The Composition and Function of Bacterial Communities Associated with the Northern Root-Knot Nematode (Meloidogyne hapla) Populations Showing Parasitic Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Meloidogyne hapla Populations
2.2. The Greenhouse Maintenance of Meloidogyne hapla Populations
2.3. The Sampling of Field and Greenhouse Meloidogyne hapla Populations and DNA Extraction
2.4. Library Preparation
2.5. Sequencing
2.6. Statistical and Data Analyses
3. Results
3.1. Summary of the Samples Analyzed
3.2. Alpha Diversity
3.3. Beta Diversity
3.4. Community Composition
3.5. Functional Groups
3.6. Bacteria in M. hapla Populations and in Core and Indicator Groups in Field Soils
4. Discussion
4.1. Community, Diversity, and Composition
4.2. Functional Groups and Their Habitats
4.3. Connections with the Core and Indicator Groups Present in Field Soils
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lartey, I.; Benucci, G.M.N.; Marsh, T.L.; Bonito, G.M.; Melakeberhan, H. Characterizing Microbial Communities Associated with Northern Root-Knot Nematode (Meloidogyne hapla) Occurrence and Soil Health. Front. Microbiol. 2023, 14, 1267008. [Google Scholar] [CrossRef]
- Davies, K.G.; Williamson, V.M. Host Specificity Exhibited by Populations of Endospores of Pasteuria Penetrans to the Juvenile and Male Cuticles of Meloidogyne hapla. Nematology 2006, 8, 475–476. [Google Scholar] [CrossRef]
- Topalović, O.; Elhady, A.; Hallmann, J.; Richert-Pöggeler, K.R.; Heuer, H. Bacteria Isolated from the Cuticle of Plant-Parasitic Nematodes Attached to and Antagonized the Root-Knot Nematode Meloidogyne hapla. Sci. Rep. 2019, 9, 11477. [Google Scholar] [CrossRef]
- Elhady, A.; Giné, A.; Topalovic, O.; Jacquiod, S.; Sørensen, S.J.; Sorribas, F.J.; Heue, H. Microbiomes Associated with Infective Stages of Root-Knot and Lesion Nematodes in Soil. PLoS ONE 2017, 12, e0177145. [Google Scholar] [CrossRef] [PubMed]
- Viaene, N.M.; Abawi, G.S. Fungi Parasitic on Juveniles and Egg Masses of Meloidogyne hapla in Organic Soils from New York. J. Nematol. 1998, 30, 632. [Google Scholar]
- Topalović, O.; Santos, S.S.; Heuer, H.; Nesme, J.; Kanfra, X.; Hallmann, J.; Sørensen, S.J.; Vestergård, M. Deciphering Bacteria Associated with a Pre-Parasitic Stage of the Root-Knot Nematode Meloidogyne hapla in Nemato-Suppressive and Nemato-Conducive Soils. Appl. Soil Ecol. 2022, 172, 104344. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; De Goede, R.G.M. A Framework for Soil Food Web Diagnostics: Extension of the Nematode Faunal Analysis Concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Lartey, I.; Kravchenko, A.; Marsh, T.; Melakeberhan, H. Occurrence of Meloidogyne hapla Relative to Nematode Abundance and Soil Food Web Structure in Soil Groups of Selected Michigan Vegetable Production Fields. Nematology 2021, 23, 1011–1022. [Google Scholar] [CrossRef]
- Melakeberhan, H.; Bonito, G.; Kravchenko, A.N. Application of Nematode Community Analyses-Based Models Towards Identifying Sustainable Soil Health Management Outcomes: A Review of the Concepts. Soil Syst. 2021, 5, 32. [Google Scholar] [CrossRef]
- Lartey, I.; Kravchenko, A.; Bonito, G.; Melakeberhan, H. Parasitic Variability of Meloidogyne hapla Relative to Soil Groups and Soil Health Conditions. Nematology 2022, 24, 983–992. [Google Scholar] [CrossRef]
- Shade, A.; Stopnisek, N. Abundance-Occupancy Distributions to Prioritize Plant Core Microbiome Membership. Curr. Opin. Microbiol. 2019, 49, 50–58. [Google Scholar] [CrossRef] [PubMed]
- De Cáceres, M.; Legendre, P. Associations Between Species and Groups of Sites: Indices and Statistical Inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- Desaeger, J. Meloidogyne hapla, the Northern Root-Knot Nematode, in Florida Strawberries and Associated Double-Cropped Vegetables. Edis 2019, 1. [Google Scholar] [CrossRef]
- Melakeberhan, H.; Mennan, S.; Chen, S.; Darby, B.; Dudek, T. Integrated Approaches to Understanding and Managing Meloidogyne hapla Populations’ Parasitic Variability. Crop Prot. 2007, 26, 894–902. [Google Scholar] [CrossRef]
- Melakeberhan, H.; Maung, Z.T.Z.; Lee, C.L.; Poindexter, S.; Stewart, J. Soil Type-Driven Variable Effects on Cover- and Rotation-Crops, Nematodes and Soil Food Web in Sugar Beet Fields Reveal a Roadmap for Developing Healthy Soils. Eur. J. Soil Biol. 2018, 85, 53–63. [Google Scholar] [CrossRef]
- Avendaño, F.; Pierce, F.J.; Melakeberhan, H. Spatial Analysis of Soybean Yield in Relation to Soil Texture, Soil Fertility and Soybean Cyst Nematode. Nematology 2004, 6, 527–545. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Benucci, G.M.N.; Bonito, V.; Bonito, G. Fungal, Bacterial, and Archaeal Diversity in Soils Beneath Native and Introduced Plants in Fiji, South Pacific. Microb. Ecol. 2018, 78, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-H.; Liao, H.-L.; Arnold, A.E.; Bonito, G.; Lutzoni, F. RNA-Based Analyses Reveal Fungal Communities Structured by a Senescence Gradient in the Moss Dicranum scoparium and the Presence of Putative Multi-Trophic Fungi. New Phytol. 2018, 218, 1597–1611. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, D.S.; Yourstone, S.; Mieczkowski, P.; Jones, C.D.; Dangl, J.L. Practical Innovations for High-Throughput Amplicon Sequencing. Nat. Methods 2013, 10, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Longley, R.; Noel, Z.A.; Benucci, G.M.N.; Chilvers, M.I.; Trail, F.; Bonito, G. Crop Management Impacts the Soybean (Glycine max) Microbiome. Front. Microbiol. 2020, 11, 1116. [Google Scholar] [CrossRef]
- Joshi, N. Sabre: A Barcode Demultiplexing and Trimming Tool for FastQ Files; 2011. Available online: https://github.com/najoshi/sabre (accessed on 12 January 2025).
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate High-Throughput Multiple Sequence Alignment of Ribosomal RNA Genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://posit.co/download/rstudio-desktop/ (accessed on 12 January 2025).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple Statistical Identification and Removal of Contaminant Sequences in Marker-Gene and Metagenomics Data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Wickham, H. GGPlot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Oliver, A.K.; Callaham, M.A.; Jumpponen, A. Soil Fungal Communities Respond Compositionally to Recurring Frequent Prescribed Burning in a Managed Southeastern US Forest Ecosystem. For. Ecol. Manag. 2015, 345, 1–9. [Google Scholar] [CrossRef]
- Paulson, J.N.; Colin Stine, O.; Bravo, H.C.; Pop, M. Differential Abundance Analysis for Microbial Marker-Gene Surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [PubMed]
- Schuelke, T.; Pereira, T.J.; Hardy, S.M.; Bik, H.M. Nematode-Associated Microbial Taxa Do Not Correlate with Host Phylogeny, Geographic Region or Feeding Morphology in Marine Sediment Habitats. Mol. Ecol. 2018, 27, 1930–1951. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M.V.; Howe, D.K.; Wasala, S.K.; Peetz, A.B.; Zasada, I.A.; Denver, D.R. Comparative Genomics of a Plant-Parasitic Nematode Endosymbiont Suggest a Role in Nutritional Symbiosis. Genome Biol. Evol. 2015, 7, 2727–2746. [Google Scholar] [CrossRef]
- Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193–3328. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, C.; Pasqualetti, C.; Lanzoni, O.; Fagorzi, C.; Bazzocchi, C.; Fani, R.; Petroni, G.; Modeo, L. Harmful Effect of Rheinheimera Sp. Eprs3 (Gammaproteobacteria) against the Protist Euplotes aediculatus (Ciliophora, Spirotrichea): Insights into the Ecological Role of Antimicrobial Compounds from Environmental Bacterial Strains. Front. Microbiol. 2019, 10, 510. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Mohidin, F.A.; Khan, U.; Ahamad, F. Native Pseudomonas Spp. Suppressed the Root-Knot Nematode in In Vitro and In Vivo, and Promoted the Nodulation and Grain Yield in the Field Grown Mungbean. Biol. Control 2016, 101, 159–168. [Google Scholar] [CrossRef]
- Topalović, O.; Hussain, M.; Heuer, H. Plants and Associated Soil Microbiota Cooperatively Suppress Plant-Parasitic Nematodes. Front. Microbiol. 2020, 11, 313. [Google Scholar] [CrossRef] [PubMed]
- Toju, H.; Tanaka, Y. Consortia of Anti-Nematode Fungi and Bacteria in the Rhizosphere of Soybean Plants Attacked by Root-Knot Nematodes. R. Soc. Open Sci. 2019, 6, 181693. [Google Scholar] [CrossRef]
- Kumari, S.; Nagendran, K.; Rai, A.B.; Singh, B.; Rao, G.P.; Bertaccini, A. Global Status of Phytoplasma Diseases in Vegetable Crops. Front. Microbiol. 2019, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- da Silva, W.L.; Yang, K.T.; Pettis, G.S.; Soares, N.R.; Giorno, R.; Clark, C.A. Flooding-Associated Soft Rot of Sweetpotato Storage Roots Caused by Distinct Clostridium Isolates. Plant Dis. 2019, 103, 3050–3056. [Google Scholar] [CrossRef]
- Goto, M.; Kuwata, H. Rhizobacter daucus Gen. Nov., Sp. Nov., the Causal Agent of Carrot Bacterial Gall. Int. J. Syst. Bacteriol. 1988, 38, 233–239. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Srinivas, V.; Naresh, N.; Alekhya, G.; Sharma, R. Exploiting Plant Growth-Promoting Amycolatopsis Sp. for Bio-Control of Charcoal Rot of Sorghum (Sorghum bicolor L.) Caused by Macrophomina phaseolina (Tassi) Goid. Arch. Phytopathol. Plant Prot. 2019, 52, 543–559. [Google Scholar] [CrossRef]
- Khan, Z.; Kim, S.G.; Jeon, Y.H.; Khan, H.U.; Son, S.H.; Kim, Y.H. A Plant Growth Promoting Rhizobacterium, Paenibacillus polymyxa Strain GBR-1, Suppresses Root-Knot Nematode. Bioresour. Technol. 2008, 99, 3016–3023. [Google Scholar] [CrossRef]
- Falagán, C.; Johnson, D.B. Acidibacter ferrireducens Gen. Nov., Sp. Nov.: An Acidophilic Ferric Iron-Reducing Gammaproteobacterium. Extremophiles 2014, 18, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Elhady, A.; Hallmann, J.; Heuer, H. Symbiosis of Soybean with Nitrogen Fixing Bacteria Affected by Root Lesion Nematodes in a Density-Dependent Manner. Sci. Rep. 2020, 10, 1619. [Google Scholar] [CrossRef] [PubMed]
- Ghodhbane-Gtari, F.; Nouioui, I.; Hezbri, K.; Lundstedt, E.; D’Angelo, T.; McNutt, Z.; Laplaze, L.; Gherbi, H.; Vaissayre, V.; Svistoonoff, S.; et al. The Plant-Growth-Promoting Actinobacteria of the Genus Nocardia Induces Root Nodule Formation in Casuarina Glauca. Antonie Van Leeuwenhoek 2019, 112, 75–90. [Google Scholar] [CrossRef]
- Tang, K.; Yuan, B.; Jia, L.; Pan, X.; Feng, F.; Jin, K. Spatial and Temporal Distribution of Aerobic Anoxygenic Phototrophic Bacteria: Key Functional Groups in Biological Soil Crusts. Environ. Microbiol. 2021, 23, 3554–3567. [Google Scholar] [CrossRef]
- Grappel, S.F.; Giovenella, A.J.; Phillips, L.; Pitkin, D.H.; Nisbet, L.J. Antimicrobial Activity of Aridicins, Novel Glycopeptide Antibiotics with High and Prolonged Levels in Blood. Antimicrob. Agents Chemother. 1985, 28, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Shearer, M.C.; Giovenella, A.J.; Grappel, S.F.; Hedde, R.D.; Mehta, R.J.; Oh, Y.K.; Pan, C.H.; Pitkin, D.H.; Nisbet, L.J. Kiberlins, Novel Glycopeptide Antibiotics I. Discovery, Production, and Biological Evaluation. J. Antibiot. 1986, 39, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Hoshino, Y.; Miyaki, T. Kibdelosporangium albatum Sp. Nov., Producer of the Antiviral Antibiotics Cycloviracins. Int. J. Syst. Bacteriol. 1993, 43, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Hlokwe, T.M.; Said, H.; Gcebe, N. Mycobacterium tuberculosis Infection in Cattle from the Eastern Cape Province of South Africa. BMC Vet. Res. 2017, 13, 299. [Google Scholar] [CrossRef]
- Colegate, S.M.; Molyneux, R.J. Bioactive Natural Products: Detection, Isolation, and Structural Determination, 2nd ed.; Routledge: London, UK, 2007; ISBN 9781420006889. [Google Scholar]
- Farh, M.E.A.; Kim, Y.J.; Van An, H.; Sukweenadhi, J.; Singh, P.; Huq, M.A.; Yang, D.C. Burkholderia ginsengiterrae Sp. Nov. and Burkholderia panaciterrae Sp. Nov., Antagonistic Bacteria Against Root Rot Pathogen Cylindrocarpon destructans, Isolated from Ginseng Soil. Arch. Microbiol. 2015, 197, 439–447. [Google Scholar] [CrossRef]
- Svenningsen, N.B.; Watts-Williams, S.J.; Joner, E.J.; Battini, F.; Efthymiou, A.; Cruz-Paredes, C.; Nybroe, O.; Jakobsen, I. Suppression of the Activity of Arbuscular Mycorrhizal Fungi by the Soil Microbiota. ISME J. 2018, 12, 1296. [Google Scholar] [CrossRef] [PubMed]
- Akduman, N.; Lightfoot, J.W.; Röseler, W.; Witte, H.; Lo, W.S.; Rödelsperger, C.; Sommer, R.J. Bacterial Vitamin B12 Production Enhances Nematode Predatory Behavior. ISME J. 2020, 14, 1494–1507. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Lu, X.; Wang, X.; Liu, Q.; Peng, D.; Jian, H. The Effect of Combined Application of Streptomyces Rubrogriseus HDZ-9-47 with Soil Biofumigation on Soil Microbial and Nematode Communities. Sci. Rep. 2019, 9, 16886. [Google Scholar] [CrossRef]
- Costa, S.R.; Pin Ng, J.L.; Mathesius, U. Interaction of Symbiotic Rhizobia and Parasitic Root-Knot Nematodes in Legume Roots: From Molecular Regulation to Field Application. Mol. Plant-Microbe Interact. 2021, 34, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, F.; Huang, Y.; Zhou, M.; Gao, J.; Yan, T.; Sheng, H.; An, L. Sphingomonas Sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis Thaliana Under Drought Stress. Front. Microbiol. 2019, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, G.; Claassens, S.; Mienie, C.M.S.; Fourie, H. Screening of Rhizosphere Bacteria and Nematode Populations Associated with Soybean Roots in the Mpumalanga Highveld of South Africa. Microorganisms 2021, 9, 1813. [Google Scholar] [CrossRef] [PubMed]
- Forero, L.E.; Grenzer, J.; Heinze, J.; Schittko, C.; Kulmatiski, A. Greenhouse- and Field-Measured Plant-Soil Feedbacks Are Not Correlated. Front. Environ. Sci. 2019, 7, 184. [Google Scholar] [CrossRef]
- Willms, I.M.; Rudolph, A.Y.; Göschel, I.; Bolz, S.H.; Schneider, D.; Penone, C.; Poehlein, A.; Schöning, I.; Nacke, H. Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere 2020, 5, e00186-20. [Google Scholar] [CrossRef] [PubMed]
- Sikder, M.M.; Vestergård, M.; Kyndt, T.; Kudjordjie, E.N.; Nicolaisen, M. Phytohormones Selectively Affect Plant Parasitic Nematodes Associated with Arabidopsis Roots. New Phytol. 2021, 232, 1272–1285. [Google Scholar] [CrossRef]
- Madigan, M.; Cox, S.S.; Stegeman, R.A. Nitrogen Fixation and Nitrogenase Activities in Members of the Family Rhodospirillaceae. J. Bacteriol. 1984, 157, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Naqqash, T.; Imran, A.; Hameed, S.; Shahid, M.; Majeed, A.; Iqbal, J.; Hanif, M.K.; Ejaz, S.; Malik, K.A. First Report of Diazotrophic Brevundimonas Spp. as Growth Enhancer and Root Colonizer of Potato. Sci. Rep. 2020, 10, 12893. [Google Scholar] [CrossRef]
- Fan, D.; Subramanian, S.; Smith, D.L. Plant Endophytes Promote Growth and Alleviate Salt Stress in Arabidopsis thaliana. Sci. Rep. 2020, 10, 12740. [Google Scholar] [CrossRef] [PubMed]
- Nour, S.M.; Lawrence, J.R.; Zhu, H.; Swerhone, G.D.W.; Welsh, M.; Welacky, T.W.; Topp, E. Bacteria Associated with Cysts of the Soybean Cyst Nematode (Heterodera glycines). Appl. Environ. Microbiol. 2003, 69, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Balows, A.; Trüper, H.; Dworkin, M.; Harder, W. The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Wu, M.; Huang, H.; Li, G.; Ren, Y.; Shi, Z.; Li, X.; Dai, X.; Gao, G.; Ren, M.; Ma, T. The Evolutionary Life Cycle of the Polysaccharide Biosynthetic Gene Cluster Based on the Sphingomonadaceae. Sci. Rep. 2017, 7, 46484. [Google Scholar] [CrossRef]
- Luo, D.; Langendries, S.; Mendez, S.G.; De Ryck, J.; Liu, D.; Beirinckx, S.; Willems, A.; Russinova, E.; Debode, J.; Goormachtig, S. Plant Growth Promotion Driven by a Novel Caulobacter Strain. Mol. Plant-Microbe Interact. 2019, 32, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Garnier, M.; Foissac, X.; Gaurivaud, P.; Laigret, F.; Renaudin, J.; Saillard, C.; Bové, J.M. Mycoplasmas Plants Insect Vectors: A Matrimonial Triangle. Comptes Rendus L’academie Des Sci.-Ser. III 2001, 324, 923–928. [Google Scholar] [CrossRef]
- Adam, M.; Westphal, A.; Hallmann, J.; Heuer, H. Specific Microbial Attachment to Root Knot Nematodes in Suppressive Soil. Appl. Environ. Microbiol. 2014, 80, 2679. [Google Scholar] [CrossRef]
- Fahrbach, M.; Kuever, J.; Remesch, M.; Huber, B.E.; Kämpfer, P.; Dott, W.; Hollender, J. Steroidobacter denitrificans Gen. Nov., Sp. Nov., a Steroidal Hormone-Degrading Gammaproteobacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 2215–2223. [Google Scholar] [CrossRef] [PubMed]
- Redding, N.W.; Agudelo, P.; Wells, C.E. Multiple Nodulation Genes Are Up-Regulated During Establishment of Reniform Nematode Feeding Sites in Soybean. Phytopathology 2018, 108, 275–291. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kang, S.J.; Lee, S.Y.; Lee, J.S.; Park, S. Ohtaekwangia koreensis Gen. Nov., Sp. Nov. and Ohtaekwangia kribbensis Sp. Nov., Isolated from Marine Sand, Deep-Branching Members of the Phylum Bacteroidetes. Int. J. Syst. Evol. Microbiol. 2011, 61, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
Field M. hapla | Greenhouse M. hapla | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PERMANOVA | DISPERSION | PERMANOVA | DISPERSION | |||||||
Variable | F-Value | R2 | p-Value | F-Value | p-Value | F-Value | R2 | p-Value | F-Value | p-Value |
SG | 1.101 | 0.025 | 0.347 | 2.23 | 0.627 | 0.472 | 0.011 | 0.879 | 0.008 | 0.922 |
RG | 1.134 | 0.052 | 0.319 | 0.52 | 0.577 | 0.759 | 0.036 | 0.722 | 1.211 | 0.288 |
SFW | 0.224 | 0.005 | 0.993 | 0.073 | 0.796 | 0.262 | 0.006 | 0.988 | 1.628 | 0.206 |
SG:SFW | 0.775 | 0.054 | 0.755 | 0.095 | 0.963 | 0.662 | 0.046 | 0.885 | 0.727 | 0.529 |
SG:RG | 0.859 | 0.099 | 0.697 | 0.221 | 0.942 | 0.517 | 0.062 | 0.994 | 0.497 | 0.78 |
SFW:RG | 0.807 | 0.075 | 0.765 | 0.118 | 0.975 | 0.523 | 0.05 | 0.989 | 0.584 | 0.679 |
SG:RG:SFW | 0.788 | 0.111 | 0.837 | 0.222 | 0.967 | 0.499 | 0.073 | 0.999 | 0.568 | 0.743 |
Functional Groups | Phyla | Genera |
---|---|---|
Animal_pathogenic | Actinobacteria | Mycobacterium |
Bacteroidetes | Flavobacterium | |
Anti_bacteria | Actinobacteria | Kibdelosporangium |
Actinobacteria | Lechevalieria | |
Proteobacteria | Rheinheimera | |
Anti_fungi | Actinobacteria | Acidothermus |
Proteobacteria | Paraburkholderia | |
Bacteroidetes | Chryseolinea | |
Proteobacteria | Haliangium | |
Antibiotic_resistant | Verrucomicrobia | Candidatus Udaeobacter |
Enhance_nematode_parasitism | Proteobacteria | Novosphingobium |
Iron_reducing | Proteobacteria | Acidibacter |
Nematicidal | Proteobacteria | Cellvibrio |
Bacteroidetes | Chitinophaga | |
Proteobacteria | Devosia | |
Proteobacteria | Duganella | |
Planctomycetes | Gemmata * | |
Actinobacteria | Nocardioides | |
Proteobacteria | Pedomicrobium | |
Proteobacteria | Phenylobacterium | |
Actinobacteria | Solirubrobacter | |
Actinobacteria | Streptomyces | |
Proteobacteria | Vibrio * | |
Proteobacteria | Xanthomonas | |
Nitrogen_fixer | Proteobacteria | Rhizobium |
Proteobacteria | Bradyrhizobium | |
Actinobacteria | Frankia | |
Proteobacteria | Mesorhizobium | |
Proteobacteria | Rhodomicrobium * | |
Other | Acidobacteria | Bryobacter |
Actinobacteria | Catenulispora | |
Proteobacteria | Dokdonella | |
Bacteroidetes | Fluviicola * | |
Firmicutes | Holdemanella | |
Proteobacteria | Hyphomicrobium | |
Proteobacteria | Inquilinus | |
Proteobacteria | Labrys | |
Proteobacteria | Limnohabitans | |
Actinobacteria | Pseudonocardia | |
Proteobacteria | Roseiarcus | |
Planctomycetes | SM1A02 | |
Plant_growth_promoter | Actinobacteria | Amycolatopsis |
Proteobacteria | Brevundimonas | |
Proteobacteria | Caulobacter | |
Proteobacteria | Halomonas | |
Bacteroidetes | Mucilaginibacter | |
Actinobacteria | Nocardia * | |
Firmicutes | Paenibacillus | |
Proteobacteria | Sphingomonas | |
Plant_Pathogenic | Firmicutes | Candidatus Phytoplasma |
Firmicutes | Clostridium sensu stricto 1 | |
Proteobacteria | Dyella | |
Firmicutes | Mycoplasma | |
Proteobacteria | Rhizobacter | |
Polysaccharide_degrader | Proteobacteria | Sphingobium |
Root_knot_nematode_associated | Proteobacteria | Pseudomonas |
Proteobacteria | Rhodoplanes | |
Soybean_cyst_associated | Proteobacteria | Polaromonas |
Suppressive_soils | Actinobacteria | Actinophytocola |
Actinobacteria | Actinospica | |
Actinobacteria | Kribbella | |
Proteobacteria | Massilia | |
Bacteroidetes | Niastella | |
Bacteroidetes | Ohtaekwangia | |
Proteobacteria | Steroidobacter ** | |
Proteobacteria | Variovorax |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lartey, I.; Benucci, G.M.N.; Marsh, T.L.; Bonito, G.M.; Melakeberhan, H. The Composition and Function of Bacterial Communities Associated with the Northern Root-Knot Nematode (Meloidogyne hapla) Populations Showing Parasitic Variability. Microorganisms 2025, 13, 487. https://doi.org/10.3390/microorganisms13030487
Lartey I, Benucci GMN, Marsh TL, Bonito GM, Melakeberhan H. The Composition and Function of Bacterial Communities Associated with the Northern Root-Knot Nematode (Meloidogyne hapla) Populations Showing Parasitic Variability. Microorganisms. 2025; 13(3):487. https://doi.org/10.3390/microorganisms13030487
Chicago/Turabian StyleLartey, Isaac, Gian M. N. Benucci, Terence L. Marsh, Gregory M. Bonito, and Haddish Melakeberhan. 2025. "The Composition and Function of Bacterial Communities Associated with the Northern Root-Knot Nematode (Meloidogyne hapla) Populations Showing Parasitic Variability" Microorganisms 13, no. 3: 487. https://doi.org/10.3390/microorganisms13030487
APA StyleLartey, I., Benucci, G. M. N., Marsh, T. L., Bonito, G. M., & Melakeberhan, H. (2025). The Composition and Function of Bacterial Communities Associated with the Northern Root-Knot Nematode (Meloidogyne hapla) Populations Showing Parasitic Variability. Microorganisms, 13(3), 487. https://doi.org/10.3390/microorganisms13030487