An Assessment of the Efficacy of Commercial Air Ionizer Systems Against a SARS-CoV-2 Surrogate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ionizers
2.2. Experimental Setup for Ionizer Testing
2.3. Measurement of Effective Airflow Inside Chamber
2.4. Measurement of Ion Concentration Inside Chamber
2.5. Viral Strain Utilized for Efficacy Testing
2.6. Generation of Viral Bioaerosol
2.7. Sampling of Viral Bioaerosol
2.8. Experimental Protocol for Ionizer Viral Inactivation Tests
2.9. Plaque Assay for Bacteriophage MS2 Quantification
2.10. Statistical Analysis
3. Results and Discussion:
3.1. Measurement of Effective Airflow Inside Duct
3.2. Measurement of Ion Concentration Inside Duct
3.3. Bacteriophage MS2 Inactivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pradhan, D.; Biswasroy, P.; Kumar Naik, P.; Ghosh, G.; Rath, G. A Review of Current Interventions for COVID-19 Prevention. Arch. Med. Res. 2020, 51, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Abkar, L.; Zimmermann, K.; Dixit, F.; Kheyrandish, A.; Mohseni, M. COVID-19 Pandemic Lesson Learned- Critical Parameters and Research Needs for UVC Inactivation of Viral Aerosols. J. Hazard. Mater. Adv. 2022, 8, 100183. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Chatterjee, P.; Lichtfouse, E.; Martel, J.A.; Hwang, M.; Jinadatha, C.; Sharma, V.K. Classical and Alternative Disinfection Strategies to Control the COVID-19 Virus in Healthcare Facilities: A Review. Environ. Chem. Lett. 2021, 19, 1945–1951. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhou, J.; Wang, C.; Meng, G.; Li, Y.; Jarin, M.; Wu, Z.; Xie, X. Airborne Pathogenic Microorganisms and Air Cleaning Technology Development: A Review. J. Hazard. Mater. 2022, 424, 127429. [Google Scholar] [CrossRef]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 Pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Matheson, N.J.; Lehner, P.J. How Does SARS-CoV-2 Cause COVID-19? Science 2020, 369, 510–511. [Google Scholar] [CrossRef]
- Douwes, J.; Eduard, W.; Thorne, P.S. Bioaerosols. In International Encyclopedia of Public Health; Academic Press: Cambridge, MA, USA, 2008; pp. 287–297. [Google Scholar] [CrossRef]
- Rathnasinghe, R.; Jangra, S.; Miorin, L.; Schotsaert, M.; Yahnke, C.; Garcίa-Sastre, A. The Virucidal Effects of 405 Nm Visible Light on SARS-CoV-2 and Influenza A Virus. Sci. Rep. 2021, 11, 19470. [Google Scholar] [CrossRef]
- Singh, D.; Soorneedi, A.R.; Vaze, N.; Domitrovic, R.; Sharp, F.; Lindsey, D.; Rohr, A.; Moore, M.D.; Koutrakis, P.; Nardell, E.; et al. Assessment of SARS-CoV-2 Surrogate Inactivation on Surfaces and in Air Using UV and Blue Light-Based Intervention Technologies. J. Air Waste Manag. Assoc. 2023, 73, 200–211. [Google Scholar] [CrossRef]
- Reed, N.G. The History of Ultraviolet Germicidal Irradiation for Air Disinfection. Public Health Rep. 2010, 125, 15–27. [Google Scholar] [CrossRef]
- Vaze, N.D.; Gallagher, M.J.; Park, S.; Fridman, G.; Vasilets, V.N.; Gutsol, A.F.; Anandan, S.; Friedman, G.; Fridman, A.A. Inactivation of Bacteria in Flight by Direct Exposure to Nonthermal Plasma. IEEE Trans. Plasma Sci. 2010, 38, 3234–3240. [Google Scholar] [CrossRef]
- Huang, R.; Vaze, N.; Soorneedi, A.; Moore, M.D.; Xue, Y.; Bello, D.; Demokritou, P. Inactivation of Hand Hygiene-Related Pathogens Using Engineered Water Nanostructures. ACS Sustain. Chem. Eng. 2019, 7, 19761–19769. [Google Scholar] [CrossRef]
- Vaze, N.; Soorneedi, A.R.; Moore, M.D.; Demokritou, P. Inactivating SARS-CoV-2 Surrogates on Surfaces Using Engineered Water Nanostructures Incorporated with Nature Derived Antimicrobials. Nanomaterials 2022, 12, 1735. [Google Scholar] [CrossRef] [PubMed]
- Vaze, N.; Pyrgiotakis, G.; Mena, L.; Baumann, R.; Demokritou, A.; Ericsson, M.; Zhang, Y.; Bello, D.; Eleftheriadou, M.; Demokritou, P. A Nano-Carrier Platform for the Targeted Delivery of Nature-Inspired Antimicrobials Using Engineered Water Nanostructures for Food Safety Applications. Food Control 2019, 96, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Vaze, N.; Demokritou, P. Using Engineered Water Nanostructures (EWNS) for Wound Disinfection: Case Study of Acinetobacter Baumannii Inactivation on Skin and the Inhibition of Biofilm Formation. Nanomed. Nanotechnol. Biol. Med. 2022, 42, 102537. [Google Scholar] [CrossRef]
- Vaze, N.; Pyrgiotakis, G.; McDevitt, J.; Mena, L.; Melo, A.; Bedugnis, A.; Kobzik, L.; Eleftheriadou, M.; Demokritou, P. Inactivation of Common Hospital Acquired Pathogens on Surfaces and in Air Utilizing Engineered Water Nanostructures (EWNS) Based Nano-Sanitizers. Nanomed. Nanotechnol. Biol. Med. 2019, 18, 234–242. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, S.G.; Hwang, J. Application of Corona Discharge-Generated Air Ions for Filtration of Aerosolized Virus and Inactivation of Filtered Virus. J. Aerosol Sci. 2017, 107, 31–40. [Google Scholar] [CrossRef]
- Mendis, D.A.; Rosenberg, M.; Azam, F. A Note on the Possible Electrostatic Disruption of Bacteria. IEEE Trans. Plasma Sci. 2000, 28, 1304–1306. [Google Scholar] [CrossRef]
- Lim, M.Y.; Kim, J.M.; Lee, J.E.; Ko, G. Characterization of Ozone Disinfection of Murine Norovirus. Appl. Environ. Microbiol. 2010, 76, 1120. [Google Scholar] [CrossRef]
- Woerpel, H. RGF Environmental Group Takes Home Top DDA IAQ Honors: Respiro’s CO/Pro Earns the Silver Award. Air Cond. Heat. Refrig. News 2023, 279, 22–23. [Google Scholar]
- Lee, S.G.; Hyun, J.; Hwa Lee, S.; Hwang, J. One-Pass Antibacterial Efficacy of Bipolar Air Ions against Aerosolized Staphylococcus Epidermidis in a Duct Flow. J. Aerosol Sci. 2014, 69, 71–81. [Google Scholar] [CrossRef]
- Fletcher, L.A.; Gaunt, L.F.; Beggs, C.B.; Shepherd, S.J.; Sleigh, P.A.; Noakes, C.J.; Kerr, K.G. Bactericidal Action of Positive and Negative Ions in Air. BMC Microbiol. 2007, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- La, A.; Zhang, Q.; Levin, D.B.; Coombs, K.M. The Effectiveness of Air Ionization in Reducing Bioaerosols and Airborne PRRS Virus in a Ventilated Space. Trans. ASABE 2019, 62, 1299–1314. [Google Scholar] [CrossRef]
- Essien, D.; Coombs, K.; Levin, D.; Zhang, Q. Effectiveness of Negative Air Ionization for Removing Viral Bioaerosols. In Proceedings of the CSBE/SCGAB 2017 Annual Conference, Winnipeg, MB, Canada, 6–10 August 2017. [Google Scholar]
- Berry, G.; Parsons, A.; Morgan, M.; Rickert, J.; Cho, H. A Review of Methods to Reduce the Probability of the Airborne Spread of COVID-19 in Ventilation Systems and Enclosed Spaces. Environ. Res. 2022, 203, 111765. [Google Scholar] [CrossRef] [PubMed]
- Desai, G.; Ramachandran, G.; Goldman, E.; Esposito, W.; Galione, A.; Lal, A.; Choueiri, T.K.; Fay, A.; Jordan, W.; Schaffner, D.W.; et al. Efficacy of Grignard Pure to Inactivate Airborne Phage MS2, a Common SARS-CoV-2 Surrogate. Environ. Sci. Technol. 2023, 57, 4231–4240. [Google Scholar] [CrossRef]
- String, G.M.; White, M.R.; Gute, D.M.; Mühlberger, E.; Lantagne, D.S. Selection of a SARS-CoV-2 Surrogate for Use in Surface Disinfection Efficacy Studies with Chlorine and Antimicrobial Surfaces. Environ. Sci. Technol. Lett. 2021, 8, 995–1001. [Google Scholar] [CrossRef]
- Ijaz, M.K.; Zargar, B.; Nims, R.W.; McKinney, J.; Sattar, S.A. Rapid Virucidal Activity of an Air Sanitizer against Aerosolized MS2 and Phi6 Phage Surrogates for Non-Enveloped and Enveloped Vertebrate Viruses, Including SARS-CoV-2. Appl. Environ. Microbiol. 2025, 91, e01426-24. [Google Scholar] [CrossRef]
- Wright, J.; Onarinde, B.; Ortali, A. Effect of UV-C on Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and SARS-CoV-2 Virus Surrogate (MS2 Bacteriophage) Inoculated onto Stainless Steel Surface. 2021. Available online: https://repository.lincoln.ac.uk/articles/conference_contribution/Effect_of_UV-C_on_Escherichia_coli_Staphylococcus_aureus_Salmonella_Typhimurium_and_SARS-CoV-2_Virus_Surrogate_MS2_bacteriophage_Inoculated_onto_Stainless_Steel_Surface/25177841 (accessed on 25 February 2025).
- VEVOR Air Scrubber with 3-Stage Filtration, Stackable Negative Air Machine 550 CFM, Air Cleaner with MERV10, Carbon, H13 HEPA, for Home, Industrial and Commercial Use|VEVOR US. Available online: https://www.vevor.com/air-scrubber-c_12068/vevor-air-scrubber-with-3-stage-filtration-stackable-negative-air-machine-550-cfm-air-cleaner-with-merv10-carbon-h13-hepa-for-home-industrial-and-commercial-use-p_010758224885 (accessed on 4 June 2024).
- Lin, K.; Schulte, C.R.; Marr, L.C. Survival of MS2 and Φ6 Viruses in Droplets as a Function of Relative Humidity, PH, and Salt, Protein, and Surfactant Concentrations. PLoS ONE 2020, 15, e0243505. [Google Scholar] [CrossRef]
- Zuo, Z.; Kuehn, T.H.; Bekele, A.Z.; Mor, S.K.; Verma, H.; Goyal, S.M.; Raynor, P.C.; Pui, D.Y.H. Survival of Airborne MS2 Bacteriophage Generated from Human Saliva, Artificial Saliva, and Cell Culture Medium. Appl. Environ. Microbiol. 2014, 80, 2796–2803. [Google Scholar] [CrossRef]
- Snelling, W.J.; Afkhami, A.; Turkington, H.L.; Carlisle, C.; Cosby, S.L.; Hamilton, J.W.J.; Ternan, N.G.; Dunlop, P.S.M. Efficacy of Single Pass UVC Air Treatment for the Inactivation of Coronavirus, MS2 Coliphage and Staphylococcus Aureus Bioaerosols. J. Aerosol Sci. 2022, 164, 106003. [Google Scholar] [CrossRef]
- Wang, I.J.; Chen, Y.C.; Su, C.; Tsai, M.H.; Shen, W.T.; Bai, C.H.; Yu, K.P. Effectiveness of the Nanosilver/TiO2-Chitosan Antiviral Filter on the Removal of Viral Aerosols. J. Aerosol Med. Pulm. Drug Deliv. 2021, 34, 293–302. [Google Scholar] [CrossRef]
- Dlamini, W.N.; Yao, T.C.; Lee, H.J.; Berekute, A.K.; Sallah-Ud-Din, R.; Siregar, S.; Yu, K.P. Enhanced Removal of Viral Aerosols Using Nanosilver/TiO2-Chitosan Filters Combined with a Negative Air Ionizer. J. Environ. Chem. Eng. 2024, 12, 112973. [Google Scholar] [CrossRef]
- Callanan, J.; Stockdale, S.R.; Shkoporov, A.; Draper, L.A.; Ross, R.P.; Hill, C. Expansion of Known SsRNA Phage Genomes: From Tens to over a Thousand. Sci. Adv. 2020, 6, eaay5981. [Google Scholar] [CrossRef] [PubMed]
- Shahin, K.; Zhang, L.; Mehraban, M.H.; Collard, J.M.; Hedayatkhah, A.; Mansoorianfar, M.; Soleimani-Delfan, A.; Wang, R. Clinical and Experimental Bacteriophage Studies: Recommendations for Possible Approaches for Standing against SARS-CoV-2. Microb. Pathog. 2022, 164, 105442. [Google Scholar] [CrossRef] [PubMed]
- EPA. How Much Ventilation Do I Need in My Home to Improve Indoor Air Quality?|US EPA. Available online: https://www.epa.gov/indoor-air-quality-iaq/how-much-ventilation-do-i-need-my-home-improve-indoor-air-quality (accessed on 25 February 2025).
- ASHRAE Standards 62.1 & 62.2. Available online: https://www.ashrae.org/technical-resources/bookstore/standards-62-1-62-2 (accessed on 4 June 2024).
- Wu, Y.; Liang, Y.; Wei, K.; Li, W.; Yao, M.; Zhang, J.; Grinshpun, S.A. MS2 Virus Inactivation by Atmospheric-Pressure Cold Plasma Using Different Gas Carriers and Power Levels. Appl. Environ. Microbiol. 2015, 81, 996–1002. [Google Scholar] [CrossRef]
- Tseng, C.C.; Li, C.S. Ozone for Inactivation of Aerosolized Bacteriophages. Aerosol Sci. Technol. 2006, 40, 683–689. [Google Scholar] [CrossRef]
- Pyrgiotakis, G.; McDevitt, J.; Gao, Y.; Branco, A.; Eleftheriadou, M.; Lemos, B.; Nardell, E.; Demokritou, P. Mycobacteria Inactivation Using Engineered Water Nanostructures (EWNS). Nanomedicine 2014, 10, 1175–1183. [Google Scholar] [CrossRef]
- Prehn, F.; Timmermann, E.; Kettlitz, M.; Schaufler, K.; Günther, S.; Hahn, V. Inactivation of Airborne Bacteria by Plasma Treatment and Ionic Wind for Indoor Air Cleaning. Plasma Process. Polym. 2020, 17, 2000027. [Google Scholar] [CrossRef]
- Farooq, S.; Tizaoui, C. A Critical Review on the Inactivation of Surface and Airborne SARS-CoV-2 Virus by Ozone Gas. Crit. Rev. Environ. Sci. Technol. 2023, 53, 87–109. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Disinfectants for Emerging Viral Pathogens (EVPs): List Q. 2022. Available online: https://www.epa.gov/pesticide-registration/disinfectants-emerging-viral-pathogens-evps-list-q (accessed on 24 February 2025).
Experimental Conditions | Device A Ions (#/cc) | Device B Ions (#/cc) |
---|---|---|
No Aerosol Injection (Nebulizer OFF) | 2.836 (±0.16) × 105 | 1.578 (±0.15) × 106 |
Aerosol Injection (Nebulizer ON) | 2.546 (±0.31) × 105 | 1.116 (±0.05) × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaze, N.; Gold, B.; Lindsey, D.; Moore, M.D.; Koutrakis, P.; Demokritou, P. An Assessment of the Efficacy of Commercial Air Ionizer Systems Against a SARS-CoV-2 Surrogate. Microorganisms 2025, 13, 593. https://doi.org/10.3390/microorganisms13030593
Vaze N, Gold B, Lindsey D, Moore MD, Koutrakis P, Demokritou P. An Assessment of the Efficacy of Commercial Air Ionizer Systems Against a SARS-CoV-2 Surrogate. Microorganisms. 2025; 13(3):593. https://doi.org/10.3390/microorganisms13030593
Chicago/Turabian StyleVaze, Nachiket, Brittany Gold, Douglas Lindsey, Matthew D. Moore, Petros Koutrakis, and Philip Demokritou. 2025. "An Assessment of the Efficacy of Commercial Air Ionizer Systems Against a SARS-CoV-2 Surrogate" Microorganisms 13, no. 3: 593. https://doi.org/10.3390/microorganisms13030593
APA StyleVaze, N., Gold, B., Lindsey, D., Moore, M. D., Koutrakis, P., & Demokritou, P. (2025). An Assessment of the Efficacy of Commercial Air Ionizer Systems Against a SARS-CoV-2 Surrogate. Microorganisms, 13(3), 593. https://doi.org/10.3390/microorganisms13030593