossus occidentalis. Microbes Environ. 2022, 37, Me22042. [Google Scholar] [CrossRef]
- Ishigami, K.; Jang, S.; Itoh, H.; Kikuchi, Y. Obligate gut symbiotic association with Caballeronia in the mulberry seed bug Paradieuches dissimilis (Lygaeoidea: Rhyparochromidae). Microbiol. Ecol. 2023, 86, 1307–1318. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Meng, X.Y.; Fukatsu, T. Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa Chinensis (Heteroptera: Alydidae). Appl. Environ. Microbiol. 2005, 71, 4035–4043. [Google Scholar] [CrossRef]
- Acevedo, T.S.; Fricker, G.P.; Garcia, J.R.; Alcaide, T.; Berasategui, A.; Stoy, K.S.; Gerardo, N.M. The importance of environmentally acquired bacterial symbionts for the squash bug (Anasa tristis), a significant agricultural pest. Front. Microbiol. 2021, 12, 719112. [Google Scholar] [CrossRef]
- Hunter, M.S.; Umanzor, E.F.; Kelly, S.E.; Whitaker, S.M.; Ravenscraft, A. Development of common leaf-footed bug pests depends on the presence and identity of their environmentally acquired symbionts. Appl. Environ. Microbiol. 2022, 88, e01778-21. [Google Scholar] [CrossRef] [PubMed]
- Ravenscraft, A.; Thairu, M.W.; Hansen, A.K.; Hunter, M.S. Continent-scale sampling reveals fine-scale turnover in a beneficial bug symbiont. Front. Microbiol. 2020, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Gook, D.; Jung, M.; Lee, D.H. Seasonal and geographical variations in the community structure of environmentally—Transmitted symbiotic bacteria in Riptortus pedestris (Hemiptera: Alydidae). J. Asia-Pac. Entomol. 2024, 27, 10. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Hosokawa, T.; Fukatsu, T. Insect-microbe mutualism without vertical transmission: A stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 2007, 73, 4308–4316. [Google Scholar] [CrossRef]
Thresholds of Codominance (the First Dominant ASV/the Second Dominant ASV) | Mutations between the First and Second Dominant ASVs | Number of Valid Samples | Number of Codominant | Codominant Percentage (%) |
---|---|---|---|---|
<5 | 11–31 | 87 | 14 | 16.09 |
3–10 | 50 | 12 | 24.00 | |
1–2 | 50 | 26 | 52.00 | |
<3 | 11–31 | 87 | 11 | 12.64 |
3–10 | 50 | 6 | 12.00 | |
1–2 | 50 | 17 | 34.00 | |
<2 | 11–31 | 87 | 8 | 9.20 |
3–10 | 50 | 2 | 4.00 | |
1–2 | 50 | 13 | 26.00 | |
<1.5 | 11–31 | 87 | 3 | 3.45 |
3–10 | 50 | 1 | 2.00 | |
1–2 | 50 | 8 | 16.00 |
Bray–Curtis | Jaccard | |||
---|---|---|---|---|
F | p | F | p | |
Host species | 1.842 | 0.041 | 1.298 | 0.045 |
Locality | 1.521 | 0.020 | 1.311 | 0.001 |
Host species × Locality | 0.854 | 0.768 | 0.984 | 0.566 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.-R.; Fu, S.-Y.; Wang, Y.; Zhou, J.-Y.; Qi, T.-Y.; Li, Y.-F.; Bu, W.-J.; Xue, H.-J. Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae). Microorganisms 2024, 12, 1885. https://doi.org/10.3390/microorganisms12091885
Hou X-R, Fu S-Y, Wang Y, Zhou J-Y, Qi T-Y, Li Y-F, Bu W-J, Xue H-J. Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae). Microorganisms. 2024; 12(9):1885. https://doi.org/10.3390/microorganisms12091885
Chicago/Turabian StyleHou, Xin-Rui, Si-Ying Fu, Yuan Wang, Jia-Yue Zhou, Tian-Yi Qi, Yan-Fei Li, Wen-Jun Bu, and Huai-Jun Xue. 2024. "Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae)" Microorganisms 12, no. 9: 1885. https://doi.org/10.3390/microorganisms12091885
APA StyleHou, X. -R., Fu, S. -Y., Wang, Y., Zhou, J. -Y., Qi, T. -Y., Li, Y. -F., Bu, W. -J., & Xue, H. -J. (2024). Large-Scale Sampling Reveals the Strain-Level Diversity of Burkholderia Symbionts in Riptortus pedestris and R. linearis (Hemiptera: Alydidae). Microorganisms, 12(9), 1885. https://doi.org/10.3390/microorganisms12091885