PK/PD Analysis of High-Dose Daptomycin Use in the Treatment of Bone and Joint Infections: Data from a Real-World Setting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Population Features
3.2. Primary Aim: Pharmacokinetics/Pharmacodynamics of Daptomycin in BJIs
3.3. Secondary Aims
3.3.1. Patients’ Parameters Influencing Daptomycin Pharmacokinetics
3.3.2. Principal Component Analysis
3.3.3. Safety and Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [PubMed]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Joint Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Szabelski, J.; Maksymiuk, J. Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement. Materials 2019, 12, 3963. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Gao, Z.; Shan, T.; Asilebieke, A.; Guo, R.; Kan, Y.-C.; Li, C.; Xu, Y.; Chu, J.-J. A Review on the Promising Antibacterial Agents in Bone Cement-From Past to Current Insights. J. Orthop. Surg. 2024, 19, 673. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jonak, J.; Falkowicz, K.; Jojczuk, M.; Nogalski, A.; Przekora, A. Effect of Various Admixtures on Selected Mechanical Properties of Medium Viscosity Bone Cements: Part 2—Hydroxyapatite. Compos. Struct. 2024, 343, 118308. [Google Scholar] [CrossRef]
- Barry, A.L.; Fuchs, P.C.; Brown, S.D. In Vitro Activities of Daptomycin against 2,789 Clinical Isolates from 11 North American Medical Centers. Antimicrob. Agents Chemother. 2001, 45, 1919–1922. [Google Scholar] [CrossRef]
- Domínguez-Herrera, J.; Docobo-Pérez, F.; López-Rojas, R.; Pichardo, C.; Ruiz-Valderas, R.; Lepe, J.A.; Pachón, J. Efficacy of Daptomycin versus Vancomycin in an Experimental Model of Foreign-Body and Systemic Infection Caused by Biofilm Producers and Methicillin-Resistant Staphylococcus Epidermidis. Antimicrob. Agents Chemother. 2012, 56, 613–617. [Google Scholar] [CrossRef]
- Raad, I.; Hanna, H.; Jiang, Y.; Dvorak, T.; Reitzel, R.; Chaiban, G.; Sherertz, R.; Hachem, R. Comparative Activities of Daptomycin, Linezolid, and Tigecycline against Catheter-Related Methicillin-Resistant Staphylococcus Bacteremic Isolates Embedded in Biofilm. Antimicrob. Agents Chemother. 2007, 51, 1656–1660. [Google Scholar] [CrossRef]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic Penetration into Bone and Joints: An Updated Review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef]
- Traunmüller, F.; Schintler, M.V.; Metzler, J.; Spendel, S.; Mauric, O.; Popovic, M.; Konz, K.H.; Scharnagl, E.; Joukhadar, C. Soft Tissue and Bone Penetration Abilities of Daptomycin in Diabetic Patients with Bacterial Foot Infections. J. Antimicrob. Chemother. 2010, 65, 1252–1257. [Google Scholar] [CrossRef]
- Montange, D.; Berthier, F.; Leclerc, G.; Serre, A.; Jeunet, L.; Berard, M.; Muret, P.; Vettoretti, L.; Leroy, J.; Hoen, B.; et al. Penetration of Daptomycin into Bone and Synovial Fluid in Joint Replacement. Antimicrob. Agents Chemother. 2014, 58, 3991–3996. [Google Scholar] [CrossRef] [PubMed]
- Silverman, J.A.; Perlmutter, N.G.; Shapiro, H.M. Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus Aureus. Antimicrob. Agents Chemother. 2003, 47, 2538–2544. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, J.K.; Miller, K.; O’Neill, A.J.; Chopra, I. Consequences of Daptomycin-Mediated Membrane Damage in Staphylococcus Aureus. J. Antimicrob. Chemother. 2008, 62, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Cubicin, INN-Daptomycin (SmPC). Available online: https://www.ema.europa.eu/en/documents/product-information/cubicin-epar-product-information_en.pdf (accessed on 11 December 2024).
- Garreau, R.; Pham, T.-T.; Bourguignon, L.; Millet, A.; Parant, F.; Bussy, D.; Desevre, M.; Franchi, V.; Ferry, T.; Goutelle, S.; et al. Daptomycin Exposure as a Risk Factor for Daptomycin-Induced Eosinophilic Pneumonia and Muscular Toxicity. Clin. Infect. Dis. 2023, 77, 1372–1380. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Is a High Baseline Inflammatory Burden the Major Driver in Causing Daptomycin-Induced Eosinophilic Pneumonia and Muscular Toxicity? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2024, 79, 1122–1123. [Google Scholar] [CrossRef]
- Bhavnani, S.M.; Rubino, C.M.; Ambrose, P.G.; Drusano, G.L. Daptomycin Exposure and the Probability of Elevations in the Creatine Phosphokinase Level: Data from a Randomized Trial of Patients with Bacteremia and Endocarditis. Clin. Infect. Dis. 2010, 50, 1568–1574. [Google Scholar] [CrossRef]
- Angelini, J.; Liu, S.; Giuliano, S.; Flammini, S.; Martini, L.; Tascini, C.; Baraldo, M.; Pai, M.P. Revolutionizing Daptomycin Dosing: A Single 7-11-Hour Sample for Pragmatic Application. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2024, 79, 596–599. [Google Scholar] [CrossRef]
- Pai, M.P.; Russo, A.; Novelli, A.; Venditti, M.; Falcone, M. Simplified Equations Using Two Concentrations to Calculate Area under the Curve for Antimicrobials with Concentration-Dependent Pharmacodynamics: Daptomycin as a Motivating Example. Antimicrob. Agents Chemother. 2014, 58, 3162–3167. [Google Scholar] [CrossRef]
- Samura, M.; Takada, K.; Hirose, N.; Kurata, T.; Nagumo, F.; Uchida, M.; Inoue, J.; Tanikawa, K.; Enoki, Y.; Taguchi, K.; et al. Comparison of the Efficacy and Safety of Standard- and High-Dose Daptomycin: A Systematic Review and Meta-Analysis. Br. J. Clin. Pharmacol. 2023, 89, 1291–1303. [Google Scholar] [CrossRef]
- Angelini, J.; Giuliano, S.; Flammini, S.; Pagotto, A.; Lo Re, F.; Tascini, C.; Baraldo, M. Meropenem PK/PD Variability and Renal Function: “We Go Together”. Pharmaceutics 2023, 15, 2238. [Google Scholar] [CrossRef]
- Giuliano, S.; Angelini, J.; D’Elia, D.; Geminiani, M.; Barison, R.D.; Giacinta, A.; Sartor, A.; Campanile, F.; Curcio, F.; Cotta, M.O.; et al. Ampicillin and Ceftobiprole Combination for the Treatment of Enterococcus Faecalis Invasive Infections: “The Times They Are A-Changin”. Antibiotics 2023, 12, 879. [Google Scholar] [CrossRef] [PubMed]
- Lanini, S.; Giuliano, S.; Angelini, J.; Ferin, S.; Martini, L.; Baraldo, M.; Cossettini, S.; Roberts, J.; Tascini, C. Renal Function and Its Impact on the Concentration of Ceftazidime-Avibactam: A Cross-Sectional Study. Int. J. Antimicrob. Agents 2024, 64, 107351. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, S.; Angelini, J.; Flammini, S.; Della Siega, P.; Vania, E.; Montanari, L.; D’Elia, D.; Biasizzo, J.; Pagotto, A.; Tascini, C. A Case Report of Treatment of a Streptococcal Brain Abscess with Ceftobiprole Supported by the Measurement of Drug Levels in the Cerebrospinal Fluid. Heliyon 2024, 10, e27285. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the Treatment with Beta-Lactam Antibiotics in Critically Ill Patients-Guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar] [CrossRef]
- Luque, S.; Mendoza-Palomar, N.; Aguilera-Alonso, D.; Garrido, B.; Miarons, M.; Piqueras, A.I.; Tévar, E.; Velasco-Arnaiz, E.; Fernàndez-Polo, A. Therapeutic Drug Monitoring of Antibiotic and Antifungical Drugs in Paediatric and Newborn Patients. Consensus Guidelines of the Spanish Society of Hospital Pharmacy (SEFH) and the Spanish Society of Paediatric Infectious Diseases (SEIP). An. Pediatr. 2024, 101, 190–207. [Google Scholar] [CrossRef]
- Chau, M.M.; Kong, D.C.M.; van Hal, S.J.; Urbancic, K.; Trubiano, J.A.; Cassumbhoy, M.; Wilkes, J.; Cooper, C.M.; Roberts, J.A.; Marriott, D.J.E.; et al. Consensus Guidelines for Optimising Antifungal Drug Delivery and Monitoring to Avoid Toxicity and Improve Outcomes in Patients with Haematological Malignancy, 2014. Intern. Med. J. 2014, 44, 1364–1388. [Google Scholar] [CrossRef]
- Wicha, S.G.; Märtson, A.-G.; Nielsen, E.I.; Koch, B.C.P.; Friberg, L.E.; Alffenaar, J.-W.; Minichmayr, I.K. International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG) From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Cairns, K.A.; Abbott, I.J.; Dooley, M.J.; Peleg, A.Y.; Peel, T.N.; Udy, A.A. The Impact of Daptomycin Therapeutic Drug Monitoring on Clinical Outcomes: A Systematic Review. Int. J. Antimicrob. Agents 2023, 61, 106712. [Google Scholar] [CrossRef]
- Koch, B.C.P.; Muller, A.E.; Hunfeld, N.G.M.; de Winter, B.C.M.; Ewoldt, T.M.J.; Abdulla, A.; Endeman, H. Therapeutic Drug Monitoring of Antibiotics in Critically Ill Patients: Current Practice and Future Perspectives With a Focus on Clinical Outcome. Ther. Drug Monit. 2022, 44, 11–18. [Google Scholar] [CrossRef]
- Ghanem, E.; Azzam, K.; Seeley, M.; Joshi, A.; Parvizi, J. Staged Revision for Knee Arthroplasty Infection: What Is the Role of Serologic Tests before Reimplantation? Clin. Orthop. 2009, 467, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Umeki, S. Reevaluation of Eosinophilic Pneumonia and Its Diagnostic Criteria. Arch. Intern. Med. 1992, 152, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Martens-Lobenhoffer, J.; Kielstein, J.T.; Oye, C.; Bode-Böger, S.M. Validated High Performance Liquid Chromatography–UV Detection Method for the Determination of Daptomycin in Human Plasma. J. Chromatogr. B 2008, 875, 546–550. [Google Scholar] [CrossRef]
- Eucast. EUCAST. Available online: https://www.eucast.org/ (accessed on 31 December 2024).
- Matsumoto, K.; Samura, M.; Tashiro, S.; Shishido, S.; Saiki, R.; Takemura, W.; Misawa, K.; Liu, X.; Enoki, Y.; Taguchi, K. Target Therapeutic Ranges of Anti-MRSA Drugs, Linezolid, Tedizolid and Daptomycin, and the Necessity of TDM. Biol. Pharm. Bull. 2022, 45, 824–833. [Google Scholar] [CrossRef]
- Louie, A.; Kaw, P.; Liu, W.; Jumbe, N.; Miller, M.H.; Drusano, G.L. Pharmacodynamics of Daptomycin in a Murine Thigh Model of Staphylococcus Aureus Infection. Antimicrob. Agents Chemother. 2001, 45, 845–851. [Google Scholar] [CrossRef]
- Bhavnani, S.M.; Ambrose, P.G.; Hammel, J.P.; Rubino, C.M.; Drusano, G.L. Evaluation of Daptomycin Exposure and Efficacy and Safety Endpoints to Support Risk-versus-Benefit Considerations. Antimicrob. Agents Chemother. 2015, 60, 1600–1607. [Google Scholar] [CrossRef]
Variable | N (%) or Median (IQR) |
---|---|
Sex (Males/Females) | 42/35 (54.5/45.5) |
Age (years) | 72 (60–77) |
BMI 1 (kg/m2) | 26.99 (23.68–40.04) |
CrCL 2 (mL/min) | 70.2 (51.5–87.2) |
Initial daptomycin daily dose (mg/day) | 800 (700–900) |
Initial daptomycin daily dose per kg (mg/kg) | 10 (9.3–10.4) Minimum: 4.6 Maximum: 12.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelini, J.; Giuliano, S.; Russiani, F.; Lo Re, F.; Flammini, S.; Cadeo, B.; Martini, L.; Tascini, C.; Baraldo, M. PK/PD Analysis of High-Dose Daptomycin Use in the Treatment of Bone and Joint Infections: Data from a Real-World Setting. Microorganisms 2025, 13, 304. https://doi.org/10.3390/microorganisms13020304
Angelini J, Giuliano S, Russiani F, Lo Re F, Flammini S, Cadeo B, Martini L, Tascini C, Baraldo M. PK/PD Analysis of High-Dose Daptomycin Use in the Treatment of Bone and Joint Infections: Data from a Real-World Setting. Microorganisms. 2025; 13(2):304. https://doi.org/10.3390/microorganisms13020304
Chicago/Turabian StyleAngelini, Jacopo, Simone Giuliano, Francesco Russiani, Francesco Lo Re, Sarah Flammini, Barbara Cadeo, Luca Martini, Carlo Tascini, and Massimo Baraldo. 2025. "PK/PD Analysis of High-Dose Daptomycin Use in the Treatment of Bone and Joint Infections: Data from a Real-World Setting" Microorganisms 13, no. 2: 304. https://doi.org/10.3390/microorganisms13020304
APA StyleAngelini, J., Giuliano, S., Russiani, F., Lo Re, F., Flammini, S., Cadeo, B., Martini, L., Tascini, C., & Baraldo, M. (2025). PK/PD Analysis of High-Dose Daptomycin Use in the Treatment of Bone and Joint Infections: Data from a Real-World Setting. Microorganisms, 13(2), 304. https://doi.org/10.3390/microorganisms13020304