Phylogenetic Analysis, Pulse-Amplitude-Modulated (PAM) Fluorometry Measuring Parameter Optimization, and Cell Wall Disintegration of Chlorella vulgaris K-01
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Condition and Yield of Biomass
2.2. Molecular Identification
2.3. Optimization of PAM Fluorometry Parameters
2.4. Microalgal Cell Wall Disruption
2.5. Statistical Analysis
3. Results
3.1. Phylogenetic Tree and ITS2 Secondary Structure
3.2. Measuring Parameters for PAM Fluorometry
3.3. Optimization of Microalgal Cell Fragmentation Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas, B.F.; Morais, M.G.D.; Santos, T.D.; Costa, J.A.V. Spirulina for Snack Enrichment: Nutritional, Physical and Sensory Evaluations. LWT 2018, 90, 270–276. [Google Scholar] [CrossRef]
- Neofotis, P.; Huang, A.; Sury, K.; Chang, W.; Joseph, F.; Gabr, A.; Twary, S.; Qiu, W.; Holguin, O.; Polle, J.E.W. Characterization and Classification of Highly Productive Microalgae Strains Discovered for Biofuel and Bioproduct Generation. Algal Res. 2016, 15, 164–178. [Google Scholar] [CrossRef]
- Bhushan, S.; Kalra, A.; Simsek, H.; Kumar, G.; Prajapati, S.K. Current Trends and Prospects in Microalgae-Based Bioenergy Production. J. Environ. Chem. Eng. 2020, 8, 104025. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef]
- Bishop, W.M.; Zubeck, H.M. Evaluation of Microalgae for Use as Nutraceuticals and Nutritional Supplements. J. Nutr. Food Sci. 2012, 2, 1–6. [Google Scholar] [CrossRef]
- Widyaningrum, D.; Prianto, A.D. Chlorella as a Source of Functional Food Ingredients: Short Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 794, 012148. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Z.; Tao, M.; Li, J.; Hu, Z. Effects of Selenite on Green Microalga Haematococcus pluvialis: Bioaccumulation of Selenium and Enhancement of Astaxanthin Production. Aquat. Toxicol. 2017, 183, 21–27. [Google Scholar] [CrossRef]
- Csatlos, N.-I.; Simon, E.; Teleky, B.-E.; Szabo, K.; Diaconeasa, Z.M.; Vodnar, D.-C.; Ciont Nagy, C.; Pop, O.-L. Development of a Fermented Beverage with Chlorella vulgaris Powder on Soybean-Based Fermented Beverage. Biomolecules 2023, 13, 245. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella vulgaris Biomass Used as Colouring Source in Traditional Butter Cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Dantas, D.M.M.; Cahú, T.B.; Oliveira, C.Y.B.; Abadie-Guedes, R.; Roberto, N.A.; Santana, W.M.; Gálvez, A.O.; Guedes, R.C.A.; Bezerra, R.S. Chlorella vulgaris Functional Alcoholic Beverage: Effect on Propagation of Cortical Spreading Depression and Functional Properties. PLoS ONE 2021, 16, e0255996. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable Products from Biotechnology of Microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Beyerinck, M.W. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Bot. Ztg. 1890, 48, 729. [Google Scholar]
- Balaji Prasath, B.; Elsawah, A.M.; Liyuan, Z.; Poon, K. Modeling and Optimization of the Effect of Abiotic Stressors on the Productivity of the Biomass, Chlorophyll and Lutein in Microalgae Chlorella pyrenoidosa. J. Agric. Food Res. 2021, 5, 100163. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A Perspective on Its Potential for Combining High Biomass with High Value Bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Canelli, G.; Tarnutzer, C.; Carpine, R.; Neutsch, L.; Bolten, C.J.; Dionisi, F.; Mathys, A. Biochemical and Nutritional Evaluation of Chlorella and Auxenochlorella Biomasses Relevant for Food Application. Front. Nutr. 2020, 7, 168. [Google Scholar] [CrossRef]
- Ward, V.C.A.; Rehmann, L. Fast Media Optimization for Mixotrophic Cultivation of Chlorella vulgaris. Sci. Rep. 2019, 9, 19262. [Google Scholar] [CrossRef]
- Heeg, J.S.; Wolf, M. ITS2 and 18S rDNA Sequence-Structure Phylogeny of Chlorella and Allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). Plant Gene 2015, 4, 20–28. [Google Scholar] [CrossRef]
- Luo, W.; Pröschold, T.; Bock, C.; Krienitz, L. Generic Concept in Chlorella related Coccoid Green Algae (Chlorophyta, Trebouxiophyceae). Plant Biol. 2010, 12, 545–553. [Google Scholar] [CrossRef]
- Hoshina, R.; Iwataki, M.; Imamura, N. Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the Endosymbiotic Green Algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th Year. Phycol. Res. 2010, 58, 188–201. [Google Scholar] [CrossRef]
- Krienitz, L.; Huss, V.A.R.; Bock, C. Chlorella: 125 Years of the Green Survivalist. Trends Plant Sci. 2015, 20, 67–69. [Google Scholar] [CrossRef]
- Santhosh Kumar, K.; Prasanthkumar, S.; Ray, J.G. Biomass Yield, Oil Productivity and Fatty Acid Profile of Chlorella lobophora Cultivated in Diverse Eutrophic Wastewaters. Biocatal. Agric. Biotechnol. 2017, 11, 338–344. [Google Scholar] [CrossRef]
- Darienko, T.; Gustavs, L.; Mudimu, O.; Menendez, C.R.; Schumann, R.; Karsten, U.; Friedl, T.; Pröschold, T. Chloroidium, a Common Terrestrial Coccoid Green Alga Previously Assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur. J. Phycol. 2010, 45, 79–95. [Google Scholar] [CrossRef]
- Blanc, G.; Duncan, G.; Agarkova, I.; Borodovsky, M.; Gurnon, J.; Kuo, A.; Lindquist, E.; Lucas, S.; Pangilinan, J.; Polle, J.; et al. The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex. Plant Cell 2010, 22, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Zhou, Z.; Huang, Y.; Chen, L.; Cong, W. Multi-Omics Insights into the Mechanism of the High-Temperature Tolerance in a Thermotolerant Chlorella sorokiniana. Bioresour. Technol. 2023, 390, 129859. [Google Scholar] [CrossRef]
- Souza Queiroz, J.; Marín Blasco, I.; Gagliano, H.; Daviu, N.; Gómez Román, A.; Belda, X.; Carrasco, J.; Rocha, M.C.; Palermo Neto, J.; Armario, A. Chlorella vulgaris Reduces the Impact of Stress on Hypothalamic—Pituitary—Adrenal Axis and Brain c-Fos Expression. Psychoneuroendocrinology 2016, 65, 1–8. [Google Scholar] [CrossRef]
- McCarthy, B.; O’Neill, G.; Abu-Ghannam, N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar. Drugs 2022, 20, 493. [Google Scholar] [CrossRef]
- García-Márquez, J.; Álvarez-Torres, D.; Cerezo, I.M.; Domínguez-Maqueda, M.; Acién, G.; Alarcón-López, F.J.; Figueroa, F.L.; Martínez-Manzanares, E.; Abdala-Díaz, R.T.; Béjar, J.; et al. Effects of Chlorella fusca-Supplemented Diet on Intestinal Microbiota and Gene Expression Related to Metabolism, Stress, and Immune Response in Chelon labrosus. Algal Res. 2024, 77, 103362. [Google Scholar] [CrossRef]
- Martins, C.F.; Trevisi, P.; Coelho, D.F.; Correa, F.; Ribeiro, D.M.; Alfaia, C.M.; Pinho, M.; Pestana, J.M.; Mourato, M.P.; Almeida, A.M.; et al. Influence of Chlorella vulgaris on Growth, Digestibility and Gut Morphology and Microbiota of Weaned Piglet. Sci. Rep. 2022, 12, 6012. [Google Scholar] [CrossRef]
- De Medeiros, V.P.B.; De Souza, E.L.; De Albuquerque, T.M.R.; Da Costa Sassi, C.F.; Dos Santos Lima, M.; Sivieri, K.; Pimentel, T.C.; Magnani, M. Freshwater Microalgae Biomasses Exert a Prebiotic Effect on Human Colonic Microbiota. Algal Res. 2021, 60, 102547. [Google Scholar] [CrossRef]
- Lv, K.; Yuan, Q.; Li, H.; Li, T.; Ma, H.; Gao, C.; Zhang, S.; Liu, Y.; Zhao, L. Chlorella pyrenoidosa Polysaccharides as a Prebiotic to Modulate Gut Microbiota: Physicochemical Properties and Fermentation Characteristics In Vitro. Foods 2022, 11, 725. [Google Scholar] [CrossRef] [PubMed]
- Hyrslova, I.; Krausova, G.; Smolova, J.; Stankova, B.; Branyik, T.; Malinska, H.; Huttl, M.; Kana, A.; Doskocil, I.; Curda, L. Prebiotic and Immunomodulatory Properties of the Microalga Chlorella vulgaris and Its Synergistic Triglyceride-Lowering Effect with Bifidobacteria. Fermentation 2021, 7, 125. [Google Scholar] [CrossRef]
- White, S.; Anandraj, A.; Bux, F. PAM Fluorometry as a Tool to Assess Microalgal Nutrient Stress and Monitor Cellular Neutral Lipids. Bioresour. Technol. 2011, 102, 1675–1682. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Rodriguez, C.; Durrant, A. Optimisation of Ultrasonication Pretreatment on Microalgae Chlorella vulgaris & Nannochloropsis oculata for Lipid Extraction in Biodiesel Production. Energy 2023, 278, 128026. [Google Scholar] [CrossRef]
- Gojkovic, Ž.; Vílchez, C.; Torronteras, R.; Vigara, J.; Gómez-Jacinto, V.; Janzer, N.; Gómez-Ariza, J.-L.; Márová, I.; Garbayo, I. Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana Grown in Batch Culture. Sci. World J. 2014, 2014, 401265. [Google Scholar] [CrossRef] [PubMed]
- Karlander, E.P.; Krauss, R.W. Responses of Heterotrophic Cultures of Chlorella vulgaris Beyerinck to Darkness and Light. I. Pigment and pH Changes. Plant Physiol. 1966, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- María De Lourdes, F.M.; María Dolores Josefina, R.R.; Cuauhtémoc Ulises, M.M.; Alfredo De Jesús, M.R. Tolerance and Nutrients Consumption of Chlorella vulgaris Growing in Mineral Medium and Real Wastewater under Laboratory Conditions. Open Agric. 2017, 2, 394–400. [Google Scholar] [CrossRef]
- Hildebrand, G.; Poojary, M.M.; O’Donnell, C.; Lund, M.N.; Garcia-Vaquero, M.; Tiwari, B.K. Ultrasound-Assisted Processing of Chlorella vulgaris for Enhanced Protein Extraction. J. Appl. Phycol. 2020, 32, 1709–1718. [Google Scholar] [CrossRef]
- Weber, S.; Grande, P.M.; Blank, L.M.; Klose, H. Insights into Cell Wall Disintegration of Chlorella vulgaris. PLoS ONE 2022, 17, e0262500. [Google Scholar] [CrossRef]
- Camargo, E.C.; Rossi, R.A.; Silva, J.C.; Miwa, A.C.P.; Prášil, O.; Do Carmo Calijuri, M.; Lombardi, A.T. Comparing Pulse Amplitude Modulated (PAM) Fluorometry with Radiocarbon Technique for Determination of Inorganic Carbon Fixation in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta). Eur. J. Phycol. 2022, 57, 18–28. [Google Scholar] [CrossRef]
- Simis, S.G.H.; Huot, Y.; Babin, M.; Seppälä, J.; Metsamaa, L. Optimization of Variable Fluorescence Measurements of Phytoplankton Communities with Cyanobacteria. Photosynth. Res. 2012, 112, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Higo, S.; Maung-Saw-Htoo-Thaw; Yamatogi, T.; Ishida, N.; Hirae, S.; Koike, K. Application of a Pulse-Amplitude-Modulation (PAM) Fluorometer Reveals Its Usefulness and Robustness in the Prediction of Karenia mikimotoi Blooms: A Case Study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 2017, 61, 63–70. [Google Scholar] [CrossRef]
- Stock, W.; Blommaert, L.; Daveloose, I.; Vyverman, W.; Sabbe, K. Assessing the Suitability of Imaging-PAM Fluorometry for Monitoring Growth of Benthic Diatoms. J. Exp. Mar. Biol. Ecol. 2019, 513, 35–41. [Google Scholar] [CrossRef]
- Schuurmans, R.M.; Van Alphen, P.; Schuurmans, J.M.; Matthijs, H.C.P.; Hellingwerf, K.J. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers. PLoS ONE 2015, 10, e0139061. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Filipiak, M.; Mungunkhuyag, K.; Jedynak, P.; Burczyk, J.; Fu, P.; Malec, P. Fast and Efficient Cadmium Biosorption by Chlorella vulgaris K-01 Strain: The Role of Cell Walls in Metal Sequestration. Algal Res. 2021, 60, 102497. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Hua, Y.; Chen, G.; Fu, P.; Liu, J. Heterotrophic Selenium Incorporation into Chlorella vulgaris K-01: Selenium Tolerance, Assimilation, and Removal through Microalgal Cells. Foods 2024, 13, 405. [Google Scholar] [CrossRef]
- Osman, M.E.H. Unlocking the Potential of Microalgae Cultivated on Wastewater Combined with Salinity Stress to Improve Biodiesel Production. Environ. Sci. Pollut. Res. 2023, 30, 114610–114624. [Google Scholar] [CrossRef]
- Rippka, R.; Herdman, M.; Waterbury, J.B. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Arbefeville, S.; Harris, A.; Ferrieri, P. Comparison of Sequencing the D2 Region of the Large Subunit Ribosomal RNA Gene (MicroSEQ®) versus the Internal Transcribed Spacer (ITS) Regions Using Two Public Databases for Identification of Common and Uncommon Clinically Relevant Fungal Species. J. Microbiol. Methods 2017, 140, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Luo, W.; Pflugmacher, S.; Pröschold, T.; Walz, N.; Krienitz, L. Genotype versus Phenotype Variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 2006, 157, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Lobakova, E.S.; Selyakh, I.O.; Semenova, L.R.; Scherbakov, P.N.; Fedorenko, T.A.; Chekanov, K.A.; Chivkunova, O.B.; Baulina, O.I.; Vasilieva, S.G.; Solovchenko, A.E.; et al. Hints for Understanding Microalgal Phosphate-Resilience from Micractinium Simplicissimum IPPAS C-2056 (Trebouxiophyceae) Isolated from a Phosphorus-Polluted Site. J. Appl. Phycol. 2022, 34, 2409–2422. [Google Scholar] [CrossRef]
- Cosgrove, J.; Borowitzka, M. Applying Pulse Amplitude Modulation (PAM) Fluorometry to Microalgae Suspensions: Stirring Potentially Impacts Fluorescence. Photosynth. Res. 2006, 88, 343–350. [Google Scholar] [CrossRef]
- Jo, S.-W.; Do, J.-M.; Kang, N.S.; Park, J.M.; Lee, J.H.; Kim, H.S.; Hong, J.W.; Yoon, H.-S. Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica. J. Mar. Sci. Eng. 2020, 8, 935. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to Correctly Determine the Different Chlorophyll Fluorescence Parameters and the Chlorophyll Fluorescence Decrease Ratio RFd of Leaves with the PAM Fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Germond, A.; Hata, H.; Fujikawa, Y.; Nakajima, T. The Phylogenetic Position and Phenotypic Changes of a Chlorella-like Alga during 5-Year Microcosm Culture. Eur. J. Phycol. 2013, 48, 485–496. [Google Scholar] [CrossRef]
- Acharya, G.C.; Mohanty, S.; Dasgupta, M.; Sahu, S.; Singh, S.; Koundinya, A.V.V.; Kumari, M.; Naresh, P.; Sahoo, M.R. Molecular Phylogeny, DNA Barcoding, and ITS2 Secondary Structure Predictions in the Medicinally Important Eryngium Genotypes of East Coast Region of India. Genes 2022, 13, 1678. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Krienitz, L.; Pflugmacher, S.; Walz, N. Genus and Species Concept in Chlorella and Micractinium (Chlorophyta, Chlorellaceae): Genotype versus Phenotypical Variability under Ecosystem Conditions. SIL Proc. 1922–2010 2005, 29, 170–173. [Google Scholar] [CrossRef]
- Koh, H.G.; Kang, N.K.; Kim, E.K.; Suh, W.; Park, W.-K.; Lee, B.; Chang, Y.K. Isolation and Characterization of Novel Chlorella Species with Cold Resistance and High Lipid Accumulation for Biodiesel Production. J. Microbiol. Biotechnol. 2019, 29, 952–961. [Google Scholar] [CrossRef]
- Chiellini, C.; Guglielminetti, L.; Sarrocco, S.; Ciurli, A. Isolation of Four Microalgal Strains from the Lake Massaciuccoli: Screening of Common Pollutants Tolerance Pattern and Perspectives for Their Use in Biotechnological Applications. Front. Plant Sci. 2020, 11, 607651. [Google Scholar] [CrossRef] [PubMed]
- Hoshina, R.; Fujiwara, Y. Molecular Characterization of Chlorella Cultures of the National Institute for Environmental Studies Culture Collection with Description of Micractinium inermum sp. nov., Didymogenes sphaerica sp. nov., and Didymogenes soliella sp. nov. (Chlorellaceae, Tr: Taxonomic Revision of NIES Chlorella. Phycol. Res. 2013, 61, 124–132. [Google Scholar] [CrossRef]
- Huss, V.A.R.; Frank, C.; Hartmann, E.C.; Hirmer, M.; Kloboucek, A.; Seidel, B.M.; Wenzeler, P.; Kessler, E. Biochemical Taxonomy and Molecular Phylogeny of the Genus Chlorella Sensu Lato (Chlorophyta). J. Phycol. 1999, 35, 587–598. [Google Scholar] [CrossRef]
- Sjollema, S.B.; Van Beusekom, S.A.M.; Van Der Geest, H.G.; Booij, P.; De Zwart, D.; Vethaak, A.D.; Admiraal, W. Laboratory Algal Bioassays Using PAM Fluorometry: Effects of Test Conditions on the Determination of Herbicide and Field Sample Toxicity. Environ. Toxicol. Chem. 2014, 33, 1017–1022. [Google Scholar] [CrossRef]
- Dai, Y.; Guo, Z.; Guo, X.; Deng, R.; Li, L.; Fan, T.; Cui, K.; Pan, T. Plastic Particles and Fluorescent Brightener Co-Modify Chlorella pyrenoidosa Photosynthesis and a Machine Learning Approach Predict Algae Growth. J. Hazard. Mater. 2024, 477, 135406. [Google Scholar] [CrossRef]
- Lai, J.W.S.; Lim, P.E.; Wong, C.Y.; Phang, S.M.; Beardall, J. Photosynthetic Response and DNA Mutation of Tropical, Temperate and Polar Chlorella under Short-Term UVR Stress. Polar Sci. 2019, 20, 35–44. [Google Scholar] [CrossRef]
- Singh, R.; Upadhyay, A.K.; Singh, D.V.; Singh, J.S.; Singh, D.P. Photosynthetic Performance, Nutrient Status and Lipid Yield of Microalgae Chlorella vulgaris and Chlorococcum humicola under UV-B Exposure. Curr. Res. Biotechnol. 2019, 1, 65–77. [Google Scholar] [CrossRef]
- Malapascua, J.; Jerez, C.; Sergejevová, M.; Figueroa, F.; Masojídek, J. Photosynthesis Monitoring to Optimize Growth of Microalgal Mass Cultures: Application of Chlorophyll Fluorescence Techniques. Aquat. Biol. 2014, 22, 123–140. [Google Scholar] [CrossRef]
- Corrêa, P.S.; Morais Júnior, W.G.; Martins, A.A.; Caetano, N.S.; Mata, T.M. Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes 2020, 9, 10. [Google Scholar] [CrossRef]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.M.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell Disruption for Microalgae Biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef]
- Gomes, T.A.; Zanette, C.M.; Spier, M.R. An Overview of Cell Disruption Methods for Intracellular Biomolecules Recovery. Prep. Biochem. Biotechnol. 2020, 50, 635–654. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhou, W.; Yuan, W.; Wang, D. Algal Cell Lysis by Bacteria: A Review and Comparison to Conventional Methods. Algal Res. 2020, 46, 101794. [Google Scholar] [CrossRef]
- Němcová, Y.; Kalina, T. Cell Wall Development, Microfibril and Pyrenoid Structure in Type Strains of Chlorella vulgaris, C. kessleri, C. sorokiniana Compared with C. luteoviridis (Trebouxiophyceae, Chlorophyta). Algol. Stud. Für Hydrobiol. Suppl. Vol. 2000, 100, 95–105. [Google Scholar] [CrossRef]
- Dunker, S.; Wilhelm, C. Cell Wall Structure of Coccoid Green Algae as an Important Trade-Off Between Biotic Interference Mechanisms and Multidimensional Cell Growth. Front. Microbiol. 2018, 9, 719. [Google Scholar] [CrossRef]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.S.-L. Microalgae Disruption Techniques for Product Recovery: Influence of Cell Wall Composition. J. Appl. Phycol. 2019, 31, 61–88. [Google Scholar] [CrossRef]
- Halim, R.; Harun, R.; Danquah, M.K.; Webley, P.A. Microalgal Cell Disruption for Biofuel Development. Appl. Energy 2012, 91, 116–121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, X.; Wu, Y.; Yao, L.-H.; Fu, P. Phylogenetic Analysis, Pulse-Amplitude-Modulated (PAM) Fluorometry Measuring Parameter Optimization, and Cell Wall Disintegration of Chlorella vulgaris K-01. Microorganisms 2025, 13, 711. https://doi.org/10.3390/microorganisms13040711
Zhang Z, Zhang X, Wu Y, Yao L-H, Fu P. Phylogenetic Analysis, Pulse-Amplitude-Modulated (PAM) Fluorometry Measuring Parameter Optimization, and Cell Wall Disintegration of Chlorella vulgaris K-01. Microorganisms. 2025; 13(4):711. https://doi.org/10.3390/microorganisms13040711
Chicago/Turabian StyleZhang, Zhenyu, Xiaoli Zhang, Yinqiang Wu, Li-Hua Yao, and Pengcheng Fu. 2025. "Phylogenetic Analysis, Pulse-Amplitude-Modulated (PAM) Fluorometry Measuring Parameter Optimization, and Cell Wall Disintegration of Chlorella vulgaris K-01" Microorganisms 13, no. 4: 711. https://doi.org/10.3390/microorganisms13040711
APA StyleZhang, Z., Zhang, X., Wu, Y., Yao, L.-H., & Fu, P. (2025). Phylogenetic Analysis, Pulse-Amplitude-Modulated (PAM) Fluorometry Measuring Parameter Optimization, and Cell Wall Disintegration of Chlorella vulgaris K-01. Microorganisms, 13(4), 711. https://doi.org/10.3390/microorganisms13040711