Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Sampling and Phytoplasma Control Strains
2.2. Nucleic Acid Extraction and Molecular Analyses
2.3. Phylogenetic Analyses and Virtual Restriction Fragment Length Polymorphism Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morton, J. Japanese persimmon. In Fruits of Warm Climates; Morton, J.F., Ed.; Florida Flair Books: Miami, FL, USA, 1987; pp. 411–416. [Google Scholar]
- Agriculture Statistics; Ministry of Agriculture-Jahad: Tehran, Iran, 2023; Volume 3.
- Wang, R.; Bai, B.; Li, D.; Wang, J.; Huang, W.; Wu, Y.; Zhao, L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production—Research progress and outlook. Mol. Plant Pathol. 2024, 25, e13437. [Google Scholar] [CrossRef]
- Lee, I.-M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Ann. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Hogenhout, S.A.; Oshima, K.; Ammar, E.D.; Kakizawa, S.; Kingdom, H.N.; Namba, S. Phytoplasmas: Bacteria that manipulate plants and insects. Mol. Plant Pathol. 2008, 9, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Alma, A.; Lessio, F.; Nickel, H. Insects as phytoplasma vectors: Ecological and epidemiological aspects. In Phytoplasmas: Plant Pathogenic Bacteria—II: Transmission and Management of Phytoplasma—Associated Diseases; Springer: Singapore, 2019; pp. 1–25. [Google Scholar]
- Namba, S. Molecular and biological properties of phytoplasmas. Proc. Jpn. Acad. Ser. B Phys. Biol Sci. 2019, 95, 401–418. [Google Scholar] [CrossRef]
- IRPCM. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonise plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Montano, H.G.; Kube, M.; Kuo, C.-H.; Martini, M.; Oshima, K.; et al. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. Int. J. Syst. Evol. Microbiol. 2022, 74, 005353. [Google Scholar] [CrossRef]
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma or PLT group-like micro-organisms found in the phloem element of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or Paulownia witches’ broom. Ann. Phytopathol. Soc. Jpn. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K. Etiology and transmission of sesame phyllody in Iran. J. Phytopathol. 1992, 135, 37–47. [Google Scholar] [CrossRef]
- Siampour, M.; Izadpanah, K.; Salehi, M.; Afsharifar, A. Occurrence and distribution of phytoplasma diseases in Iran. In Sustainable Management of Phytoplasma Diseases in Crops Grown in the Tropical Belt; Springer: Berlin/Heidelberg, Germany, 2019; pp. 47–86. [Google Scholar]
- Esmaeilzadeh-Hosseini, S.A.; Azadvar, M.; Babaei, G.; Salehi, M.; Bertaccini, A. Diversity, distribution and status of phytoplasma diseases in Iran. In Phytoplasma Diseases in Asian countries: Diversity, Distribution and Current Status; Tiwari, A.K., Caglayan, K., Al-Sadi, A., Azadvar, M., Abeysinghe, S., Eds.; Academic Press: London, UK, 2023; Volume 1, pp. 39–83. [Google Scholar]
- Esmaeilzadeh-Hosseini, S.A.; Azadvar, M.; Babaei, G.; Salehi, M.; Bertaccini, A. Important phytoplasma ribosomal subgroups distributed in Iran. Phytopath. Moll. 2023, 13, 125–126. [Google Scholar] [CrossRef]
- Wang, J.; Gao, R.; Yu, X.; An, M.; Qin, Z.; Liu, J.; Ai, C. Identification of ‘Candidatus Phytoplasma ziziphi’ associated with persimmon (Diospyros kaki Thunb.) fasciation in China. Forest Pathol. 2015, 45, 342–345. [Google Scholar] [CrossRef]
- Wang, J.; Gao, R.; Yu, X.; An, M.; Ai, C. Morphological and molecular detection of phytoplasma associated with persimmon fasciation disease. Plant Physiol. J. 2017, 53, 219–226. (In Chinese) [Google Scholar]
- Abu Alloush, A.H.; Tedeschi, R.; Alma, A.; Quaglino, F. Identification of phytoplasmas in stone fruit (Prunus sp.) and persimmon (Diospyros kaki L.) trees exhibiting leaf alterations and witches’ broom in Jordan. J. Phytopath. 2024, 172, e13302. [Google Scholar] [CrossRef]
- Esmaeilzadeh-Hosseini, S.A.; Babaei, G.; Satta, E.; Bertaccini, A. New host plants and distribution areas of ‘Candidatus Phytoplasma omanense’-related strains in Iran. Phytopath. Moll. 2019, 9, 13–14. [Google Scholar] [CrossRef]
- EPPO QBank. EPPO-Q-Bank Phytoplasmas Database. 2024. Available online: https://qbank.eppo.int/phytoplasmas/ (accessed on 28 December 2024).
- Bertaccini, A.; van de Bilt, J.L.J.; Contaldo, N.; Cottyn, B.; Damm, U.; Duistermaat, H.; Giordano, L.; Giraldo Lopez, A.; Griessinger, D.; Grimault, V.; et al. EPPO-Q-bank: A curated database to support plant pest diagnostic activities. Bull. OEPP/EPPO Bull. 2024, 54, 361–365. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Uyemoto, J.K.; Kirkpatrick, B.C. A small-scale procedure for extracting nucleic acids from woody plants infected with various phytoplasmas for PCR assay. J. Virol. Meth. 1998, 71, 45–50. [Google Scholar] [CrossRef]
- Deng, S.J.; Hiruki, C. 1991. Amplification of 16S ribosomal-RNA genes from culturable and non culturable mollicutes. J. Microbiol. Meth. 1991, 14, 53–61. [Google Scholar] [CrossRef]
- Schneider, B.; Seemüller, E.; Smart, C.D.; Kirkpatrick, B.C. Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology; Razin, S., Tully, J.G., Eds.; Academic Press: San Diego, CA, USA, 1995; Volume 1, pp. 369–380. [Google Scholar]
- Gundersen, D.E.; Lee, I.-M. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopath. Medit. 1996, 35, 144–151. [Google Scholar]
- Schaff, D.A.; Lee, I.-M.; Davis, R.E. Sensitive detection and identification of mycoplasma like organisms by polymerase chain reactions. Biochem. Biophys. Res. Comm. 1992, 186, 1503–1509. [Google Scholar] [CrossRef]
- Makarova, O.V.; Contaldo, N.; Paltrinieri, S.; Kawube, G.; Bertaccini, A.; Nicolaisen, M. DNA barcoding for universal identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. PLoS ONE 2012, 7, e52092. [Google Scholar] [CrossRef]
- Hodgetts, J.; Boonham, N.; Mumford, R.; Harrison, N.; Dickinson, M. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int. J. Syst. Evol. Microb. 2008, 58, 1826–1837. [Google Scholar] [CrossRef] [PubMed]
- Bekele, B.; Hodgetts, J.; Tomlinson, J.; Boonham, N.; Nikolić, P.; Swarbrick, P.; Dickinson, M. Use of a real-time LAMP isothermal assay for detecting 16SrII and XII phytoplasmas in fruit and weeds of the Ethiopian Rift Valley. Plant Pathol. 2011, 60, 345–355. [Google Scholar] [CrossRef]
- Lee, I.-M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bartoszyk, I.M. Revised classification scheme of phytoplasmas based on RFLP analyses of 16SrRNA and ribosomal protein gene sequences. Int. J. Syst. Bacteriol. 1998, 48, 1153–1169. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2007, 33, 1870–1874. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Zhao, Y.; Wei, W.; Lee, I.-M.; Shao, J.; Suo, X.; Davis, R.E. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int. J. Syst. Evol. Microbiol. 2009, 59, 2582–2593. [Google Scholar] [CrossRef]
- Esmailzadeh Hosseini, S.A.; Salehi, M.; Mirchenari, S.M.; Contaldo, N.; Paltrinieri, S.; Bertaccini, A. Occurrence of a ‘Candidatus Phytoplasma omanense’-related strain in bindweed showing a witches’ broom disease in Iran. Phytopath. Moll. 2016, 6, 63–68. [Google Scholar]
- Berges, R.; Rott, M.; Seemüller, E. Range of phytoplasma concentrations in various plant hosts as determined by competitive polymerase chain reaction. Phytopathology 2000, 90, 1145–1152. [Google Scholar] [CrossRef]
- Al-Saady, N.A.; Khan, A.J.; Calari, A.; Al-Subhi, A.M.; Bertaccini, A. ‘Candidatus Phytoplasma omanense’, a phytoplasma associated with witches’ broom of Cassia italica (Mill.) Lam. in Oman. Int. J. Syst. Evol. Microbiol. 2008, 58, 461–466. [Google Scholar] [CrossRef]
- Foissac, X.; Jreijiri, F.; Salar, P.; Wakim, S.; Danet, J.-L.; Choueiri, E. ‘Candidatus Phytoplasma omanense’-related strain detected in yellowing grapevine, stunted bindweed and Cixiidae planthoppers in Lebanon. Eur. J. Plant Pathol. 2019, 153, 265–272. [Google Scholar] [CrossRef]
- Esmaeilzadeh-Hosseini, S.A.; Babaei, G.; Bertaccini, A. Mixed phytoplasma infection in Cressa cretica showing witches’ broom symptoms in Iran. Phytopath. Moll. 2023, 13, 85–86. [Google Scholar] [CrossRef]
- Esmaeilzadeh-Hosseini, S.A.; Babaei, G.; Pacini, F.; Bertaccini, A. Multilocus gene analyses indicate Tamarix aphylla as reservoir host of diverse phytoplasmas associated with witches’ broom and yellowing symptomatology. Plants 2024, 13, 1248. [Google Scholar] [CrossRef] [PubMed]
- Alkuwaiti, N.A.S.; Kareem, T.A.; Sabier, L.J. Molecular detection of ‘Candidatus Phytoplasma australasia’ and ‘Ca. P. cynodontis’ in Iraq. Agriculture 2017, 63, 112–119. [Google Scholar] [CrossRef]
- Al-Subhi, A.M.; Hogenhout, S.A.; Al-Yahyai, R.A.; Al-Sadi, A.M. Detection, identification, and molecular characterization of the 16SrII-D phytoplasmas infecting vegetable and field crops in Oman. Plant Dis. 2018, 102, 576–588. [Google Scholar] [CrossRef]
- Omar, A.F.; Foissac, X. Occurrence and incidence of phytoplasmas of the 16SrII-D subgroup on solanaceous and cucurbit crops in Egypt. Eur. J. Plant Pathol. 2012, 133, 353–360. [Google Scholar] [CrossRef]
- El-Sisi, Y.; Omar, A.F.; Sidaros, S.A.; ElSharkawy, M.M. Characterization of 16SrII-D subgroup associated phytoplasmas in new host plants in Egypt. Arch. Phytopathol. Plant Prot. 2017, 50, 504–513. [Google Scholar] [CrossRef]
- Omar, A.F.; Alsohim, A.S.; Dumonceaux, T.J.; Pérez-López, E. Molecular characterization of ‘Candidatus Phytoplasma australasia’ 16SrII subgroups associated with eggplant, cabbage, beetroot, and celery in Saudi Arabia. Crop Prot. 2020, 127, 104970. [Google Scholar] [CrossRef]
- Al-Subhi, A.; Hogenhout, S.A.; Al-Yahyai, R.A.; Al-Sadi, A.M. Classification of a new phytoplasmas subgroup 16SrII-W associated with Crotalaria witches’ broom diseases in Oman based on multigene sequence analysis. BMC Microbiol. 2017, 17, 221. [Google Scholar] [CrossRef]
- Salehi, M.; Esmailzadeh Hosseini, S.A.; Salehi, E.; Bertaccini, A. Genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody in Iran. Folia Microbiol. 2017, 62, 99–109. [Google Scholar] [CrossRef]
- Salehi, M.; Izadpanah, K.; Ebrahimnesbat, F. Etiology, transmission and host range of alfalfa witches’ broom in Iran. Ir. J. Plant Pathol. 1995, 31, 1–9. [Google Scholar]
- Hemmati, C.; Nikooei, M.; Al-Subhi, A.M.; Al-Sadi, A.M. History and current status of phytoplasma diseases in the Middle East. Biology 2021, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, F.; Wilson, A.M. A checklist of the leafhoppers of Iran (Hemiptera: Auchenorrhyncha: Cicadellidae). Zootaxa 2016, 4062, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.J.; Botti, S.; Al-Subhi, A.M.; Zaidi, M.; Altosar, I.; Alma, A.; Bertaccini, A. Molecular characterization of 16S rRNA gene of phytoplasmas detected in two leafhopper species associated with alfalfa plants infected with witches’ broom in Oman. Phytopath. Medit. 2003, 42, 257–267. [Google Scholar]
Host Plant Species | Strain | Country | GenBank Accession Number | AatII | BcgI |
---|---|---|---|---|---|
Vitis vinifera | VV1259 | Jordan (A) | OL873117 | 910 | 831/281 865/247 |
Cassia italica | IM-1 | Oman (A) | EF666051 | 910 | 831/281 865/247 |
Diospyros kaki | Mehriz 1 | Iran | PP829290 | 1112 | 796/281 864/247 |
Prunus persicae | Ft4 | Iran | MF142457 | 1112 | 796/281 864/247 |
Vitis vinifera | CAPO-LEB | Lebanon | LN874219 | 1112 | 796/281 864/247 |
Prunus domestica | PD1075 | Jordan (B) | OR736054 | 1112 | 831/281 865/247 |
Pyrus communis | PE704 | Jordan (B) | OR295224 | 1112 | 831/281 865/247 |
Vitis vinifera | VV95 | Jordan (B) | OL873118 | 1112 | 831/281 865/247 |
Cassia Italica | IM-4 | Oman (B) | EF666054 | 1112 | 831/281 865/247 |
Convolvolus arvensis | Conv10 | Iran | KY047493 | 1113 | 797/281 865/247 |
Sophora alopecuroides | Sop2 | Iran | MN219986 | 1113 | 796/282 864/248 |
Sophora alopecuroides | Sop1 | Iran | MN219988 | 1120 | 796/289 864/255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaeilzadeh-Hosseini, S.A.; Babaei, G.; Mateeti, S.T.; Pacini, F.; Bertaccini, A. Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants. Microorganisms 2025, 13, 645. https://doi.org/10.3390/microorganisms13030645
Esmaeilzadeh-Hosseini SA, Babaei G, Mateeti ST, Pacini F, Bertaccini A. Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants. Microorganisms. 2025; 13(3):645. https://doi.org/10.3390/microorganisms13030645
Chicago/Turabian StyleEsmaeilzadeh-Hosseini, Seyyed Alireza, Ghobad Babaei, Sri Tej Mateeti, Francesco Pacini, and Assunta Bertaccini. 2025. "Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants" Microorganisms 13, no. 3: 645. https://doi.org/10.3390/microorganisms13030645
APA StyleEsmaeilzadeh-Hosseini, S. A., Babaei, G., Mateeti, S. T., Pacini, F., & Bertaccini, A. (2025). Detection and Identification of Diverse Phytoplasmas in Declining Persimmon Plants. Microorganisms, 13(3), 645. https://doi.org/10.3390/microorganisms13030645