Microbial Contamination and Food Safety Aspects of Cassava Roasted Flour (“Rale”) in Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Sampling Procedure for Assessment of Indicator Microbes for Hygiene Quality
2.2.1. Steps of Casava Processing Within Unit J and Sampling
2.2.2. Sampling Procedure for Assessment of Indicator Microbes for Hygiene Quality in “Rale” Produced in Different Cassava Processing Units
2.2.3. Sampling Procedure for Assessment of Indicator Microbes for Hygiene Quality in “Rale” Sold in Different Rural Markets
2.3. Culture-Based Analyses of Indicator Microbes for Hygiene Quality
- (a)
- Yeasts and Molds
- (b)
- Lactic Acid Bacteria and Bacterial Indicators of Hygienic Quality
- (c)
- Enumeration of Bacillus cereus, Bacillus spp., Staphylococcus aureus and Escherichia coli
2.4. Yeast and Mold Identification
2.5. Culture-Independent Analysis of Bacterial Community by Illumina Amplicon Sequencing
2.6. Statistical Analysis
3. Results
3.1. Microbes as Indicators of Hygienic Quality Within Unit J
3.2. Microbes as Indicators of Hygienic Quality in “Rale” Sampled from Cassava Processing Units
3.3. Microbes as Indicators of Hygienic Quality of “Rale” Collected in Rural Markets
4. Discussion
4.1. Microbes as Indicators of Hygienic Quality Within Unit J
4.2. Microbes as Indicators of Hygienic Quality in “Rale” Sampled from Cassava Processing Units
4.3. Microbes as Indicators of Hygienic Quality in “Rale” Collected in Rural Markets
4.4. Culture-Independent Analysis of Bacterial Community
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adjovi, Y.C.S.; Gnonlonfin, B.J.G.; Bailly, S.; Bailly, J.D.; Tadrist, S.; Puel, O.; Oswald, I.P.; Sanni, A. Occurrence of Mycotoxins in Cassava (Manihot Esculenta Crantz) and Its Products. Int. J. Food Saf. Nutr. Public Health 2015, 5, 217. [Google Scholar] [CrossRef]
- Adebayo, W.G. Cassava Production in Africa: A Panel Analysis of the Drivers and Trends. Heliyon 2023, 9, e19939. [Google Scholar] [CrossRef] [PubMed]
- Guira, F.; Some, K.; Kabore, D.; Sawadogo-Lingani, H.; Traore, Y.; Savadogo, A. Origins, Production, and Utilization of Cassava in Burkina Faso, a Contribution of a Neglected Crop to Household Food Security. Food Sci. Nutr. 2017, 5, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Cock, J.H.; Connor, D.J. Cassava. In Crop Physiology Case Histories for Major Crops; Elsevier: London, UK, 2021; pp. 588–633. [Google Scholar]
- Ikuemonisan, E.; Mafimisebi, T.; Ajibefun, I.; Adenegan, K. Cassava production in Nigeria: Trends, instability and decomposi-tion analysis (1970–2018). Heliyon 2020, 6, e05089. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ewert, F.; Akinwumiju, A.S.; Zeng, W.; Ceglar, A.; Ezui, K.S.; Adelodun, A.; Adebayo, A.; Sobamowo, J.; Singh, M.; et al. Cassava yield gap—A model-based assessment in Nigeria. Front. Sust. Food Syst. 2023, 6, 10587. [Google Scholar] [CrossRef]
- McSween, S.; Walker, T.S.; Salegua, V.A.; Pitoro, R. Economic Impact on Food Security of Varietal Tolerance to Cassava Brown Streak Disease in Coastal Mozambique; Food Security Collaborative Working Papers 55863; Department of Agricultural, Food, and Resource Economics: East Lansing, MI, USA, 2006. [Google Scholar]
- Tivana, L.D. Cassava Processing: Safety and Protein Fortification. Doctoral Thesis, Lund University, Lund, Sweden, 2012. [Google Scholar]
- Morgan, N.K.; Choct, M. Cassava: Nutrient Composition and Nutritive Value in Poultry Diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef]
- Amelework, A.B.; Bairu, M.W.; Maema, O.; Venter, S.L.; Laing, M. Adoption and Promotion of Resilient Crops for Climate Risk Mitigation and Import Substitution: A Case Analysis of Cassava for South African Agriculture. Front. Sustain. Food Syst. 2021, 5, 617783. [Google Scholar] [CrossRef]
- Manganyi, B.; Lubinga, M.H.; Zondo, B.; Tempia, N. Factors Influencing Cassava Sales and Income Generation among Cassava Producers in South Africa. Sustainability 2023, 15, 14366. [Google Scholar] [CrossRef]
- FAO; IFAD—Food and Agriculture Organization of The United Nations and International Fund For Agricultural Development. A Review of Cassava in Africa with Country Case Studies on Nigeria, Ghana, the United Republic of Tanzania, Uganda and Benin. Proc. Valid. Forum Glob. Cassava Dev. Strategy 2005, 2, 66. [Google Scholar]
- Salvador, E.M.; Steenkamp, V.; McCrindle, C.M.E. Production, Consumption and Nutritional Value of Cassava (Manihot Esculenta, Crantz) in Mozambique: An Overview. J. Agric. Biotech. Sustain. Dev. 2014, 6, 29–38. [Google Scholar] [CrossRef]
- Frediansyah, A. Microbial Fermentation as Means of Improving Cassava Production in Indonesia. In Cassava; IntechOpen: London, UK, 2017. [Google Scholar]
- Udoro, E.O.; Anyasi, T.A.; Jideani, A.I.O. Process-Induced Modifications on Quality Attributes of Cassava (Manihot Esculenta Crantz) Flour. Processes 2021, 9, 1891. [Google Scholar] [CrossRef]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef]
- Tsige, T.; Basa, B.; Herago, T. Medicinal, Nutritional and Anti-Nutritional Properties of Cassava (Manihot esculenta): A Review. Acad. J. Nutr. 2019, 8, 34–46. [Google Scholar]
- Cardoso, A.P.; Mirione, E.; Ernesto, M.; Massaza, F.; Cliff, J.; Rezaul Haque, M.; Bradbury, J.H. Processing of Cassava Roots to Remove Cyanogens. J. Food Compos. Anal. 2005, 18, 451–460. [Google Scholar] [CrossRef]
- Chiona, M.; Ntawuruhunga, P.; Benesi, I.R.M.; Matumba, L.; Moyo, C.C. Aflatoxins Contamination in Processed Cassava in Malawi and Zambia. Afr. J. Food Agric. Nutr. Dev. 2014, 14, 8809–8820. [Google Scholar] [CrossRef]
- Muzanila, Y.C.; Brennan, J.G.; King, R.D. Residual Cyanogens, Chemical Composition and Aflatoxins in Cassava Flour from Tanzanian Villages. Food Chem. 2000, 70, 45–49. [Google Scholar] [CrossRef]
- Kolawole, O.M.; Adeyemi, B.J.; Kayode, R.M.O.; Ajibola, T.B. The drying effect of colour light frequencies on the nutrient and microbial composition of cassava. Afr. J. Agric. Res. 2009, 4, 171–177. [Google Scholar]
- Jackson, J.; Chiwona-Karltun, L.; Gordon, A. Food Safety and Quality Considerations for Cassava, a Major Staple Containing a Natural Toxicant. In Food Safety and Quality Systems in Developing Countries; Elsevier: London, UK, 2020; pp. 343–366. [Google Scholar]
- Guia Viagem. Mozambique Climate. Available online: https://www.guiaviagem.org/mocambique-clima/#google_vignette (accessed on 23 August 2023).
- King Jr, A.D.; Hocking, A.D.; Pitt, J.I. Dichloran-rose bengal medium for enumeration and isolation of molds from foods. Appl. Environ. Microbiol. 1979, 37, 959–964. [Google Scholar] [CrossRef]
- Beuchat, L.R. Media for detecting and enumerating yeasts and moulds. Int. J. Food Microbiol. 1992, 17, 145–158. [Google Scholar] [CrossRef]
- De Man, J.D.; Rogosa, D.; Sharpe, M.E. A medium for the cultivation of lactobacilli. J. Appl. Microbiol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Schillinger, U.; Holzapfel, W. Chapter 8. Culture Media for Lactic Acid Bacteria. In Progress in Handbook of Culture Media For Food and Water Microbiology; Royal Society of Chemistry: London, UK, 2011. [Google Scholar]
- Yarrow, D. Methods for the isolation, maintenance and identification of yeasts. In The Yeasts; Elsevier: Amsterdam, The Netherlands, 1998; pp. 77–100. [Google Scholar]
- Mercuri, A.J.; Cox, N.A. Coliforms and Enterobacteriaceae isolates from selected foods. J. Food Prot. 1979, 42, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Roth, L.A.; Stiles, M.E.; Clegg LF, L. Reliability of selective media for the enumeration and estimation of Escherichia coli. Can. Inst. Food Sci. Technol. J. 1973, 6, 230–234. [Google Scholar] [CrossRef]
- Coulin, P.; Farah, Z.; Assanvo, J.; Spillmann, H.; Puhan, Z. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation. Int. J. Food Microbiol. 2006, 106, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Mossel DA, A.; Koopman, M.J.; Jongerius, E. Enumeration of Bacillus cereus in foods. Appl. Microbiol. 1967, 15, 650–653. [Google Scholar] [CrossRef]
- Kim, H.U.; Goepfert, J.M. Enumeration and Identification of Bacillus cereus in Foods: I. 24-Hour Presumptive Test Medium. Appl. Microbiol. 1971, 22, 581–587. [Google Scholar] [CrossRef]
- Zangerl, P.; Asperger, H. Media used in the detection and enumeration of Staphylococcus aureus. Prog. Ind. Microbiol. 2003, 37, 91–110. [Google Scholar]
- Baird-Parker, A.C. The performance of an egg yolk-tellurite medium in practical use. J. Appl. Bacteriol. 1962, 25, 441–444. [Google Scholar] [CrossRef]
- Wang, R.-F.; Cao, W.-W.; Cerniglia, C.E. A Universal Protocol for PCR Detection of 13 Species of Foodborne Pathogens in Foods. J. Appl. Microbiol. 1997, 83, 727–736. [Google Scholar] [CrossRef]
- Leong, S.L. Microbial Populations during Maize Storage in Cameroon. Afr. J. Biotechnol. 2012, 11, 8692–8697. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Cenis, J.L. Rapid Extraction of Fungal DNA for PCR Amplification. Nucl. Acids Res. 1992, 20, 2380. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple Evolutionary Origins of the Fungus Causing Panama Disease of Banana: Concordant Evidence from Nuclear and Mitochondrial Gene Genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from Filamentous Ascomycetes. Appl Environ Microbiol 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar]
- Hugerth, L.W.; Wefer, H.A.; Lundin, S.; Jakobsson, H.E.; Lindberg, M.; Rodin, S.; Engstrand, L.; Andersson, A.F. DegePrime, a Program for Degenerate Primer Design for Broad-Taxonomic-Range PCR in Microbial Ecology Studies. Appl. Environ. Microbiol. 2014, 80, 5116–5123. [Google Scholar] [CrossRef]
- Cunningham, J.L.; Bramstång, L.; Singh, A.; Jayarathna, S.; Rasmusson, A.J.; Moazzami, A.; Müller, B. Impact of Time and Temperature on Gut Microbiota and SCFA Composition in Stool Samples. PLoS ONE 2020, 15, e0236944. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Environment for R. Posit Team RStudio: Integrated Development Environment for R. Posit Software, 2024, PBC, Boston, MA. Available online: http://www.posit.co/ (accessed on 15 December 2024).
- Ryu, C. R Package, Version 0.6.3, dlookr: Tools for Data Diagnosis, Exploration, Transformation; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Sjoberg, D.D.; Whiting, K.; Curry, M.; Lavery, J.A.; Larmarange, J. Reproducible summary tables with the gtsummary package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Kassambara, A. CRAN: Contributed Packages, Version 0.7.2; Rstatix: Pipe-Friendly Framework for Basic Statistical Tests; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Dósea, R.R.; Marcellini, P.S.; Santos, A.A.; Ramos, A.L.D.; Lima, Á.S. Qualidade microbiológica na obtenção de farinha e fécula de mandioca em unidades tradicionais e modelo. Cienc. Rural 2009, 40, 411–416. [Google Scholar] [CrossRef]
- Okolo, E.; Makanjuola, A.T. Microbial Evaluation of Garri Sold Within Ahmadu Bello University Main Campus, Samaru—Zaria, Kaduna. Sci. World J. 2021, 16, 259–265. [Google Scholar]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus Aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. Biomed. Res. Int. 2014, 2024, 827965. [Google Scholar]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.M.; Harley, J.P.; Klein, D.A. Microbiology: Food and Industrial Microbiology, 5th ed.; McGraw-Hill: Boston, MA, USA, 2002; pp. 978–981. [Google Scholar]
- Adams, M.; Moss, M.O.; McClure, P. Food Microbiology; Royal Society of Chemistry: London, UK, 2015. [Google Scholar]
- Gnonlonfin, G. Mycoflora and Natural Occurrence of Aflatoxins and Fumonisin B1 in Cassava and Yam Chips from Benin, West Africa. Int. J. Food Microbiol. 2008, 122, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Wareing, P.W.; Westby, A.; Gibbs, J.A.; Allotey, L.T.; Halm, M. Consumer Preferences and Fungal and Mycotoxin Contamination of Dried Cassava Products from Ghana. Int. J. Food Sci. Technol. 2001, 36, 1–10. [Google Scholar] [CrossRef]
- Ono, L.T.; Taniwaki, M.H. Fungi and Mycotoxins in Cassava (Manihot Esculenta Crantz) and Its Products. Braz. J. Food Technol. 2021, 24, e2020240. [Google Scholar] [CrossRef]
- Okoth, S.; De Boevre, M.; Vidal, A.; Diana Di Mavungu, J.; Landschoot, S.; Kyallo, M.; Njuguna, J.; Harvey, J.; De Saeger, S. Genetic and Toxigenic Variability within Aspergillus Flavus Population Isolated from Maize in Two Diverse Environments in Kenya. Front. Microbiol. 2018, 9, 57. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.-B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenář, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus Section Flavi and Their Production of Aflatoxins, Ochratoxins and Other Mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- Benkerroum, N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Food Saf. Nutr. Public Health 2020, 17, 1215. [Google Scholar] [CrossRef]
- Mesquita, J.S.; Araújo, S.K.; Pereira, F.C.S. Análise micológica de farinha de mandioca vendida nas feiras do produtor na cidade de Macapá-AP. Rev. Ciência Soc. 2017, 1, 103–112. [Google Scholar]
- Gomes, L.P.; Silva LJ, G.; Fernandes GS, T. Identificação dos principais gêneros fúngicos nas farinhas de mandioca comercializadas nos principais mercados de Manaus. Rev. Igapó 2007, 1, 60–64. [Google Scholar]
- Abass, A.B.; Adegoke, G.O.; Awoyale, W.; Gaspar, A.; Mlingi, N.; Andrianavalona, V.; Randrianarivelo, R.; Sulyok, M.; Mneney, A.; Ranaivoson, L.R. Enumeration of the Microbiota and Microbial Metabolites in Processed Cassava Products from Madagascar and Tanzania. Food Control 2019, 99, 164–170. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 4th ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Rodrigues, E.B.; Araújo, A.M.; Sobral FO, S.; Romão, N.F. Avaliação da Presença de Bolores e Leveduras em Farinha de Mandioca (Manihot esculenta Crantz) Comercializadas a Granel em Feiras Livres do Município de Ji-Paraná-Ro. S. Am. J. Basic Educ. Tech. Technol. 2015, 2, 1–8. [Google Scholar]
- Pontes, C.G.C. Identificação de Fungos Contaminantes em Farinha de Mandioca (Manihot esculenta Crantz). Bachelor’s Thesis, Universidade Estadual da Paraíba, Campina Grande, Brazil, 2012. [Google Scholar]
- Aguoru, C.U.; Onda, O.; Omoni, V.T.; Ogbonna, I.O. Characterization of Molds Associated with Processed Garri Stored for 40 Days at Ambient Temperature in Makurdi, Nigeria. Afr. J. Biotechnol. 2014, 13, 673–677. [Google Scholar] [CrossRef]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Barsotti, C.; Baggiani, A.; Senesi, S. Identification and Characterization of Toxigenic Bacillus Cereus Isolates Responsible for Two Food-Poisoning Outbreaks. FEMS Microbiol. Lett. 2002, 208, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Marc, A.R. Implications of Mycotoxins in Food Safety. In Mycotoxins and Food Safety—Recent Advances; IntechOpen: London, UK, 2022; pp. 903–907. [Google Scholar]
- Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Off. J. 2023, L 119, 103–157. Available online: http://data.europa.eu/eli/reg/2023/915/oj (accessed on 18 June 2024).
- Gacheru, P.; Abong, G.; Okoth, M.; Lamuka, P.; Shibairo, S.; Katama, C. Microbiological Safety and Quality of Dried Cassava Chips and Flour Sold in the Nairobi and Coastal Regions of Kenya. Afr. Crop Sci. J. 2016, 24, 137. [Google Scholar] [CrossRef]
- Chiwona-Karltun, L.; Brimer, L.; Jackson, J. Improving Safety of Cassava Products. In Root Tuber and Banana Food System Innovations; Thiele, G., Friedmann, M., Campos, H., Polar, V., Bentley, J.W., Eds.; Springer: Cham, Switzerland, 2022; pp. 241–258. [Google Scholar]
- Food and Agriculture Organization of The United Nations (FAO) and World Health Organization (WHO). Codex Standards 176-1989; FAO/WHO Codex Standards for Edible Cassava Flour. Codex Alimentarius Commission; FAO: Rome, Italy; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Ghougal, K.; Moreno Roldán, E.; Espigares Rodríguez, E. Risk factors related to bacterial contamination by Enterobacteriaceae and fecal coliforms and the prevalence of Salmonella spp. in Algerian farms, slaughterhouses and butcheries: A two-year follow-up study. AIMS 2021, 6, 768–785. [Google Scholar] [CrossRef]
- Raposo, A.; Pérez, E.; de Faria, C.T.; Ferrús, M.A.; Carrascosa, C. Food spoilage by Pseudomonas spp.—An overview. In Foodborne Pathogens and Antibiotic Resistance; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 41–71. [Google Scholar]
Cassava Processing Stages | ||||||
---|---|---|---|---|---|---|
Microbes | Chopping 1 | Pressing 1 | Press Water 1 | Sieving 1 | Roasting 1 | p-Value 2 |
Rainy season (November 2020) | ||||||
Yeast | bdl | bdl | bdl | bdl | bdl | na |
Molds | 0.33 ± 0.58 | 0.33 ± 0.58 | 0.10 ± 0.17 | ▪ | 1.33 ± 1.59 | 0.52 |
LAB | 5.54 ± 0.13 a | 6.81 ± 0.90 a | bdl | 5.71 ± 0.34 a | bdl | 0.011 * |
S. aureus | bdl | bdl | bdl | bdl | bdl | na |
TBC | 5.32 ± 0.08 a | 6.17 ± 0.10 a | bdl | 6.53 ± 0.4 a | bdl | 0.009 ** |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | na |
Pres. of E. coli | bdl | bdl | bdl | bdl | bdl | na |
Bacillus spp. | 3.04 ± 0.87 a | 3.33 ± 1.15 a | bdl | 3.05 ± 0.40 a | bdl | 0.026 * |
Bacillus cereus | bdl | bdl | bdl | bdl | bdl | na |
Dry season (August 2021) | ||||||
Yeast | 4.13 ± 0.34 a | 4.21 ± 0.05 a | 2.84 ± 0.79 a | 4.02 ± 0.18 a | bdl | 0.026 * |
Molds | 0.67 ± 1.15 | 0.40 ± 0.17 | 0.58 ± 0.51 | bdl | 2.72 ± 0.13 | 0.05 |
LAB | 4.52 ± 0.31 a | 6.50 ± 0.65 a | bdl | bdl | 3.35 ± 0.60 a | 0.011 * |
S. aureus | 5.61 ± 0.12 a | 5.73 ± 0.05 a | bdl | 5.50 ± 0.56 a | bdl | 0.024 * |
TBC | 5.90 ± 0.21 ab | 6.22 ± 0.27 a | 2.23 ± 0.11 b | 5.67 ± 0.30 ab | 3.25 ± 1.08 ab | 0.017 * |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | na |
Pres. of E. coli | bdl | bdl | bdl | bdl | bdl | na |
Bacillus spp. | 3.04 ± 0.87 a | 3.33 ± 1.15 a | bdl | 3.05 ± 0.40 a | bdl | 0.028 * |
Bacillus cereus | bdl | bdl | bdl | bdl | bdl | na |
All seasons (Rainy and Dry) | ||||||
Yeast | 2.91 ± 1.35 | 2.96 ± 1.38 | 2.27 ± 0.80 | 2.86 ± 1.28 | 1.85 ± 0.16 | 0.81 |
Molds | 0.33 ± 0.82 | 0.20 ± 0.25 | 1.41 ± 1.44 | bdl | 0.37 ± 0.43 | 0.1 |
LAB | 5.03 ± 0.60 ab | 6.65 ± 0.72 a | 2.36 ± 0.40 b | 6.10 ± 0.47 a | 2.67 ± 0.83 b | <0.001 *** |
S. aureus | 3.80 ± 1.98 | 3.87 ± 2.04 | bdl | 3.75 ± 1.95 | bdl | 0.09 |
TBC | 5.61 ± 0.35 ab | 6.19 ± 0.18 a | 2.11 ± 0.14 b | 6.10 ± 0.57 a | 2.62 ± 0.97 b | <0.001 *** |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | na |
Pres. of E. coli | bdl | bdl | bdl | bdl | bdl | na |
Bacillus spp. | 3.04 ± 0.78 a | 3.33 ± 1.03 a | 1.85 ± 0.16 b | 3.05 ± 0.36 a | bdl | <0.001 *** |
Bacillus cereus | bdl | bdl | bdl | bdl | bdl | na |
Rainy Season (November 2020) | Dry Season (August 2021) | ||||
---|---|---|---|---|---|
Mold Isolates | Yeast Isolates | Mold Isolates | Yeast Isolates | ||
Chopping | Penicillium ochrochloron (100%) | - | Curvularia sp. (50%) | Wickerhamomyces anomalus (71%) | |
Rhizopus stolonifer (50%) | Rhodotorula mucilaginosa (14%) | ||||
Pichia exigua (7.5%) | |||||
Rhodotorula alborubescens (7.5%) | |||||
Pressing | Penicillium primulinum (50%) | - | Pestalotiopsis sp. (16.7%) | Wickerhamomyces anomalus (31%) | |
Penicillium citreonigrum (50%) | Rhizopus stolonifer (16.7%) | Pichia exigua (19%) | |||
Pitomyces sacchari (16.7%) | Rhodotorula mucilaginosa (19%) | ||||
Aspergillus fumigatus (16.7%) | Meyerozyma caribbica (12.5%) | ||||
Penicillium griseofulvum (16.7%) | Torulaspora delbrueckii (12.5%) | ||||
Didymella sp. (16.5%) | Candida orthopsilosis (6%) | ||||
Press water | Penicillium olsonii (100%) | Penicillium restrictum (100%) | Rhodotorula babjevae (50%) | ||
Meyerozyma caribbica (50%) | |||||
Sieving | - | - | - | Wickerhamomyces anomalus (37.5%) | |
Rhodotorula mucilaginosa (25%) | |||||
Naganishia diffluens (12.5%) | |||||
Kwoniella heavenis (6.3%) | |||||
Kazachstania unispora (12.4%) | |||||
Candida orthopsilosis (6.3%) | |||||
Roasting | Alternaria infectoria (33.3%) | - | Stagonosporopsis sp. (25%) | ||
Cladosporium sphaerospermum (33.3%) | Cladosporium sphaerospermum (12.5%) | ||||
Aspergillus flavus (33.3%) | Cladosporium cladosporioides (12.5%) | ||||
Cladosporium oxysporum (12.5%) | |||||
Rhizopus stolonifer (12.5%) | |||||
Arthinium sp. (12.5%) | |||||
Dothideales sp. (12.5%) |
Cassava Processing Units | |||||||
---|---|---|---|---|---|---|---|
Microbes | V 1 | W 1 | P 1 | Z 1 | C 1 | J 1 | p-Value 2 |
Rainy season (November 2020) | |||||||
Yeast | bdl | bdl | bdl | bdl | bdl | bdl | na |
Molds | 0.36 ± 0.32 | 0.20 ± 0.35 | 1.33 ± 0.17 | 3.47 ± 2.29 | 1.53 ± 2.66 | 0.26 ± 0.24 | 0.1 |
S. aureus | bdl | 2.33 ± 0.58 | bdl | bdl | bdl | bdl | 0.42 |
TBC | 7.30 ± 4.59 | bdl | bdl | bdl | 3.33 ± 2.31 | 6.67 ± 3.21 | 0.054 |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | bdl | na |
Bacillus cereus | bdl | bdl | bdl | bdl | bdl | bdl | na |
Dry season (August 2021) | |||||||
Yeast | bdl | bdl | bdl | bdl | bdl | bdl | na |
Molds | 3.90 ± 0.53 a | 1.22 ± 1.10 a | 1.26 ± 0.12 a | bdl | 0.89 ± 0.25 a | bdl | 0.028 * |
S. aureus | bdl | 2.00 ± 0.01 | bdl | bdl | bdl | bdl | 0.42 |
TBC | 1.83 ± 0.30 | 1.41 ± 0.17 | 1.75 ± 0.62 | 1.60 ± 0.11 | 1.67 ± 0.57 | 1.34 ± 0.57 | 0.66 |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | bdl | na |
Bacillus cereus | bdl | bdl | bdl | bdl | 2.33 ± 0.58 | bdl | 0.42 |
All seasons (Rainy and Dry) | |||||||
Yeast | bdl | bdl | bdl | bdl | bdl | bdl | na |
Molds | 2.13 ± 1.98 | 0.71 ± 0.92 | 1.29 ± 0.14 | 2.73 ± 1.66 | 1.21 ± 1.72 | 1.13 ± 0.97 | 0.15 |
S. aureus | bdl | 2.17 ± 0.41 | bdl | bdl | bdl | bdl | 0.068 |
TBC | 4.56 ± 4.18 | 1.70 ± 0.34 | 1.88 ± 0.41 | 1.80 ± 0.23 | 2.34 ± 1.86 | 4.17 ± 3.43 | 0.38 |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | bdl | na |
Bacillus cereus | bdl | bdl | bdl | bdl | 2.17 ± 0.41 | bdl | 0.42 |
Rainy Season (November 2020) | Dry Season (August 2021) | ||
---|---|---|---|
Mold isolates | |||
Units | V | *n.i. | Aspergillus ruber (29%) |
Pithomyces sacchari (43%) | |||
Chaetomium globosum (28%) | |||
W | Penicillium purpureum (17%) | Pithomyces sacchari (44%) | |
Alternaria sp. (17%) | Aspergillus penicillioides (11%) | ||
Aspergillus flavus (17%) | Aspergillus chevalieri (22%) | ||
Aspergillus niger (17%) | Fusarium solani (11%) | ||
Aureobasidium pullulans (17%) | Pleurotus ostreatus (12%) | ||
Cladosporium cladosporioides (15%) | |||
P | Penicillium citreonigrum (50%) | Penicillium citrinum (7%) | |
Fusarium oxysporum (50%) | Neopestalotiopsis egyptiaca (7%) | ||
Chaetomium globosum (5%) | |||
Pithomyces sacchari (51%) | |||
Alternaria alternata (7%) | |||
Pithomyces maydicus (7%) | |||
Paraphaeosphaeria michotii (7%) | |||
Aspergillus nidulans (7%) | |||
Z | Penicillium citreonigrum (50%) | - | |
Penicillium ruber (50%) | |||
C | Penicillium ruber (67%) | Phoma pereupyrena (10%) | |
Trichoderma sp. (33%) | Pithomyces sacchari (60%) | ||
Aspergillus calidoustus (10%) | |||
Talaromyces sp. (10%) | |||
Aspergillus sp. (10%) | |||
J | Aspergillus niger (14%) | - | |
Alternaria infectoria (14%) | |||
Cladosporium sphaerospermum (14%) | |||
Penicillium primulinum (14%) | |||
Penicillium citreonigrum (16%) | |||
Penicillium ochrochloron (14%) | |||
Epicoccum sp. (14%) |
Rural Markets | ||||||
---|---|---|---|---|---|---|
Microbes | AM 1 | GB 1 | MK 1 | ES 1 | MC 1 | p-Value 2 |
Rainy season (November 2020) | ||||||
Yeast | bdl | bdl | bdl | bdl | bdl | na |
Molds | bdl | ▪ | bdl | ▪ | ▪ | na |
S. aureus | bdl | bdl | 2.01 ± 0.01 | bdl | bdl | 0.071 |
TBC | bdl | 2.05 ± 0.09 | bdl | bdl | bdl | 0.41 |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | na |
Bacillus cereus | bdl | bdl | bdl | bdl | bdl | na |
Dry season (August 2021) | ||||||
Yeast | bdl | bdl | bdl | bdl | 4.55 ± 0.55 a | 0.008 ** |
Molds | bdl | ▪ | 0.26 ± 0.24 a | ▪ | 2.32 ± 0.36 a | 0.016 * |
S. aureus | bdl | bdl | bdl | bdl | 2.16 ± 0.28 | 0.41 |
TBC | 2.46 ± 0.05 a | 2.54 ± 0.06 a | 1.71 ± 0.20 a | 2.06 ± 0.28 a | 1.86 ± 0.29 a | 0.023 * |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | na |
Bacillus cereus | 2.01 ± 0.00 a | bdl | bdl | bdl | 2.33 ± 0.58 a | 0.050 * |
All seasons (rainy and dry) | ||||||
Yeast | bdl | bdl | bdl | bdl | 3.27 ± 1.44 | 0.012 * |
Molds | bdl | ▪ | 0.13 ± 0.21 a | ▪ | 1.16 ± 1.29 a | 0.045 * |
S. aureus | bdl | bdl | 2.00 ± 0.01 | bdl | 2.08 ± 0.19 | 0.24 |
TBC | 2.23 ± 0.26 ab | 2.30 ± 0.28 a | 1.85 ± 0.20 b | 2.03 ± 0.18 ab | 1.93 ± 0.20 ab | 0.023 * |
Enterobacteriaceae | bdl | bdl | bdl | bdl | bdl | na |
Bacillus cereus | bdl | bdl | bdl | bdl | 2.17 ± 0.41 | 0.063 |
Rainy Season (November 2020) | Dry Season (August 2021) | ||
---|---|---|---|
Mold Isolates | |||
Markets | AM | Talaromyces amestolkiae (100%) | bdl |
GB | Fusarium petroliphilum (100%) | Talaromyces sp. (100%) | |
MK | bdl | Pithomyces sacchari (80%) | |
Aspergillus shendaweii (20%) | |||
ES | bdl | Pithomyces sacchari (100%) | |
MC | Fusarium solani (50%) | Pithomyces sacchari (25%) | |
Rhizopus oryzae (50%) | Aspergillus calidoustus (25%) | ||
Trematosphaeria grisea (25%) | |||
Pithomyces chartarum (25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massamby, A.; Leong, S.-l.L.; Müller, B.; Tivana, L.; Passoth, V.; Macuamule, C.; Sandgren, M. Microbial Contamination and Food Safety Aspects of Cassava Roasted Flour (“Rale”) in Mozambique. Microorganisms 2025, 13, 168. https://doi.org/10.3390/microorganisms13010168
Massamby A, Leong S-lL, Müller B, Tivana L, Passoth V, Macuamule C, Sandgren M. Microbial Contamination and Food Safety Aspects of Cassava Roasted Flour (“Rale”) in Mozambique. Microorganisms. 2025; 13(1):168. https://doi.org/10.3390/microorganisms13010168
Chicago/Turabian StyleMassamby, Andreia, Su-lin L. Leong, Bettina Müller, Lucas Tivana, Volkmar Passoth, Custódia Macuamule, and Mats Sandgren. 2025. "Microbial Contamination and Food Safety Aspects of Cassava Roasted Flour (“Rale”) in Mozambique" Microorganisms 13, no. 1: 168. https://doi.org/10.3390/microorganisms13010168
APA StyleMassamby, A., Leong, S.-l. L., Müller, B., Tivana, L., Passoth, V., Macuamule, C., & Sandgren, M. (2025). Microbial Contamination and Food Safety Aspects of Cassava Roasted Flour (“Rale”) in Mozambique. Microorganisms, 13(1), 168. https://doi.org/10.3390/microorganisms13010168