In Vitro Characterization of Probiotic Strains Bacillus subtilis and Enterococcus durans and Their Effect on Broiler Chicken Performance and Immune Response During Salmonella Enteritidis Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. In Vitro Characterization of Probiotic Strains
2.2.1. pH and Bile Salts on Probiotic Proliferation
2.2.2. Cell-Free Supernatant of B. subtilis CE330 and E. durans CH33 on S. Enteritidis Proliferation In Vitro
2.2.3. Determination of the Proline Content in B. subtilis CE330 and E. durans CH33
2.3. In Vivo S. Enteritidis Challenge Study
2.3.1. Preparation of Probiotics
2.3.2. Birds and Housing
2.3.3. Histological Morphology of the Jejunum
2.3.4. Bacterial Quantification in Cecum
2.3.5. Cecal Tonsil Cytokine Expression
3. Statistical Analyses
4. Results
4.1. Effect of pH and Bile Salts on Probiotic Proliferation
4.2. Effect of B. subtilis CE330 and E. durans CH33 CFS on S. Enteritidis Proliferation In Vitro
4.3. Effect of Low pH and Bile Salt Stress on Proline Content of B. subtilis CE330 and E. durans CH33
4.4. Effect of Probiotic Supplementation on Performance Parameters During S. Enteritidis Challenge
4.5. Effect of Probiotic Supplementation on Intestinal Histomorphology During S. Enteritidis Challenge
4.6. Effect of Probiotic Supplementation on Cecal S. Enteritidis Load
4.7. Effect of Probiotic Supplementation on Cecal Tonsil Immune Gene Expression
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and salmonellosis: An update on public health implications and control strategies. Animals 2023, 13, 3666. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.L.; Lynne, A.M. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J. Anim. Sci. 2008, 86, E173–E187. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Salmonella Surveillance: Annual Tabulation Summaries. Available online: https://www.cdc.gov/salmonella/php/surveillance/index.html (accessed on 26 December 2024).
- Georganas, A.; Graziosi, G.; Catelli, E.; Lupini, C. Salmonella enterica Serovar Infantis in Broiler Chickens: A Systematic Review and Meta-Analysis. Animals 2024, 14, 3453. [Google Scholar] [CrossRef] [PubMed]
- Boiko, O.; Garkavenko, T.; Musiiets, I.; Nedosekov, V.; Kozytska, T. Salmonellosis in Ukraine: An analysis of food products contamination, Salmonella transmission, and serovar diversity during 2012–2023. Ger. J. Vet. Res. 2024, 4, 65–74. [Google Scholar]
- Barrow, P.A.; Jones, M.A.; Smith, A.L.; Wigley, P. The long view: Salmonella—The last forty years. Avian Pathol. 2012, 41, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Gast, R.K.; Porter, R.E., Jr. Salmonella Infections. In Diseases Poultry; Wiley: Hoboken, NJ, USA, 2020; pp. 717–753. [Google Scholar]
- Beal, R.K.; Smith, A.L. Antibody response to Salmonella: Its induction and role in protection against avian enteric salmonellosis. Expert Rev. Anti-Infect. Ther. 2007, 5, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Khaksefidi, A.; Rahimi, S. Effect of probiotic inclusion in the diet of broiler chickens on performance, feed efficiency and carcass quality. Asian-Australas. J. Anim. Sci. 2005, 18, 1153–1156. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Herman, L.; Hilbert, F. Salmonella control in poultry flocks and its public health impact. EFSA J. 2019, 17, e05596. [Google Scholar]
- United States Department of Agriculture. National Poultry Improvement Plan Standards. Available online: https://www.aphis.usda.gov/nvap/reference-guide/poultry/npip (accessed on 26 December 2024).
- Food Drug Administration. Prevention of Salmonella Enteritidis in shell eggs during production, storage, and transportation. Final rule. Fed. Regist. 2009, 74, 33029–33101. [Google Scholar]
- Ricke, S.C. Application of molecular approaches for understanding foodborne Salmonella establishment in poultry production. Adv. Biol. 2014, 2014, 813275. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Bueno, D.J.; Latorre, J.D.; Shehata, A.A.; Eisenreich, W.; Tellez-Isaias, G. Strategies to attack pathogenic avian microorganisms: From probiotics to postbiotics. Ger. J. Vet. Res. 2024, 4, 95–118. [Google Scholar]
- Tellez-Isaias, G.; Vuong, C.N.; Graham, B.D.; Selby, C.M.; Graham, L.E.; Senas-Cuesta, R.; Barros, T.L.; Beer, L.C.; Coles, M.E.; Forga, A.J. Developing probiotics, prebiotics, and organic acids to control Salmonella spp. in commercial turkeys at the University of Arkansas, USA. Ger. J. Vet. Res. 2021, 1, 7–12. [Google Scholar] [CrossRef]
- Shini, S.; Bryden, W. Probiotics and gut health: Linking gut homeostasis and poultry productivity. Anim. Prod. Sci. 2021, 62, 1090–1112. [Google Scholar] [CrossRef]
- Patterson, J.; Burkholder, K. Application of prebiotics and probiotics in poultry production. Poult. Sci. 2003, 82, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Musikasang, H.; Tani, A.; H-kittikun, A.; Maneerat, S. Probiotic potential of lactic acid bacteria isolated from chicken gastrointestinal digestive tract. World J. Microbiol. Biotechnol. 2009, 25, 1337–1345. [Google Scholar] [CrossRef]
- Rashid, H.; Zaidi, A.; Anwar, M.A.; Tariq, M. A synbiotic made of an autochthonous Enterococcus durans strain and microbial polysaccharides improves broiler chicken health. J. Agric. Food Res. 2023, 14, 100812. [Google Scholar] [CrossRef]
- Nava, G.; Bielke, L.; Callaway, T.; Castaneda, M. Probiotic alternatives to reduce gastrointestinal infections: The poultry experience. Anim. Health Res. Rev. 2005, 6, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Shaji, S.; Selvaraj, R.K.; Shanmugasundaram, R. Salmonella infection in poultry: A review on the pathogen and control strategies. Microorganisms 2023, 11, 2814. [Google Scholar] [CrossRef]
- Knarreborg, A.; Brockmann, E.; Høybye, K.; Knap, I.; Lund, B.; Milora, N.; Leser, T. Bacillus subtilis (DSM17299) modulates the ileal microbial communities and improves growth performance in broilers. Int. J. Prebiotics Probiotics 2008, 3, 83–88. [Google Scholar]
- Harrington, D.; Sims, M.; Kehlet, A. Effect of Bacillus subtilis supplementation in low energy diets on broiler performance. J. Appl. Poult. Res. 2016, 25, 29–39. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Gu, X.; Zhao, J.; Guo, T.; Kong, J. Probiotic Bacillus subtilis LF11 protects intestinal epithelium against Salmonella infection. Front. Cell. Infect. Microbiol. 2022, 12, 837886. [Google Scholar] [CrossRef] [PubMed]
- Knap, I.; Kehlet, A.; Bennedsen, M.; Mathis, G.; Hofacre, C.; Lumpkins, B.; Jensen, M.; Raun, M.; Lay, A. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult. Sci. 2011, 90, 1690–1694. [Google Scholar] [CrossRef]
- Sadeghi, A.A.; Shawrang, P.; Shakorzadeh, S. Immune response of Salmonella challenged broiler chickens fed diets containing Gallipro®, a Bacillus subtilis probiotic. Probiotics Antimicrob. Proteins 2015, 7, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.V.; Koujalagi, K.; Surya, R.U.; Namratha, M.; Malaviya, A. Enterococcus species and their probiotic potential: Current status and future prospects. J. Appl. Biol. Biotechnol. 2022, 11, 36–44. [Google Scholar] [CrossRef]
- Kanda, T.; Nishida, A.; Ohno, M.; Imaeda, H.; Shimada, T.; Inatomi, O.; Bamba, S.; Sugimoto, M.; Andoh, A. Enterococcus durans TN-3 induces regulatory T cells and suppresses the development of dextran sulfate sodium (DSS)-induced experimental colitis. PLoS ONE 2016, 11, e0159705. [Google Scholar] [CrossRef] [PubMed]
- Melara, E.G.; Avellaneda, M.C.; Valdivié, M.; García-Hernández, Y.; Aroche, R.; Martínez, Y. Probiotics: Symbiotic relationship with the animal host. Animals 2022, 12, 719. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.; Jia, J.; Zhao, J.; Radebe, S.M.; Yu, Q. The Protective Effect of E. faecium on S. Typhimurium infection induced damage to intestinal mucosa. Front. Vet. Sci. 2021, 8, 740424. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.; Adams, M.; La Ragione, R.M.; Woodward, M.J. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet. Microbiol. 2017, 199, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Khochamit, N.; Siripornadulsil, S.; Sukon, P.; Siripornadulsil, W. Bacillus subtilis and lactic acid bacteria improve the growth performance and blood parameters and reduce Salmonella infection in broilers. Vet. World 2020, 13, 2663. [Google Scholar] [CrossRef]
- Buahom, J.; Siripornadulsil, S.; Siripornadulsil, W. Feeding with single strains versus mixed cultures of lactic acid bacteria and Bacillus subtilis KKU213 affects the bacterial community and growth performance of broiler chickens. Arab. J. Sci. Eng. 2018, 43, 3417–3427. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Applegate, T.; Selvaraj, R. Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. J. Appl. Poult. Res. 2020, 29, 808–816. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, L.; Wang, J.; Yuan, J.; Liu, J.; Liu, L.; Da, R.; Cheng, Y.; Han, B. Probiotic potential analysis and safety evaluation of Enterococcus durans A8-1 isolated from a healthy Chinese infant. Front. Microbiol. 2021, 12, 799173. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Mortada, M.; Murugesan, G.R.; Selvaraj, R.K. In vitro characterization and analysis of probiotic species in the chicken intestine by real-time polymerase chain reaction. Poult. Sci. 2019, 98, 5840–5846. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 2013, 22, 628–636. [Google Scholar] [CrossRef]
- Chinard, F.P. Photometric estimation of proline and ornithine. J. Biol. Chem. 1952, 199, 91–95. [Google Scholar] [CrossRef]
- Vantress, C. Cobb Broiler Management Guide; Cobb-Vantress: Siloam Springs, AR, USA, 2012. [Google Scholar]
- Kollanoor-Johny, A.; Mattson, T.; Baskaran, S.A.; Amalaradjou, M.A.; Babapoor, S.; March, B.; Valipe, S.; Darre, M.; Hoagland, T.; Schreiber, D. Reduction of Salmonella enterica serovar Enteritidis colonization in 20-day-old broiler chickens by the plant-derived compounds trans-cinnamaldehyde and eugenol. Appl. Environ. Microbiol. 2012, 78, 2981–2987. [Google Scholar] [CrossRef]
- Markazi, A.; Luoma, A.; Shanmugasundaram, R.; Mohnl, M.; Raj Murugesan, G.; Selvaraj, R. Effects of drinking water synbiotic supplementation in laying hens challenged with Salmonella. Poult. Sci. 2018, 97, 3510–3518. [Google Scholar] [CrossRef] [PubMed]
- De Medici, D.; Croci, L.; Delibato, E.; Di Pasquale, S.; Filetici, E.; Toti, L. Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. Appl. Environ. Microbiol. 2003, 69, 3456–3461. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, L.; Young, J.R.; Zoorob, R.; Whittaker, C.A.; Hesketh, P.; Archer, A.; Smith, A.L.; Kaiser, P. Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. J. Immunol. 2004, 173, 2675–2682. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Wick, M.; Lilburn, M. Effect of a post-hatch lipopolysaccharide challenge in Turkey poults and ducklings after a primary embryonic heat stress. Dev. Comp. Immunol. 2019, 101, 103436. [Google Scholar] [CrossRef]
- Selvaraj, R.K.; Klasing, K.C. Lutein and eicosapentaenoic acid interact to modify iNOS mRNA levels through the PPARγ/RXR pathway in chickens and HD11 cell lines. J. Nutr. 2006, 136, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Mortada, M.; Cosby, D.; Singh, M.; Applegate, T.; Syed, B.; Pender, C.; Curry, S.; Murugesan, G.; Selvaraj, R. Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds. PLoS ONE 2019, 14, e0223577. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Adams, D.; Ramirez, S.; Murugesan, G.; Applegate, T.J.; Cunningham, S.; Pokoo-Aikins, A.; Glenn, A.E. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front. Physiol. 2022, 13, 934660. [Google Scholar] [CrossRef] [PubMed]
- Govender, M.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; van Vuuren, S.; Pillay, V. A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech 2014, 15, 29–43. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.C.; Paula, A.; Correa, F.; Veras, F.; Brandelli, A. Characterization of Bacillus subtilis available as probiotics. J. Microbiol. Res. 2018, 8, 23–32. [Google Scholar]
- Betancur-Hurtado, C.A.; Barreto Lopez, L.M.; Rondon Castillo, A.J.; Trujillo-Peralta, M.C.; Hernandez-Velasco, X.; Tellez-Isaias, G.; Graham, B.D. An In vivo pilot study on probiotic potential of lactic acid bacteria isolated from the gastrointestinal tract of creole hens (Gallus gallus domesticus) native to Montería, Córdoba, Colombia in broiler chickens. Poultry 2022, 1, 157–168. [Google Scholar] [CrossRef]
- Pieniz, S.; Andreazza, R.; Anghinoni, T.; Camargo, F.; Brandelli, A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 2014, 37, 251–256. [Google Scholar] [CrossRef]
- Reis, N.; Saraiva, M.A.F.; Duarte, E.A.A.; de Carvalho, E.A.; Vieira, B.B.; Evangelista-Barreto, N.S. Probiotic properties of lactic acid bacteria isolated from human milk. J. Appl. Microbiol. 2016, 121, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The genus Enterococcus: Between probiotic potential and safety concerns—An update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Tazehabadi, M.H.; Algburi, A.; Popov, I.V.; Ermakov, A.M.; Chistyakov, V.A.; Prazdnova, E.V.; Weeks, R.; Chikindas, M.L. Probiotic bacilli inhibit Salmonella biofilm formation without killing planktonic cells. Front. Microbiol. 2021, 12, 615328. [Google Scholar] [CrossRef] [PubMed]
- Madhu, A.N.; Awasthi, S.P.; Bhasker, K.; Praveen Kumar, R.; Prapulla, S. Impact of Freeze and Spray Drying on the Retention of Probiotic Properties of Lactobacillus fermentum: An in vitro Evaluation Model. Int. J. Microbiol. Res. 2011, 2, 243–251. [Google Scholar]
- Zhang, L.; Alfano, J.R.; Becker, D.F. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. J. Bacteriol. 2015, 197, 431–440. [Google Scholar] [CrossRef]
- Wu, Y.; Shao, Y.; Song, B.; Zhen, W.; Wang, Z.; Guo, Y.; Shahid, M.S.; Nie, W. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J. Anim. Sci. Biotechnol. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Zhang, L.; Hou, Y.; Ding, B.; Yi, D.; Wang, L.; Zhu, H.; Liu, Y.; Yin, Y.; Wu, G. Effects of L-proline on the growth performance, and blood parameters in weaned lipopolysaccharide (LPS)-challenged pigs. Asian-Australas. J. Anim. Sci. 2014, 27, 1150. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.G.H.; Sieo, C.C.; Ramasamy, K.; Saad, W.Z.; Wong, H.K.; Ho, Y.W. Performance, biochemical and haematological responses, and relative organ weights of laying hens fed diets supplemented with prebiotic, probiotic and synbiotic. BMC Vet. Res. 2017, 13, 248. [Google Scholar] [CrossRef]
- Elbaz, A.; El-sheikh, S. Effect of dietary probiotic, antibiotic or combination on broiler performance, cecum microbial population and ileal development. Mansoura Vet. Med. J. 2020, 21, 74–79. [Google Scholar] [CrossRef]
- Sureshkumar, S.; Lee, H.; Lee, S.; Jung, S.; Kim, D.; Oh, K.; Yang, H.; Jo, Y.; Byun, S. Preliminary study to investigate the effect of Lactobacillus reuteri administration on growth performance, immunological, gut microbiome and intestinal mucosa of chicken. Braz. J. Poult. Sci. 2022, 24, eRBCA-2022. [Google Scholar] [CrossRef]
- Khochamit, N.; Buahom, J.; Siripornadulsil, S.; Siripornadulsil, W. Association of Probiotic Supplementation with Improvements in the Gut Microbes, Blood Lipid Profile and Caecal Villus Morphology of Broilers. Arab. J. Sci. Eng. 2022, 47, 6807–6819. [Google Scholar] [CrossRef]
- Zhang, Z.; Cho, J.; Kim, I. Effects of Bacillus subtilis UBT-MO2 on growth performance, relative immune organ weight, gas concentration in excreta, and intestinal microbial shedding in broiler chickens. Livest. Sci. 2013, 155, 343–347. [Google Scholar] [CrossRef]
- Zhang, X.; Akhtar, M.; Chen, Y.; Ma, Z.; Liang, Y.; Shi, D.; Cheng, R.; Cui, L.; Hu, Y.; Nafady, A.A. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome 2022, 10, 107. [Google Scholar]
- Yosi, F.; Metzler-Zebeli, B.U. Dietary Probiotics Modulate Gut Barrier and Immune-Related Gene Expression and Histomorphology in Broiler Chickens under Non-and Pathogen-Challenged Conditions: A Meta-Analysis. Animals 2023, 13, 1970. [Google Scholar] [CrossRef] [PubMed]
- Richad, R.; Pangestiningsih, T.; Wibowo, M. The effects of Bacillus amyloliquefaciens CECT 5940 supplementation on the health performance and gut morphology of broiler chickens. Ger. J. Vet. Res. 2024, 4, 74–82. [Google Scholar]
- Deng, B.; Wu, J.; Li, X.; Zhang, C.; Men, X.; Xu, Z. Effects of Bacillus subtilis on growth performance, serum parameters, digestive enzyme, intestinal morphology, and colonic microbiota in piglets. AMB Express 2020, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Soumeh, E.A.; Cedeno, A.D.R.C.; Niknafs, S.; Bromfield, J.; Hoffman, L.C. The efficiency of probiotics administrated via different routes and doses in enhancing production performance, meat quality, gut morphology, and microbial profile of broiler chickens. Animals 2021, 11, 3607. [Google Scholar] [CrossRef] [PubMed]
- Mukhammadiev, R.S.; Mukhammadieva, A.; Skvortsov, E.; Mukhammadiev, R.S.; Glinushkin, A.; Valiullin, L. Antagonistic properties and biocompatibility as important principles for development of effective and biosafety probiotic drugs. IOP Conf. Ser. Earth Environ. Sci. 2021, 663, 012008. [Google Scholar] [CrossRef]
- Li, C.-L.; Wang, J.; Zhang, H.-J.; Wu, S.-G.; Hui, Q.-R.; Yang, C.-B.; Fang, R.-J.; Qi, G.-H. Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Front. Physiol. 2019, 9, 1968. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Adams, D.; Selvaraj, R.K. Gastrointestinal microbiota and their manipulation for improved growth and performance in chickens. Foods 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Cisek, A.; Binek, M. Chicken intestinal microbiota function with a special emphasis on the role of probiotic bacteria. Pol. J. Vet. Sci. 2014, 17, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J.S.; Jergens, A.E. Recent advances and understanding of using probiotic-based interventions to restore homeostasis of the microbiome for the prevention/therapy of bacterial diseases. Microbiol. Spectr. 2016, 4, 823–841. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Farkas, V.; Csitári, G.; Pál, L.; Márton, A.; Menyhárt, L.; Dublecz, K. Relative effects of dietary administration of a competitive exclusion culture and a synbiotic product, age and sampling site on intestinal microbiota maturation in broiler chickens. Vet. Sci. 2021, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Yu, Y.-H.; Hsiao, F.S.-H.; Dybus, A.; Ali, I.; Hsu, H.-C.; Cheng, Y.-H. Probiotics as a friendly antibiotic alternative: Assessment of their effects on the health and productive performance of poultry. Fermentation 2022, 8, 672. [Google Scholar] [CrossRef]
- Sudan, S.; Flick, R.; Nong, L.; Li, J. Potential probiotic Bacillus subtilis isolated from a novel niche exhibits broad range antibacterial activity and causes virulence and metabolic dysregulation in Enterotoxic E. coli. Microorganisms 2021, 9, 1483. [Google Scholar] [CrossRef]
- Yadav, S.; Jha, R. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 2019, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. Front. Immunol. 2021, 12, 616713. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Evivie, S.E.; Jin, D.; Meng, Y.; Li, N.; Yan, F.; Huo, G.; Liu, F. Complete genome sequence of Enterococcus durans KLDS6. 0933, a potential probiotic strain with high cholesterol removal ability. Gut Pathog. 2018, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Pisithkul, T.; Schroeder, J.W.; Trujillo, E.A.; Yeesin, P.; Stevenson, D.M.; Chaiamarit, T.; Coon, J.J.; Wang, J.D.; Amador-Noguez, D. Metabolic remodeling during biofilm development of Bacillus subtilis. MBio 2019, 10, e00623-19. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [PubMed]
- Czarnowski, P.; Mikula, M.; Ostrowski, J.; Żeber-Lubecka, N. Gas Chromatography–Mass Spectrometry-Based Analyses of Fecal Short-Chain Fatty Acids (SCFAs): A Summary Review and Own Experience. Biomedicines 2024, 12, 1904. [Google Scholar] [CrossRef]
Starter (0–24 d) | |
---|---|
Ingredients | % |
Corn | 58.48 |
Soybean meal, 48% | 35.15 |
Soybean oil | 2.27 |
Monocalcium phosphorus, 21% | 1.38 |
Limestone | 1.59 |
DL-Methionine | 0.21 |
L-Lysine-HCL, 78% | 0.14 |
Salt (NaCl) | 0.35 |
Vitamin premix 1 | 0.08 |
Mineral premix 2 | 0.35 |
Total | 100.0 |
Calculated Nutrient Composition | % |
Crude protein | 21.44 |
Crude fat | 4.55 |
Crude fiber | 2.17 |
Calcium | 0.95 |
Total phosphorus | 0.71 |
Available phosphorus | 0.45 |
Sodium | 0.16 |
Potassium | 0.92 |
Chloride | 0.27 |
Lysine | 1.31 |
Methionine | 0.56 |
Total sulfur amino acids | 0.91 |
Threonine | 0.87 |
Tryptophan | 0.29 |
Arginine | 1.50 |
Metabolizable Energy, kcal/kg | 3050 |
Primers | Sequence (5′ to 3′) | Length (Base) | Annealing Temperature (°C) | References |
---|---|---|---|---|
Bacillus | F: 5′-ACG GTC GCA AGA CTG AAA CT-3′ | 20 | 55 | This study |
R: 5′-TCG TAA GTC AAC CCG TGA GA-3′ | 20 | |||
E. durans | F: 5′-CCC ATC AGA AGG GGA TAA CA-3′ | 20 | 55 | This study |
R: 5′-TTA CCT GCT TTC AGA CTG GC-3′ | 20 | |||
S. Enteritidis | F: 5′-GCA GCG GTT ACT ATT GCA GC-3′ | 20 | 60 | [43] |
R: 5′-CTG TGA CAG GGA CAT TTA GCG-3′ | 21 | |||
1 IL-10 | F: 5′-CAT GCT GCT GGG CCT GAA-3′ | 18 | 57.5 | [44] |
R: 5′-CGT CTC CTT GAT CTG CTT GAT G-3′ | 22 | |||
2 IL-1β | F: 5′-CTA CAC CCG CTC ACA GTC CT-3′ | 20 | 57.5 | [44] |
R: 5′-TCA CTT TCT GGC TGGAGG AG-3′ | 20 | |||
3 RPS13 | F: 5′-CAA GAA GGC TGT TGC TGT TCG-3′ | 21 | 55 | [45] |
R: 5′- GGC AGA AGC TGT CGA TGA T-3′ | 19 | |||
4 GAPDH | F: 5′-TCC TGT GAC TTC AAT GGT GA-3′ | 20 | 55 | [45] |
R: 5′-CAC AAC ACG GTT GCT GTA TC-3′ | 20 |
Control | Challenge | |||||||
---|---|---|---|---|---|---|---|---|
Parameter (d 24) | Basal | Probiotics | Basal | Probiotics | SE | Trt p Value | Challenge p Value | Trt × Challenge p Value |
BWG (kg) | 1.06 | 0.97 | 1.06 | 1.05 | 0.05 | 0.30 | 0.45 | 0.41 |
FCR | 1.96 | 2.05 | 1.96 | 1.98 | 0.07 | 0.46 | 0.62 | 0.60 |
Control | Challenge | |||||||
---|---|---|---|---|---|---|---|---|
Parameter (d 24) | Basal | Probiotics | Basal | Probiotics | SE | Trt p Value | Challenge p Value | Trt × Challenge p Value |
Villus height | 97.86 | 99.14 | 98.73 | 92.42 | 6.48 | 0.69 | 0.64 | 0.55 |
Crypt depth | 17.36 | 16.48 | 17.27 | 19.42 | 1.23 | 0.59 | 0.24 | 0.22 |
Villus height/crypt depth | 6.10 | 6.18 | 5.79 | 5.11 | 0.33 | 0.35 | 0.05 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmugasundaram, R.; Khochamit, N.; Selvaraj, R.K.; Mortada, M.; Siripornadulsil, S.; Siripornadulsil, W. In Vitro Characterization of Probiotic Strains Bacillus subtilis and Enterococcus durans and Their Effect on Broiler Chicken Performance and Immune Response During Salmonella Enteritidis Infection. Microorganisms 2025, 13, 217. https://doi.org/10.3390/microorganisms13020217
Shanmugasundaram R, Khochamit N, Selvaraj RK, Mortada M, Siripornadulsil S, Siripornadulsil W. In Vitro Characterization of Probiotic Strains Bacillus subtilis and Enterococcus durans and Their Effect on Broiler Chicken Performance and Immune Response During Salmonella Enteritidis Infection. Microorganisms. 2025; 13(2):217. https://doi.org/10.3390/microorganisms13020217
Chicago/Turabian StyleShanmugasundaram, Revathi, Nalisa Khochamit, Ramesh K. Selvaraj, Mohammad Mortada, Surasak Siripornadulsil, and Wilailak Siripornadulsil. 2025. "In Vitro Characterization of Probiotic Strains Bacillus subtilis and Enterococcus durans and Their Effect on Broiler Chicken Performance and Immune Response During Salmonella Enteritidis Infection" Microorganisms 13, no. 2: 217. https://doi.org/10.3390/microorganisms13020217
APA StyleShanmugasundaram, R., Khochamit, N., Selvaraj, R. K., Mortada, M., Siripornadulsil, S., & Siripornadulsil, W. (2025). In Vitro Characterization of Probiotic Strains Bacillus subtilis and Enterococcus durans and Their Effect on Broiler Chicken Performance and Immune Response During Salmonella Enteritidis Infection. Microorganisms, 13(2), 217. https://doi.org/10.3390/microorganisms13020217