Evaluation of Faecal Microbiota Following Probiotics in Infants of Mothers with Gestational Diabetes Mellitus Trial: Protocol for Double-Blind Placebo-Controlled Randomized Trial
Abstract
:1. Introduction
2. Study Materials and Methods
2.1. Hypothesis and Aim
2.2. Rationale for Selecting the Three-Strain Bifidobacteria Product
2.3. Participants
2.4. Design and Setting
2.5. Eligibility Criteria
2.6. Exclusion Criteria
2.7. Intervention
2.8. Control
2.9. Sample Size Calculation
2.10. Primary Outcome
2.11. Secondary Outcomes
2.12. Rationale for Continuing Probiotics for Four Months
2.13. Rationale for Assessing Growth and Developmental Parameters
2.14. Safety Monitoring
2.15. Establishment of a Data and Safety Monitoring Committee (DSMC)
2.16. Randomization, Allocation Concealment and Blinding
2.17. Probiotic Protocol
2.18. Ethics Statement
2.19. Trial Registration
2.20. Data Handling, Storage, Confidentiality
2.21. Reporting
3. Methods of Sample Collection, Processing and Analyses
3.1. Faecal Sample Collection
3.2. DNA Extraction
3.3. Quantification of SCFA
3.4. Linearity and Sensitivity of SCFA
3.5. Quantification of Faecal Bile Acids
3.5.1. Faecal Bulk Bile Acid Concentration
3.5.2. Measurement of Primary and Secondary Bile Acids
3.6. Microbiota Analysis
3.6.1. PCR Amplification and 16S rRNA Gene Sequencing
3.6.2. 16S rRNA Gene Sequence Analysis
3.6.3. Shotgun Metagenomic Analysis
3.6.4. Taxonomic Profiling
3.7. Statistical Analysis of Clinical, SCFA, Bile Acid and Microbiome Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, T.; Du, S.; Sun, D.; Li, X.; Heianza, Y.; Hu, G.; Sun, L.; Pei, X.; Shang, X.; Qi, L. Prevalence and Trends in Gestational Diabetes Mellitus Among Women in the United States, 2006–2017: A Population-Based Study. Front. Endocrinol. 2022, 13, 868094. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef]
- McIntyre, H.D.; Sweeting, A. Gestational diabetes in Australia: Navigating a tsunami. Lancet Diabetes Endocrinol. 2022, 10, 846–847. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.; Pheiffer, C.; Adam, S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023, 11, 2217. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, P.; Pasolli, E.; Tett, A.; Asnicar, F.; Gorfer, V.; Fedi, S.; Armanini, F.; Truong, D.T.; Manara, S.; Zolfo, M.; et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 2018, 24, 133–145.e135. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Soderborg, T.K.; Carpenter, C.M.; Janssen, R.C.; Weir, T.L.; Robertson, C.E.; Ir, D.; Young, B.E.; Krebs, N.F.; Hernandez, T.L.; Barbour, L.A.; et al. Gestational Diabetes Is Uniquely Associated with Altered Early Seeding of the Infant Gut Microbiota. Front. Endocrinol. 2020, 11, 603021. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Shi, W.; Du, N.; Xu, X.; Zhang, Y.; Ji, P.; Zhang, F.; Jia, Z.; Wang, Y.; et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 2018, 67, 1614–1625. [Google Scholar] [CrossRef]
- Chen, T.; Qin, Y.; Chen, M.; Zhang, Y.; Wang, X.; Dong, T.; Chen, G.; Sun, X.; Lu, T.; White, R.A., III; et al. Gestational diabetes mellitus is associated with the neonatal gut microbiota and metabolome. BMC Med. 2021, 19, 120. [Google Scholar] [CrossRef] [PubMed]
- Notarbartolo, V.; Carta, M.; Accomando, S.; Giuffrè, M. The First 1000 Days of Life: How Changes in the Microbiota Can Influence Food Allergy Onset in Children. Nutrients 2023, 15, 4014. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Yoo, J.Y.; Valeria Ozorio Dutra, S.; Morgan, K.H.; Groer, M. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021, 10, 459. [Google Scholar] [CrossRef] [PubMed]
- Rowland, J.; Wilson, C.A. The association between gestational diabetes and ASD and ADHD: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 5136. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013, 8, e68322. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Nie, Y.; Shao, R.; Duan, S.; Jiang, Y.; Wang, M.; Xing, Z.; Sun, Q.; Liu, X.; Xu, W. Diversified gut microbiota in newborns of mothers with gestational diabetes mellitus. PLoS ONE 2018, 13, e0205695. [Google Scholar] [CrossRef]
- Davidson, S.J.; Barrett, H.L.; Price, S.A.; Callaway, L.K.; Dekker Nitert, M. Probiotics for preventing gestational diabetes. Cochrane Database Syst. Rev. 2021, 4, CD009951. [Google Scholar] [CrossRef] [PubMed]
- Valiati, N.; Puel, E.M.; Stefani, C.M.; Lataro, R.M. Does probiotic ingestion reduce the risk of preeclampsia? A systematic review. Appl. Physiol. Nutr. Metab. 2024, 49, 135–147. [Google Scholar] [CrossRef]
- Saturio, S.; Nogacka, A.M.; Alvarado-Jasso, G.M.; Salazar, N.; de Los Reyes-Gavilán, C.G.; Gueimonde, M.; Arboleya, S. Role of Bifidobacteria on Infant Health. Microorganisms 2021, 9, 2415. [Google Scholar] [CrossRef] [PubMed]
- Athalye-Jape, G.; Esvaran, M.; Patole, S.; Simmer, K.; Nathan, E.; Doherty, D.; Keil, A.; Rao, S.; Chen, L.; Chandrasekaran, L.; et al. Effect of single versus multistrain probiotic in extremely preterm infants: A randomised trial. BMJ Open Gastroenterol. 2022, 9, e000811. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Esvaran, M.; Chen, L.; Keil, A.D.; Gollow, I.; Simmer, K.; Wemheuer, B.; Conway, P.; Patole, S. Probiotic supplementation in neonates with congenital gastrointestinal surgical conditions: A pilot randomised controlled trial. Pediatr. Res. 2022, 92, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Link, V.M.; Subramanian, P.; Cheung, F.; Han, K.L.; Stacy, A.; Chi, L.; Sellers, B.A.; Koroleva, G.; Courville, A.B.; Mistry, S.; et al. Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nat. Med. 2024, 30, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.A.; Li, J.P.; Lee, M.S.; Yang, S.F.; Chang, Y.S.; Chen, L.; Li, C.W.; Chao, Y.H. A common trajectory of gut microbiome development during the first month in healthy neonates with limited inter-individual environmental variations. Sci. Rep. 2024, 14, 3264. [Google Scholar] [CrossRef]
- John, D.; Michael, D.; Dabcheva, M.; Hulme, E.; Illanes, J.; Webberley, T.; Wang, D.; Plummer, S. A double-blind, randomized, placebo-controlled study assessing the impact of probiotic supplementation on antibiotic induced changes in the gut microbiome. Front. Microbiomes 2024, 3, 1359580. [Google Scholar]
- Homann, C.M.; Rossel, C.A.J.; Dizzell, S.; Bervoets, L.; Simioni, J.; Li, J.; Gunn, E.; Surette, M.G.; de Souza, R.J.; Mommers, M.; et al. Infants’ First Solid Foods: Impact on Gut Microbiota Development in Two Intercontinental Cohorts. Nutrients 2021, 13, 2639. [Google Scholar] [CrossRef]
- Panchal, H.; Athalye-Jape, G.; Rao, S.; Patole, S. Growth and neuro-developmental outcomes of probiotic supplemented preterm infants-a systematic review and meta-analysis. Eur. J. Clin. Nutr. 2023, 77, 855–871. [Google Scholar] [CrossRef] [PubMed]
- Catania, J.; Pandit, N.G.; Ehrlich, J.M.; Zaman, M.; Stone, E.; Franceschi, C.; Smith, A.; Tanner-Smith, E.; Zackular, J.P.; Bhutta, Z.A.; et al. Probiotic Supplementation for Promotion of Growth in Children: A Systematic Review and Meta-Analysis. Nutrients 2021, 14, 83. [Google Scholar] [CrossRef]
- Indrio, F.; Gutierrez Castrellon, P.; Vandenplas, Y.; Cagri Dinleyici, E.; Francavilla, R.; Mantovani, M.P.; Grillo, A.; Beghetti, I.; Corvaglia, L.; Aceti, A. Health Effects of Infant Formula Supplemented with Probiotics or Synbiotics in Infants and Toddlers: Systematic Review with Network Meta-Analysis. Nutrients 2022, 14, 5175. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.-L.; Chen, C.-M.; Sun, C.-K.; Cheng, Y.-S.; Tzang, R.-F.; Chiu, H.-J.; Wang, M.-Y.; Cheng, Y.-C.; Hung, K.-C. Effects of probiotics on neurocognitive outcomes in infants and young children: A meta-analysis. Front. Public. Health 2023, 11, 1323511. [Google Scholar] [CrossRef]
- Zhang, D.; Lan, Y.; Zhang, J.; Cao, M.; Yang, X.; Wang, X. Effects of early-life gut microbiota on the neurodevelopmental outcomes of preterm infants: A multi-center, longitudinal observational study in China. Eur. J. Pediatr. 2024, 183, 1733–1740. [Google Scholar] [CrossRef]
- Acuña, I.; Cerdó, T.; Ruiz, A.; Torres-Espínola, F.J.; López-Moreno, A.; Aguilera, M.; Suárez, A.; Campoy, C. Infant Gut Microbiota Associated with Fine Motor Skills. Nutrients 2021, 13, 1673. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, T.; Majarikar, S.; Deshmukh, M.; Ananthan, A.; Balasubramanian, H.; Keil, A.; Patole, S. Probiotic sepsis in preterm neonates-a systematic review. Eur. J. Pediatr. 2022, 181, 2249–2262. [Google Scholar] [CrossRef]
- Blackford, K.; Crawford, G.; Burns, S. Implications of the latest release of the National Statement on Ethical Conduct in Human Research on health promotion practice in Australia. Health Promot. J. Aust. 2024, 35, 123–130. [Google Scholar] [CrossRef]
- Moher, D.; Schulz, K.F.; Altman, D.G.; CONSORT Group. The CONSORT statement: Revised recommendations for improving the quality of reports of parallel-group randomised trials. Clin. Oral Investig. 2003, 7, 2–7. [Google Scholar] [CrossRef]
- Allegrini, F.; Olivieri, A.C. IUPAC-consistent approach to the limit of detection in partial least-squares calibration. Anal. Chem. 2014, 86, 7858–7866. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.L.; Fordtran, J.S.; Santa Ana, C.A.; Emmett, M.; Hagey, L.R.; MacDonald, E.A.; Hofmann, A.F. Accurate enzymatic measurement of fecal bile acids in patients with malabsorption. J. Lab Clin. Med. 2003, 141, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.; Lawson, A.M.; Tanida, N.; Sjovall, J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J. Lipid Res. 1983, 24, 1085–1100. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Torres, Y.; Celis, C.; Acurio, J.; Escudero, C. Language Impairment in Children of Mothers with Gestational Diabetes, Preeclampsia, and Preterm Delivery: Current Hypothesis and Potential Underlying Mechanisms: Language Impartment and Pregnancy Complications. Adv. Exp. Med. Biol. 2023, 1428, 245–267. [Google Scholar] [CrossRef]
- Su, C.H.; Liu, T.Y.; Chen, I.T.; Ou-Yang, M.C.; Huang, L.T.; Tsai, C.C.; Chen, C.C. Correlations between serum BDNF levels and neurodevelopmental outcomes in infants of mothers with gestational diabetes. Pediatr. Neonatol. 2021, 62, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Saros, L.; Lind, A.; Setänen, S.; Tertti, K.; Koivuniemi, E.; Ahtola, A.; Haataja, L.; Shivappa, N.; Hébert, J.R.; Vahlberg, T.; et al. Maternal obesity, gestational diabetes mellitus, and diet in association with neurodevelopment of 2-year-old children. Pediatr. Res. 2023, 94, 280–289. [Google Scholar] [CrossRef]
- Sun, G.; Liu, Y.; Zhang, R.; Peng, C.; Geng, Y.; Zhou, F.; Hou, X.; Liu, L. Emotional Prosodies Processing and Its Relationship With Neurodevelopment Outcome at 24 Months in Infants of Diabetic Mothers. Front. Pediatr. 2022, 10, 861432. [Google Scholar] [CrossRef]
- Bresesti, I.; Salvatore, S.; Valetti, G.; Baj, A.; Giaroni, C.; Agosti, M. The Microbiota-Gut Axis in Premature Infants: Physio-Pathological Implications. Cells 2022, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Laue, H.E.; Coker, M.O.; Madan, J.C. The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Front. Pediatr. 2022, 10, 815885. [Google Scholar] [CrossRef] [PubMed]
- Akagawa, S.; Kaneko, K. Gut microbiota and allergic diseases in children. Allergol. Int. 2022, 71, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Aburto, M.R.; Cryan, J.F. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiota-gut-brain axis. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 222–247. [Google Scholar] [CrossRef]
- Gars, A.; Ronczkowski, N.M.; Chassaing, B.; Castillo-Ruiz, A.; Forger, N.G. First Encounters: Effects of the Microbiota on Neonatal Brain Development. Front. Cell Neurosci. 2021, 15, 682505. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Niño, D.F.; Yamaguchi, Y.; Wang, S.; Fulton, W.B.; Jia, H.; Lu, P.; Prindle, T., Jr.; Pamies, D.; Morris, M.; et al. Necrotizing enterocolitis induces T lymphocyte-mediated injury in the developing mammalian brain. Sci. Transl. Med. 2021, 13, eaay6621. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Liu, T.; Shi, Y. Role of the gut-microbiota-metabolite-brain axis in the pathogenesis of preterm brain injury. Biomed. Pharmacother. 2023, 165, 115243. [Google Scholar] [CrossRef] [PubMed]
- Naspolini, N.F.; Schüroff, P.A.; Figueiredo, M.J.; Sbardellotto, G.E.; Ferreira, F.R.; Fatori, D.; Polanczyk, G.V.; Campos, A.C.; Taddei, C.R. The Gut Microbiome in the First One Thousand Days of Neurodevelopment: A Systematic Review from the Microbiome Perspective. Microorganisms 2024, 12, 424. [Google Scholar] [CrossRef]
- Duranti, S.; Ruiz, L.; Lugli, G.A.; Tames, H.; Milani, C.; Mancabelli, L.; Mancino, W.; Longhi, G.; Carnevali, L.; Sgoifo, A.; et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci. Rep. 2020, 10, 14112. [Google Scholar] [CrossRef] [PubMed]
- Frerichs, N.M.; de Meij, T.G.J.; Niemarkt, H.J. Microbiome and its impact on fetal and neonatal brain development: Current opinion in pediatrics. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 297–303. [Google Scholar] [CrossRef]
- Hunter, S.; Flaten, E.; Petersen, C.; Gervain, J.; Werker, J.F.; Trainor, L.J.; Finlay, B.B. Babies, bugs and brains: How the early microbiome associates with infant brain and behavior development. PLoS ONE 2023, 18, e0288689. [Google Scholar] [CrossRef]
- Bonham, K.S.; Fahur Bottino, G.; McCann, S.H.; Beauchemin, J.; Weisse, E.; Barry, F.; Cano Lorente, R.; Huttenhower, C.; Bruchhage, M.; D’Sa, V.; et al. Gut-resident microorganisms and their genes are associated with cognition and neuroanatomy in children. Sci. Adv. 2023, 9, eadi0497. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Qiu, W.; Wang, J.; Zhao, A.; Zhou, C.; Sun, T.; Xiong, Z.; Cao, P.; Shen, W.; Chen, J.; et al. Effects of vaginal microbiota transfer on the neurodevelopment and microbiome of cesarean-born infants: A blinded randomized controlled trial. Cell Host Microbe 2023, 31, 1232–1247.e1235. [Google Scholar] [CrossRef]
- Sadeghpour Heravi, F.; Hu, H. Bifidobacterium: Host–microbiome interaction and mechanism of action in preventing common gut-microbiota-associated complications in preterm infants: A narrative review. Nutrients 2023, 15, 709. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Borrelli, P.; Di Nicola, M.; Cavallo, P.; D’Adamo, E.; Di Tizio, L.; Gazzolo, D.; Stuppia, L.; Vitacolonna, E. From Mother to Child: Epigenetic Signatures of Hyperglycemia and Obesity during Pregnancy. Nutrients 2024, 16, 3502. [Google Scholar] [CrossRef]
- Wang, S.S.; Yue, Z.H.; Han, N.; Lyu, J.L.; Ji, Y.L.; Wang, H.; Liu, J.; Wang, H.J. Association of maternal pre-pregnancy BMI, gestational weight gain, and gestational diabetes mellitus with BMI trajectory in early childhood: A prospective cohort study. Zhonghua Liu Xing Bing Xue Za Zhi 2024, 45, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.; Ahmad, A.; Ashraf, H. Metabolic Profile of Offspring of Mothers with Gestational Diabetes Mellitus. Indian J. Endocrinol. Metab. 2024, 28, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Dang, Y. Roles of gut microbiota and metabolites in overweight and obesity of children. Front. Endocrinol. 2022, 13, 994930. [Google Scholar] [CrossRef] [PubMed]
- Kvit, K.B.; Kharchenko, N.V. Gut microbiota changes as a risk factor for obesity. Wiad. Lek. 2017, 70, 231–235. [Google Scholar]
- Vallès, Y.; Arshad, M.; Abdalbaqi, M.; Inman, C.K.; Ahmad, A.; Drou, N.; Gunsalus, K.C.; Ali, R.; Tahlak, M.; Abdulle, A. The infants’ gut microbiome: Setting the stage for the early onset of obesity. Front. Microbiol. 2024, 15, 1371292. [Google Scholar] [CrossRef] [PubMed]
- Charles, M.A.; Delpierre, C.; Bréant, B. Developmental origin of health and adult diseases (DOHaD): Evolution of a concept over three decades. Med. Sci. 2016, 32, 15–20. [Google Scholar] [CrossRef]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athalye-Jape, G.; Rath, C.P.; Panchal, H.; Mishra, A.; Graham, D.; Patole, S. Evaluation of Faecal Microbiota Following Probiotics in Infants of Mothers with Gestational Diabetes Mellitus Trial: Protocol for Double-Blind Placebo-Controlled Randomized Trial. Microorganisms 2025, 13, 112. https://doi.org/10.3390/microorganisms13010112
Athalye-Jape G, Rath CP, Panchal H, Mishra A, Graham D, Patole S. Evaluation of Faecal Microbiota Following Probiotics in Infants of Mothers with Gestational Diabetes Mellitus Trial: Protocol for Double-Blind Placebo-Controlled Randomized Trial. Microorganisms. 2025; 13(1):112. https://doi.org/10.3390/microorganisms13010112
Chicago/Turabian StyleAthalye-Jape, Gayatri, Chandra Prakash Rath, Harshad Panchal, Archita Mishra, Dorothy Graham, and Sanjay Patole. 2025. "Evaluation of Faecal Microbiota Following Probiotics in Infants of Mothers with Gestational Diabetes Mellitus Trial: Protocol for Double-Blind Placebo-Controlled Randomized Trial" Microorganisms 13, no. 1: 112. https://doi.org/10.3390/microorganisms13010112
APA StyleAthalye-Jape, G., Rath, C. P., Panchal, H., Mishra, A., Graham, D., & Patole, S. (2025). Evaluation of Faecal Microbiota Following Probiotics in Infants of Mothers with Gestational Diabetes Mellitus Trial: Protocol for Double-Blind Placebo-Controlled Randomized Trial. Microorganisms, 13(1), 112. https://doi.org/10.3390/microorganisms13010112