Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications
Abstract
:1. Introduction
2. Extracellular Vesicles: More than Just Cellular Trash
3. Archaeal EV
3.1. EVs as a Communication Tool That Transfer Material from Cell to Cell
3.2. Structural Differences Between Archaeal EVs and Other Domains
4. Bacterial Extracellular Vesicles (BEVs)
BEV Type | Producing Bacteria | Size | Origin/Composition | Biogenesis Mechanism | Functions | References |
---|---|---|---|---|---|---|
Outer membrane vesicles (OMVs) | Gram-negative | 20–400 nm | Outer membrane: LPSs, proteins, and virulence factors. | Outer membrane budding, phospholipid accumulation, and peptidoglycan linkage loss | Virulence factor transport, HGT, biofilm formation, and host immune modulation | [70,71,78] |
10–300 nm | Outer membrane, periplasmic components | OM–PE bond loss; PE fragment accumulation; membrane curvature | Cellular communication, surface modification, waste removal | [13,28,77] | ||
Variable | Cytoplasmic materials (DNA, ATP) | Similar to OMVs | Genetic material transfer | [29,79] | ||
Explosive outer membrane vesicles (E-OMVs) | Gram-negative | Variable | Outer membrane | Phage-mediated lysis | Genetic material transfer | [81] |
Outer-inner membrane vesicles (O-IMVs) | Gram-negative bacteria | Variable; often larger than OMVs | Enclosed by both outer and inner membranes; contain cytoplasmic components | Bulging of both inner and outer membranes, through cell wall degradation or membrane fusion events | Transfer of intracellular components, including genetic material; potential role in stress response | [74] |
Cytoplasmic membrane vesicles (CMVs) | Gram-positive | 20–400 nm | Cytoplasmic membrane, cross peptidoglycan layer | Turgor pressure; local peptidoglycan degradation by EV-associated enzymes (PBPs, autolysins) | Communication, immune stimulation, genetic exchange | [29,73,75,82,83,84,85,87] |
Tube-shaped membranous structures (TSMSs) | Gram-positive and Gram-negative | 50–70 nm | Tubular, intercellular bridges | Poorly understood | Intercellular material exchange | [26,45,72,80,82] |
Tuberculosis vesicles (TBVs) | Mycobacterium tuberculosis | Variable | Enriched with immunomodulatory molecules | Genetic regulation by Pst/SenX3-RegX3 and vesiculogenesis pathways | Modulate host immune responses, potential role in latency and persistence | [86,88] |
5. Eukaryotic EVs
5.1. Exosomes
5.2. Microvesicles
5.3. Apoptotic Bodies
6. Interdomain Interactions
6.1. Role in Diseases
6.2. Exploring the Potential Role of EV Cross-Talking
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EVs | Extracellular vesicles |
BEVs | Bacteria-derived extracellular vesicles |
AEVs | Archaea-derived extracellular vesicles |
References
- Gill, S.; Catchpole, R.; Forterre, P. Extracellular Membrane Vesicles in the Three Domains of Life and Beyond. FEMS Microbiol. Rev. 2018, 43, 273–303. [Google Scholar] [CrossRef] [PubMed]
- Stathatos, I.; Koumandou, V.L. Comparative Analysis of Prokaryotic Extracellular Vesicle Proteins and Their Targeting Signals. Microorganisms 2023, 11, 1977. [Google Scholar] [CrossRef] [PubMed]
- Mobarak, H.; Javid, F.; Narmi, M.T.; Mardi, N.; Sadeghsoltani, F.; Khanicheragh, P.; Narimani, S.; Mahdipour, M.; Sokullu, E.; Valioglu, F.; et al. Prokaryotic Microvesicles Ortholog of Eukaryotic Extracellular Vesicles in Biomedical Fields. Cell Commun. Signal. 2024, 22, 80. [Google Scholar] [CrossRef] [PubMed]
- Raposo, G.; Stoorvogel, W. Extracellular Vesicles: Exosomes, Microvesicles, and Friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Domingues, S.; Nielsen, K.M. Membrane Vesicles and Horizontal Gene Transfer in Prokaryotes. Curr. Opin. Microbiol. 2017, 38, 16–21. [Google Scholar] [CrossRef]
- Kouwaki, T.; Okamoto, M.; Tsukamoto, H.; Fukushima, Y.; Oshiumi, H. Extracellular Vesicles Deliver Host and Virus RNA and Regulate Innate Immune Response. Int. J. Mol. Sci. 2017, 18, 666. [Google Scholar] [CrossRef]
- Takasugi, M. Emerging Roles of Extracellular Vesicles in Cellular Senescence and Aging. Aging Cell 2018, 17, e12734. [Google Scholar] [CrossRef]
- Tsatsaronis, J.A.; Franch-Arroyo, S.; Resch, U.; Charpentier, E. Extracellular Vesicle RNA: A Universal Mediator of Microbial Communication? Trends Microbiol. 2018, 26, 401–410. [Google Scholar] [CrossRef]
- Extracellular Vesicles in Cancer—Implications for Future Improvements in Cancer Care|Nature Reviews Clinical Oncology. Available online: https://www.nature.com/articles/s41571-018-0036-9 (accessed on 5 June 2024).
- Extracellular Vesicles Are the Trojan Horses of Viral Infection—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1369527416300595?via%3Dihub (accessed on 5 June 2024).
- Nolte-‘t Hoen, E.; Cremer, T.; Gallo, R.C.; Margolis, L.B. Extracellular Vesicles and Viruses: Are They Close Relatives? Proc. Natl. Acad. Sci. USA 2016, 113, 9155–9161. [Google Scholar] [CrossRef]
- O’Donoghue, E.J.; Krachler, A.M. Mechanisms of Outer Membrane Vesicle Entry into Host Cells. Cell. Microbiol. 2016, 18, 1508–1517. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Kuehn, M.J. Outer-Membrane Vesicles from Gram-Negative Bacteria: Biogenesis and Functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.H.; Bayraktar, E.; Helal, G.K.; Abd-Ellah, M.F.; Amero, P.; Chavez-Reyes, A.; Rodriguez-Aguayo, C. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int. J. Mol. Sci. 2017, 18, 538. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- De la Torre Gomez, C.; Goreham, R.V.; Bech Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes with a Focus on Human Breast Milk. Front. Genet. 2018, 9, 92. [Google Scholar] [CrossRef]
- Kalra, H.; Drummen, G.P.C.; Mathivanan, S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int. J. Mol. Sci. 2016, 17, 170. [Google Scholar] [CrossRef]
- Guo, W.; Gao, Y.; Li, N.; Shao, F.; Wang, C.; Wang, P.; Yang, Z.; Li, R.; He, J. Exosomes: New Players in Cancer. Oncol. Rep. 2017, 38, 665–675. [Google Scholar] [CrossRef]
- Ellen, A.F.; Zolghadr, B.; Driessen, A.M.J.; Albers, S.-V. Shaping the Archaeal Cell Envelope. Archaea 2010, 2010, 608243. [Google Scholar] [CrossRef]
- Liu, J.; Soler, N.; Gorlas, A.; Cvirkaite-Krupovic, V.; Krupovic, M.; Forterre, P. Extracellular Membrane Vesicles and Nanotubes in Archaea. microLife 2021, 2, uqab007. [Google Scholar] [CrossRef]
- Kim, D.-K.; Lee, J.; Simpson, R.J.; Lötvall, J.; Gho, Y.S. EVpedia: A Community Web Resource for Prokaryotic and Eukaryotic Extracellular Vesicles Research. Semin. Cell Dev. Biol. 2015, 40, 4–7. [Google Scholar] [CrossRef]
- Dagnelie, M.-A.; Corvec, S.; Khammari, A.; Dréno, B. Bacterial Extracellular Vesicles: A New Way to Decipher Host-Microbiota Communications in Inflammatory Dermatoses. Exp. Dermatol. 2020, 29, 22–28. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Witwer, K.W.; Goberdhan, D.C.; O’Driscoll, L.; Théry, C.; Welsh, J.A.; Blenkiron, C.; Buzás, E.I.; Di Vizio, D.; Erdbrügger, U.; Falcón-Pérez, J.M.; et al. Updating MISEV: Evolving the Minimal Requirements for Studies of Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12182. [Google Scholar] [CrossRef] [PubMed]
- Pathirana, R.D.; Kaparakis-Liaskos, M. Bacterial Membrane Vesicles: Biogenesis, Immune Regulation and Pathogenesis. Cell. Microbiol. 2016, 18, 1518–1524. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Giv, N.; Basas, A.; Hicks, C.; El-Omar, E.; El-Assaad, F.; Hosseini-Beheshti, E. Bacterial Extracellular Vesicles and Their Novel Therapeutic Applications in Health and Cancer. Front. Cell Infect. Microbiol. 2022, 12, 962216. [Google Scholar] [CrossRef]
- Sabatke, B.; Rossi, I.V.; Sana, A.; Bonato, L.B.; Ramirez, M.I. Extracellular Vesicles Biogenesis and Uptake Concepts: A Comprehensive Guide to Studying Host–Pathogen Communication. Mol. Microbiol. 2024, 122, 613–629. [Google Scholar] [CrossRef]
- Deatherage, B.L.; Cookson, B.T. Membrane Vesicle Release in Bacteria, Eukaryotes, and Archaea: A Conserved yet Underappreciated Aspect of Microbial Life. Infect. Immun. 2012, 80, 1948–1957. [Google Scholar] [CrossRef]
- Jahromi, L.P.; Fuhrmann, G. Bacterial Extracellular Vesicles: Understanding Biology Promotes Applications as Nanopharmaceuticals. Adv. Drug Deliv. Rev. 2021, 173, 125–140. [Google Scholar] [CrossRef]
- Albers, S.-V.; Meyer, B.H. The Archaeal Cell Envelope. Nat. Rev. Microbiol. 2011, 9, 414–426. [Google Scholar] [CrossRef]
- König, H.; Rachel, R.; Claus, H. Proteinaceous Surface Layers of Archaea: Ultrastructure and Biochemistry. In Archaea; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 315–340. ISBN 978-1-68367-168-8. [Google Scholar]
- Küper, U.; Meyer, C.; Müller, V.; Rachel, R.; Huber, H. Energized Outer Membrane and Spatial Separation of Metabolic Processes in the Hyperthermophilic Archaeon Ignicoccus Hospitalis. Proc. Natl. Acad. Sci. USA 2010, 107, 3152–3156. [Google Scholar] [CrossRef]
- Burghardt, T.; Näther, D.J.; Junglas, B.; Huber, H.; Rachel, R. The Dominating Outer Membrane Protein of the Hyperthermophilic Archaeum Ignicoccus Hospitalis: A Novel Pore-Forming Complex. Mol. Microbiol. 2007, 63, 166–176. [Google Scholar] [CrossRef]
- Rigel, N.W.; Silhavy, T.J. Making a Beta Barrel: Assembly of Outer Membrane Proteins in Gram Negative Bacteria. Curr. Opin. Microbiol. 2012, 15, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Klingl, A. S-Layer and Cytoplasmic Membrane—Exceptions from the Typical Archaeal Cell Wall with a Focus on Double Membranes. Front. Microbiol. 2014, 5, 624. [Google Scholar] [CrossRef] [PubMed]
- Perras, A.K.; Wanner, G.; Klingl, A.; Mora, M.; Auerbach, A.K.; Heinz, V.; Probst, A.J.; Huber, H.; Rachel, R.; Meck, S.; et al. Grappling Archaea: Ultrastructural Analyses of an Uncultivated, Cold-Loving Archaeon, and Its Biofilm. Front. Microbiol. 2014, 5, 397. [Google Scholar] [CrossRef] [PubMed]
- Steenbakkers, P.J.M.; Geerts, W.J.; Ayman-Oz, N.A.; Keltjens, J.T. Identification of Pseudomurein Cell Wall Binding Domains. Mol. Microbiol. 2006, 62, 1618–1630. [Google Scholar] [CrossRef]
- Liu, J.; Cvirkaite-Krupovic, V.; Commere, P.-H.; Yang, Y.; Zhou, F.; Forterre, P.; Shen, Y.; Krupovic, M. Archaeal Extracellular Vesicles Are Produced in an ESCRT-Dependent Manner and Promote Gene Transfer and Nutrient Cycling in Extreme Environments. ISME J. 2021, 15, 2892–2905. [Google Scholar] [CrossRef]
- Pende, N.; Sogues, A.; Megrian, D.; Sartori-Rupp, A.; England, P.; Palabikyan, H.; Rittmann, S.K.-M.R.; Graña, M.; Wehenkel, A.M.; Alzari, P.M.; et al. SepF Is the FtsZ Anchor in Archaea, with Features of an Ancestral Cell Division System. Nat. Commun. 2021, 12, 3214. [Google Scholar] [CrossRef]
- Ithurbide, S.; Gribaldo, S.; Albers, S.-V.; Pende, N. Spotlight on FtsZ-Based Cell Division in Archaea. Trends Microbiol. 2022, 30, 665–678. [Google Scholar] [CrossRef]
- Makarova, K.S.; Yutin, N.; Bell, S.D.; Koonin, E.V. Evolution of Diverse Cell Division and Vesicle Formation Systems in Archaea. Nat. Rev. Microbiol. 2010, 8, 731–741. [Google Scholar] [CrossRef]
- Ettema, T.J.G.; Lindås, A.-C.; Bernander, R. An Actin-Based Cytoskeleton in Archaea. Mol. Microbiol. 2011, 80, 1052–1061. [Google Scholar] [CrossRef]
- Van Wolferen, M.; Pulschen, A.; Baum, B.; Gribaldo, S.; Albers, S.-V. The Cell Biology of Archaea. Nat. Microbiol. 2022, 7, 1744–1755. [Google Scholar] [CrossRef]
- Kreiling, V.; Thormann, K.M. Polarity of C-Di-GMP Synthesis and Degradation. microLife 2023, 4, uqad014. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Z.; Liu, X.; Tyler, B.M. Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication with Microbes. Front. Microbiol. 2022, 13, 817844. [Google Scholar] [CrossRef] [PubMed]
- Ellen, A.F.; Rohulya, O.V.; Fusetti, F.; Wagner, M.; Albers, S.-V.; Driessen, A.J.M. The Sulfolobicin Genes of Sulfolobus acidocaldariusEncode Novel Antimicrobial Proteins. J. Bacteriol. 2011, 193, 4380–4387. [Google Scholar] [CrossRef] [PubMed]
- Prangishvili, D.; Holz, I.; Stieger, E.; Nickell, S.; Kristjansson, J.K.; Zillig, W. Sulfolobicins, Specific Proteinaceous Toxins Produced by Strains of the Extremely Thermophilic Archaeal Genus Sulfolobus. J. Bacteriol. 2000, 182, 2985–2988. [Google Scholar] [CrossRef] [PubMed]
- Gaudin, M.; Krupovic, M.; Marguet, E.; Gauliard, E.; Cvirkaite-Krupovic, V.; Le Cam, E.; Oberto, J.; Forterre, P. Extracellular Membrane Vesicles Harbouring Viral Genomes. Environ. Microbiol. 2014, 16, 1167–1175. [Google Scholar] [CrossRef]
- Whittaker, C.A.; Hynes, R.O. Distribution and Evolution of von Willebrand/Integrin A Domains: Widely Dispersed Domains with Roles in Cell Adhesion and Elsewhere. Mol. Biol. Cell 2002, 13, 3369–3387. [Google Scholar] [CrossRef]
- Smolka, M.B.; Chen, S.; Maddox, P.S.; Enserink, J.M.; Albuquerque, C.P.; Wei, X.X.; Desai, A.; Kolodner, R.D.; Zhou, H. An FHA Domain–Mediated Protein Interaction Network of Rad53 Reveals Its Role in Polarized Cell Growth. J. Cell Biol. 2006, 175, 743–753. [Google Scholar] [CrossRef]
- Kolas, N.K.; Chapman, J.R.; Nakada, S.; Ylanko, J.; Chahwan, R.; Sweeney, F.D.; Panier, S.; Mendez, M.; Wildenhain, J.; Thomson, T.M.; et al. Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase. Science 2007, 318, 1637–1640. [Google Scholar] [CrossRef]
- Tuckwell, D. Evolution of von Willebrand Factor A (VWA) Domains. Biochem. Soc. Trans. 1999, 27, 835–840. [Google Scholar] [CrossRef]
- Ellen, A.F.; Albers, S.-V.; Huibers, W.; Pitcher, A.; Hobel, C.F.V.; Schwarz, H.; Folea, M.; Schouten, S.; Boekema, E.J.; Poolman, B.; et al. Proteomic Analysis of Secreted Membrane Vesicles of Archaeal Sulfolobus Species Reveals the Presence of Endosome Sorting Complex Components. Extremophiles 2009, 13, 67–79. [Google Scholar] [CrossRef]
- Soler, N.; Marguet, E.; Verbavatz, J.-M.; Forterre, P. Virus-like Vesicles and Extracellular DNA Produced by Hyperthermophilic Archaea of the Order Thermococcales. Res. Microbiol. 2008, 159, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Soler, N.; Gaudin, M.; Marguet, E.; Forterre, P. Plasmids, Viruses and Virus-like Membrane Vesicles from Thermococcales. Biochem. Soc. Trans. 2011, 39, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Kwon, Y.M.; Chiura, H.X.; Yang, E.C.; Bae, S.S.; Kang, S.G.; Lee, J.-H.; Yoon, H.S.; Kim, S.-J. Extracellular Vesicles of the Hyperthermophilic Archaeon “Thermococcus Onnurineus” NA1T. Appl. Environ. Microbiol. 2015, 81, 4591–4599. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, K.; Hampton, T.H.; Jarek, M.; Scharfe, M.; Gerber, S.A.; Mielcarz, D.W.; Demers, E.G.; Dolben, E.L.; Hammond, J.H.; Hogan, D.A.; et al. A Novel Mechanism of Host-Pathogen Interaction through sRNA in Bacterial Outer Membrane Vesicles. PLoS Pathog. 2016, 12, e1005672. [Google Scholar] [CrossRef]
- Moriano-Gutierrez, S.; Bongrand, C.; Essock-Burns, T.; Wu, L.; McFall-Ngai, M.J.; Ruby, E.G. The Noncoding Small RNA SsrA Is Released by Vibrio Fischeri and Modulates Critical Host Responses. PLoS Biol. 2020, 18, e3000934. [Google Scholar] [CrossRef]
- Mills, J.; Gebhard, L.J.; Schubotz, F.; Shevchenko, A.; Speth, D.R.; Liao, Y.; Duggin, I.G.; Marchfelder, A.; Erdmann, S. Extracellular Vesicle Formation in Euryarchaeota Is Driven by a Small GTPase. Proc. Natl. Acad. Sci. USA 2024, 121, e2311321121. [Google Scholar] [CrossRef]
- Gorlas, A.; Marguet, E.; Gill, S.; Geslin, C.; Guigner, J.-M.; Guyot, F.; Forterre, P. Sulfur Vesicles from Thermococcales: A Possible Role in Sulfur Detoxifying Mechanisms. Biochimie 2015, 118, 356–364. [Google Scholar] [CrossRef]
- Biller, S.J.; Schubotz, F.; Roggensack, S.E.; Thompson, A.W.; Summons, R.E.; Chisholm, S.W. Bacterial Vesicles in Marine Ecosystems. Science 2014, 343, 183–186. [Google Scholar] [CrossRef]
- Castelle, C.J.; Banfield, J.F. Major New Microbial Groups Expand Diversity and Alter Our Understanding of the Tree of Life. Cell 2018, 172, 1181–1197. [Google Scholar] [CrossRef]
- Chen, L.-X.; Méndez-García, C.; Dombrowski, N.; Servín-Garcidueñas, L.E.; Eloe-Fadrosh, E.A.; Fang, B.-Z.; Luo, Z.-H.; Tan, S.; Zhi, X.-Y.; Hua, Z.-S.; et al. Metabolic Versatility of Small Archaea Micrarchaeota and Parvarchaeota. ISME J. 2018, 12, 756–775. [Google Scholar] [CrossRef]
- Liu, X.; Li, M.; Castelle, C.J.; Probst, A.J.; Zhou, Z.; Pan, J.; Liu, Y.; Banfield, J.F.; Gu, J.-D. Insights into the Ecology, Evolution, and Metabolism of the Widespread Woesearchaeotal Lineages. Microbiome 2018, 6, 102. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, N.; Lee, J.-H.; Williams, T.A.; Offre, P.; Spang, A. Genomic Diversity, Lifestyles and Evolutionary Origins of DPANN Archaea. FEMS Microbiol. Lett. 2019, 366, fnz008. [Google Scholar] [CrossRef] [PubMed]
- Waters, E.; Hohn, M.J.; Ahel, I.; Graham, D.E.; Adams, M.D.; Barnstead, M.; Beeson, K.Y.; Bibbs, L.; Bolanos, R.; Keller, M.; et al. The Genome of Nanoarchaeum Equitans: Insights into Early Archaeal Evolution and Derived Parasitism. Proc. Natl. Acad. Sci. USA 2003, 100, 12984–12988. [Google Scholar] [CrossRef]
- Junglas, B.; Briegel, A.; Burghardt, T.; Walther, P.; Wirth, R.; Huber, H.; Rachel, R. Ignicoccus Hospitalis and Nanoarchaeum Equitans: Ultrastructure, Cell–Cell Interaction, and 3D Reconstruction from Serial Sections of Freeze-Substituted Cells and by Electron Cryotomography. Arch. Microbiol. 2008, 190, 395–408. [Google Scholar] [CrossRef]
- Jahn, U.; Summons, R.; Sturt, H.; Grosjean, E.; Huber, H. Composition of the Lipids of Nanoarchaeum Equitans and Their Origin from Its Host Ignicoccus Sp. Strain KIN4/I. Arch. Microbiol. 2004, 182, 404–413. [Google Scholar] [CrossRef]
- Jahn, U.; Gallenberger, M.; Paper, W.; Junglas, B.; Eisenreich, W.; Stetter, K.O.; Rachel, R.; Huber, H. Nanoarchaeum Equitans and Ignicoccus Hospitalis: New Insights into a Unique, Intimate Association of Two Archaea. J. Bacteriol. 2008, 190, 1743–1750. [Google Scholar] [CrossRef]
- Park, K.-S.; Lee, J.; Jang, S.C.; Kim, S.R.; Jang, M.H.; Lötvall, J.; Kim, Y.-K.; Gho, Y.S. Pulmonary Inflammation Induced by Bacteria-Free Outer Membrane Vesicles from Pseudomonas aeruginosa. Am. J. Respir. Cell Mol. Biol. 2013, 49, 637–645. [Google Scholar] [CrossRef]
- Brown, L.; Wolf, J.M.; Prados-Rosales, R.; Casadevall, A. Through the Wall: Extracellular Vesicles in Gram-Positive Bacteria, Mycobacteria and Fungi. Nat. Rev. Microbiol. 2015, 13, 620–630. [Google Scholar] [CrossRef]
- Hughes, D.T.; Sperandio, V. Inter-Kingdom Signalling: Communication between Bacteria and Their Hosts. Nat. Rev. Microbiol. 2008, 6, 111–120. [Google Scholar] [CrossRef]
- Kim, S.W.; Seo, J.-S.; Park, S.B.; Lee, A.R.; Lee, J.S.; Jung, J.W.; Chun, J.H.; Lazarte, J.M.S.; Kim, J.; Kim, J.-H.; et al. Significant Increase in the Secretion of Extracellular Vesicles and Antibiotics Resistance from Methicillin-Resistant Staphylococcus Aureus Induced by Ampicillin Stress. Sci. Rep. 2020, 10, 21066. [Google Scholar] [CrossRef]
- Chronopoulos, A.; Kalluri, R. Emerging Role of Bacterial Extracellular Vesicles in Cancer. Oncogene 2020, 39, 6951–6960. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shi, L.; Ren, Y.; Tan, X.; Liu, W.; Liu, Z. Applications of Human Skin Microbiota in the Cutaneous Disorders for Ecology-Based Therapy. Front. Cell Infect. Microbiol. 2020, 10, 570261. [Google Scholar] [CrossRef] [PubMed]
- Knox, K.W.; Vesk, M.; Work, E. Relation Between Excreted Lipopolysaccharide Complexes and Surface Structures of a Lysine-Limited Culture of Escherichia coli. J. Bacteriol. 1966, 92, 1206–1217. [Google Scholar] [CrossRef] [PubMed]
- Roier, S.; Zingl, F.G.; Cakar, F.; Durakovic, S.; Kohl, P.; Eichmann, T.O.; Klug, L.; Gadermaier, B.; Weinzerl, K.; Prassl, R.; et al. A Novel Mechanism for the Biogenesis of Outer Membrane Vesicles in Gram-Negative Bacteria. Nat. Commun. 2016, 7, 10515. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.; Park, J.; Gho, Y.S. Gram-Negative and Gram-Positive Bacterial Extracellular Vesicles. Semin. Cell Dev. Biol. 2015, 40, 97–104. [Google Scholar] [CrossRef]
- Pérez-Cruz, C.; Delgado, L.; López-Iglesias, C.; Mercade, E. Outer-Inner Membrane Vesicles Naturally Secreted by Gram-Negative Pathogenic Bacteria. PLoS ONE 2015, 10, e0116896. [Google Scholar] [CrossRef]
- Baidya, A.K.; Bhattacharya, S.; Dubey, G.P.; Mamou, G.; Ben-Yehuda, S. Bacterial Nanotubes: A Conduit for Intercellular Molecular Trade. Curr. Opin. Microbiol. 2018, 42, 1–6. [Google Scholar] [CrossRef]
- Turnbull, L.; Toyofuku, M.; Hynen, A.L.; Kurosawa, M.; Pessi, G.; Petty, N.K.; Osvath, S.R.; Cárcamo-Oyarce, G.; Gloag, E.S.; Shimoni, R.; et al. Explosive Cell Lysis as a Mechanism for the Biogenesis of Bacterial Membrane Vesicles and Biofilms. Nat. Commun. 2016, 7, 11220. [Google Scholar] [CrossRef]
- Toyofuku, M.; Morinaga, K.; Hashimoto, Y.; Uhl, J.; Shimamura, H.; Inaba, H.; Schmitt-Kopplin, P.; Eberl, L.; Nomura, N. Membrane Vesicle-Mediated Bacterial Communication. ISME J. 2017, 11, 1504–1509. [Google Scholar] [CrossRef]
- Lee, E.-Y.; Choi, D.-Y.; Kim, D.-K.; Kim, J.-W.; Park, J.O.; Kim, S.; Kim, S.-H.; Desiderio, D.M.; Kim, Y.-K.; Kim, K.-P.; et al. Gram-Positive Bacteria Produce Membrane Vesicles: Proteomics-Based Characterization of Staphylococcus Aureus-Derived Membrane Vesicles. Proteomics 2009, 9, 5425–5436. [Google Scholar] [CrossRef]
- Wang, X.; Thompson, C.D.; Weidenmaier, C.; Lee, J.C. Release of Staphylococcus Aureus Extracellular Vesicles and Their Application as a Vaccine Platform. Nat. Commun. 2018, 9, 1379. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Choi, C.-W.; Lee, T.; Kim, S.I.; Lee, J.-C.; Shin, J.-H. Transcription Factor σB Plays an Important Role in the Production of Extracellular Membrane-Derived Vesicles in Listeria Monocytogenes. PLoS ONE 2013, 8, e73196. [Google Scholar] [CrossRef] [PubMed]
- Rath, P.; Huang, C.; Wang, T.; Wang, T.; Li, H.; Prados-Rosales, R.; Elemento, O.; Casadevall, A.; Nathan, C.F. Genetic Regulation of Vesiculogenesis and Immunomodulation in Mycobacterium Tuberculosis. Proc. Natl. Acad. Sci. USA 2013, 110, E4790–E4797. [Google Scholar] [CrossRef]
- Resch, U.; Tsatsaronis, J.A.; Le Rhun, A.; Stübiger, G.; Rohde, M.; Kasvandik, S.; Holzmeister, S.; Tinnefeld, P.; Wai, S.N.; Charpentier, E. A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus. mBio 2016, 7, e00207-16. [Google Scholar] [CrossRef]
- White, D.W.; Elliott, S.R.; Odean, E.; Bemis, L.T.; Tischler, A.D. Mycobacterium Tuberculosis Pst/SenX3-RegX3 Regulates Membrane Vesicle Production Independently of ESX-5 Activity. mBio 2018, 9, e00778-18. [Google Scholar] [CrossRef]
- López-García, P.; Moreira, D. The symbiotic origin of the eukaryotic cell. Comptes Rendus. Biol. 2023, 346, 55–73. [Google Scholar] [CrossRef]
- Viegas, S.C.; Matos, R.G.; Arraiano, C.M. The Bacterial Counterparts of the Eukaryotic Exosome: An Evolutionary Perspective. Methods Mol. Biol. 2020, 2062, 37–46. [Google Scholar] [CrossRef]
- Gabaldón, T. Origin and Early Evolution of the Eukaryotic Cell. Annu. Rev. Microbiol. 2021, 75, 631–647. [Google Scholar] [CrossRef]
- Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol. Neurobiol. 2016, 36, 301–312. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The Biology, Function, and Biomedical Applications of Exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, Biogenesis and Function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.E.; Sneider, A.; Witwer, K.W.; Bergese, P.; Bhattacharyya, S.N.; Cocks, A.; Cocucci, E.; Erdbrügger, U.; Falcon-Perez, J.M.; Freeman, D.W.; et al. Biological Membranes in EV Biogenesis, Stability, Uptake, and Cargo Transfer: An ISEV Position Paper Arising from the ISEV Membranes and EVs Workshop. J. Extracell. Vesicles 2019, 8, 1684862. [Google Scholar] [CrossRef]
- Ramesh, D.; Bakkannavar, S.; Bhat, V.R.; Sharan, K. Extracellular Vesicles as Novel Drug Delivery Systems to Target Cancer and Other Diseases: Recent Advancements and Future Perspectives. F1000Research 2023, 12, 329. [Google Scholar] [CrossRef]
- Cocucci, E.; Meldolesi, J. Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef]
- Wollert, T.; Hurley, J.H. Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes. Nature 2010, 464, 864–869. [Google Scholar] [CrossRef]
- Henne, W.M.; Stenmark, H.; Emr, S.D. Molecular Mechanisms of the Membrane Sculpting ESCRT Pathway. Cold Spring Harb. Perspect. Biol. 2013, 5, a016766. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.-H.; Jeyaraj, M.; Qasim, M.; Kim, J.-H. Review of the Isolation, Characterization, Biological Function, and Multifarious Therapeutic Approaches of Exosomes. Cells 2019, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhang, Q.; Jiang, L. Current Knowledge on Exosome Biogenesis, Cargo-Sorting Mechanism and Therapeutic Implications. Membranes 2022, 12, 498. [Google Scholar] [CrossRef]
- Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science 2008, 319, 1244–1247. [Google Scholar] [CrossRef]
- Ståhl, A.; Johansson, K.; Mossberg, M.; Kahn, R.; Karpman, D. Exosomes and Microvesicles in Normal Physiology, Pathophysiology, and Renal Diseases. Pediatr. Nephrol. 2019, 34, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Battistelli, M.; Falcieri, E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology 2020, 9, 21. [Google Scholar] [CrossRef]
- Kerr, J.F.R.; Wyllie, A.H.; Currie, A.R. Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. Br. J. Cancer 1972, 26, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Hristov, M.; Erl, W.; Linder, S.; Weber, P.C. Apoptotic Bodies from Endothelial Cells Enhance the Number and Initiate the Differentiation of Human Endothelial Progenitor Cells in Vitro. Blood 2004, 104, 2761–2766. [Google Scholar] [CrossRef]
- Goldstein, B.; King, N. The Future of Cell Biology: Emerging Model Organisms. Trends Cell Biol. 2016, 26, 818–824. [Google Scholar] [CrossRef]
- Higuchi, M.d.L.; Reis, M.M.; Sambiase, N.V.; Palomino, S.A.P.; Castelli, J.B.; Gutierrez, P.S.; Aiello, V.D.; Ramires, J.A.F. Coinfection with Mycoplasma Pneumoniae and Chlamydia Pneumoniae in Ruptured Plaques Associated with Acute Myocardial Infarction. Arq. Bras. Cardiol. 2003, 81, 1–11. [Google Scholar] [CrossRef]
- Maia, I.L.; Nicolau, J.C.; Machado, M.d.N.; Maia, L.N.; Takakura, I.T.; Rocha, P.R.d.F.; Cordeiro, J.A.; Ramires, J.A.F. Prevalence of Chlamydia Pneumoniae and Mycoplasma Pneumoniae in Different Forms of Coronary Disease. Arq. Bras. Cardiol. 2009, 92, 405–411, 422–428, 439–445. [Google Scholar] [CrossRef]
- Higuchi, M.L.; Santos, M.H.; Roggério, A.; Kawakami, J.T.; Bezerra, H.G.; Canzian, M. A Role for Archaeal Organisms in Development of Atherosclerotic Vulnerable Plaques and Myxoid Matrices. Clinics 2006, 61, 473–478. [Google Scholar] [CrossRef]
- Moreno, C.R.; Ramires, J.A.F.; Lotufo, P.A.; Soeiro, A.M.; Oliveira, L.M.d.S.; Ikegami, R.N.; Kawakami, J.T.; Pereira, J.d.J.; Reis, M.M.; Higuchi, M.d.L. Morphomolecular Characterization of Serum Nanovesicles From Microbiomes Differentiates Stable and Infarcted Atherosclerotic Patients. Front. Cardiovasc. Med. 2021, 8, 694851. [Google Scholar] [CrossRef]
- Higuchi, M.d.L.; Kawakami, J.T.; Ikegami, R.N.; Reis, M.M.; Pereira, J.d.J.; Ianni, B.M.; Buck, P.; Oliveira, L.M.d.S.; Santos, M.H.H.; Hajjar, L.A.; et al. Archaea Symbiont of T. Cruzi Infection May Explain Heart Failure in Chagas Disease. Front. Cell. Infect. Microbiol. 2018, 8, 412. [Google Scholar] [CrossRef]
- Bates, S.T.; Berg-Lyons, D.; Caporaso, J.G.; Walters, W.A.; Knight, R.; Fierer, N. Examining the Global Distribution of Dominant Archaeal Populations in Soil. ISME J. 2011, 5, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bier, R.; Zgleszewski, L.; Peipoch, M.; Omondi, E.; Mukherjee, A.; Chen, F.; Zhang, C.; Kan, J. Distinct Distribution of Archaea from Soil to Freshwater to Estuary: Implications of Archaeal Composition and Function in Different Environments. Front. Microbiol. 2020, 11, 576661. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Morowitz, H.J. Ancient Genes in Contemporary Persistent Microbial Pathogens. Biol. Bull. 2006, 210, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Niemirowicz, G.; Parussini, F.; Agüero, F.; Cazzulo, J.J. Two Metallocarboxypeptidases from the Protozoan Trypanosoma Cruzi Belong to the M32 Family, Found so Far Only in Prokaryotes. Biochem. J. 2006, 401, 399–410. [Google Scholar] [CrossRef]
- Vianna, M.E.; Conrads, G.; Gomes, B.P.F.A.; Horz, H.P. Identification and Quantification of Archaea Involved in Primary Endodontic Infections. J. Clin. Microbiol. 2006, 44, 1274–1282. [Google Scholar] [CrossRef]
- Morris, B.E.L.; Henneberger, R.; Huber, H.; Moissl-Eichinger, C. Microbial Syntrophy: Interaction for the Common Good. FEMS Microbiol. Rev. 2013, 37, 384–406. [Google Scholar] [CrossRef]
Domain/Order | Role of Extracellular Vesicles (EVs) | Molecular Mechanisms | References |
---|---|---|---|
Euryarchaeota: Thermococcales | Stabilization of extracellular DNA under hyperthermic conditions; protection from nucleolytic degradation (e.g., micrococcal nuclease) | -Encapsulation of DNA within EVs for protection against degradation -Fusion of EVs with recipient cells for genetic transfer | [48,54,55,56] |
Euryarchaeota: Halobacteriales | Facilitation of genetic recombination between viral, plasmid, and host chromosomal DNA elements | -Transport and delivery of recombinant DNA via EVs -Mediation of horizontal gene transfer (HGT) between cells | [48,54,55,56] |
Crenarchaeota: Sulfolobales | Mediation of horizontal gene transfer (HGT) via EVs, a process termed ”vesiduction” | -Release of EVs containing nucleic acids -EV adhesion to recipient cells, followed by DNA internalization into the cytoplasm | [56,57,58,59] |
Haloarchaea (e.g., Haloarchaea volcanii) | Extracellular RNA packaging for regulation of gene expression at the population level | -Active packaging of RNA into EVs for population-wide gene regulation -EV-mediated intercellular communication | [56,57,58,59] |
Thermococcus spp. (T. prieurii and T. kodakaraensis) | Detoxification by sequestration and extracellular expulsion of excess sulfur | -Formation of sulfur-enriched EVs -Excretion of sulfur metabolites to alleviate cellular toxicity | [60] |
Crenarchaeota: Sulfolobus islandicus | Transfer of carbon and nitrogen for supporting heterotrophic growth under nutrient-limited conditions | -Release of EVs containing lipids, proteins, and nucleic acids -Metabolic support to heterotrophic microorganisms through EVs | [20,61] |
DPANN: Nanoarchaeum equitans and Ignicoccus hospitalis | Metabolite exchange in symbiotic relationships; involvement of EVs in host cell division | -Periplasmic transport of metabolites via EVs -Contribution of EVs to the formation of the outer membrane during cell division | [62,63,64,65,66,67,68,69] |
Features | Description | References |
---|---|---|
General characteristics | Origin: endosomal system in eukaryotic cells. | [3,94,95] |
Size: 30–150 nm in diameter. | ||
Surface markers: CD9, CD63, CD81, Hsp70, Hsp90, MHC molecules, TSG101, and ALIX. | ||
Presence in fluids | Detected in plasma, urine, saliva, cerebrospinal fluid, and breast milk | [97] |
Formation process | (1) Endosome formation via membrane invagination. | [94,96,98] |
(2) ILVs develop within MVBs. | ||
(3) MVBs fuse with the plasma membrane, releasing exosomes. | ||
Biogenesis and release | Pathways: ESCRT-dependent and ESCRT-independent (lipid rafts, ceramides, and tetraspanins). | [99,100,101,102,103] |
Release mechanism: controlled by sphingomyelinase and tetraspanins. |
Characteristics | Description | References |
---|---|---|
Biogenesis mechanism | Formed via outward budding of the plasma membrane, regulated by a calcium-dependent process | [104] |
Size range | 100–1000 nm | |
Membrane composition | Enriched with phosphatidylserine on the external leaflet, a defining feature of MVs | |
Surface glycan-binding proteins | Glycan-binding proteins on the MV surface mediate cell targeting and intercellular interactions | |
Biological functions | Intercellular communication | [93] |
Evolutionary analogs | Share structural and functional characteristics with extracellular vesicles from monoderm bacteria and archaea | [1] |
Characteristics | Description | References |
---|---|---|
Function in cell communication | Apoptotic bodies transfer genetic material and proteins, playing a crucial role in homeostasis. | [105] |
Discovery and terminology | First described as a key process in cell turnover, development, and tumor regression. | [106] |
Comparison with exosomes | Larger than exosomes, apoptotic bodies result from cell disassembly and aid immune signaling. | [95] |
Role in endothelial repair | Apoptotic bodies enhance endothelial progenitor cell differentiation, aiding vascular repair. | [107] |
Study in emerging models | Research on nontraditional models expands understanding of apoptosis beyond classic systems. | [108] |
Pathogen/Disease | Location of Archaeal EVs | Outcomes | Reference |
---|---|---|---|
Chlamydophila pneumoniae & Mycoplasma pneumoniae | Atherosclerotic plaques | Associated with inflammation and acute myocardial infarction. | [109] |
Serum (measured via serological study) | High serum antibody titers correlated with acute coronary syndromes. | [110] | |
Vulnerable plaques (myxoid matrix, foam cells) | Archaea contribute to plaque instability and co-infections. | [111] | |
Mycoplasma pneumoniae | Serum (extracellular vesicles from severe AMI patients) | Elevated archaeal EVs linked to worse prognosis in severe AMI. | [112] |
Chagas disease | Serum (microvesicles in Chagas disease patients) | Archaea in microvesicles may contribute to heart failure in Chagas disease. | [113] |
Topic | Key Points | References |
---|---|---|
Role of EVs in interdomain interactions | -EVs may facilitate horizontal gene transfer (HGT). | [114,115,116,117] |
-Acquisition of adaptive traits and exchange of genetic material. | ||
-Overcoming domain-specific barriers for gene transfer. | ||
EVs in metabolism and evolution | -The rTCA cycle may be influenced by gene transfer via EVs. | [116] |
-Facilitation of genetic exchange between archaea and bacteria for environmental adaptation. | ||
Horizontal gene transfer (HGT) | -Mediation of gene transfer (e.g., M32 peptidase) between archaea, bacteria, and trypanosomatids. | [117] |
-Contribution to evolutionary diversification through the acquisition of new genes. | ||
Metabolic interactions between archaea and bacteria | -Facilitation of metabolic exchanges to improve ecosystem stability and cooperation. | [118] |
-Transfer of genes related to metabolism and pathogenicity, with potential links to human diseases. | ||
Challenges in studying EV-mediated interactions | -Difficulty in replicating natural conditions in the laboratory. | [119] |
-Complexity of natural mutualistic processes hindering experimental studies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Naro, M.; Petronio Petronio, G.; Mukhtar, F.; Cutuli, M.A.; Magnifico, I.; Falcone, M.; Brancazio, N.; Guarnieri, A.; Di Marco, R.; Nicolosi, D. Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications. Microorganisms 2025, 13, 636. https://doi.org/10.3390/microorganisms13030636
Di Naro M, Petronio Petronio G, Mukhtar F, Cutuli MA, Magnifico I, Falcone M, Brancazio N, Guarnieri A, Di Marco R, Nicolosi D. Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications. Microorganisms. 2025; 13(3):636. https://doi.org/10.3390/microorganisms13030636
Chicago/Turabian StyleDi Naro, Maria, Giulio Petronio Petronio, Farwa Mukhtar, Marco Alfio Cutuli, Irene Magnifico, Marilina Falcone, Natasha Brancazio, Antonio Guarnieri, Roberto Di Marco, and Daria Nicolosi. 2025. "Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications" Microorganisms 13, no. 3: 636. https://doi.org/10.3390/microorganisms13030636
APA StyleDi Naro, M., Petronio Petronio, G., Mukhtar, F., Cutuli, M. A., Magnifico, I., Falcone, M., Brancazio, N., Guarnieri, A., Di Marco, R., & Nicolosi, D. (2025). Extracellular Vesicles in Bacteria, Archaea, and Eukaryotes: Mechanisms of Inter-Kingdom Communication and Clinical Implications. Microorganisms, 13(3), 636. https://doi.org/10.3390/microorganisms13030636