Multi-Omics Technologies Applied to Improve Tick Research
Abstract
:1. Introduction
2. Methods
2.1. Information Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Number of Studies
3. Recent Omics Studies That Improved Knowledge About Tick Biology
3.1. Embryonic Development
3.2. Feeding Process
3.3. Neural and Endocrine Regulation
4. Omics Analysis for Tick Bacterial Microbiota
5. Therapeutic Advances Through Omics Using Tick Molecules
6. Omics to Analyze Changes in Tick Populations
7. Omics to Improve Tick Control
8. Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Welch, J.; Kozareva, V.; Ferreira, A.; Vanderburg, C.; Martin, C.; Macosko, Z. Single-Cell Multi-Omic Integration Compares and Contrasts Features of Brain Cell Identity. Cell 2019, 177, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Shendure, J.; Ji, H. Next-Generation DNA Sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Li, S. Advances and Trends in Omics Technology Development. Front. Med. 2022, 9, 911861. [Google Scholar] [CrossRef]
- Bressan, D.; Battistoni, G.; Hannon, G. The Dawn of Spatial Omics. Science 2023, 381, eabq4964. [Google Scholar] [CrossRef]
- De la Fuente, J.; Estrada-Pena, A.; Venzal, J.; Kocan, K.; Sonenshine, D. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2007, 13, 6938–6946. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, S.; Sharma, A.; Jacob, S.; RamVerma, M.; Singh, N.; Shakya, M.; Sankar, M.; Ghosh, S. Economic Impact of Predominant Ticks and Tick-Borne Diseases on Indian Dairy Production Systems. Exp. Parasitol. 2022, 243, 108408. [Google Scholar] [CrossRef]
- Murgia, M.V.; Bell-Sakyi, L.; De La Fuente, J.; Kurtti, T.J.; Makepeace, B.L.; Mans, B.; McCoy, K.D.; Munderloh, U.; Plantard, O.; Rispe, C.; et al. Meeting the Challenge of Tick-Borne Disease Control: A Proposal for 1000 Ixodes Genomes. Ticks Tick Borne Dis. 2019, 10, 213–218. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Bayona-Vásquez, N.J.; Budachetri, K.; Kumar, D.; Frederick, J.C.; Tahir, F.; Faircloth, B.C.; Glenn, T.C.; Karim, S.A. Draft of the Genome of the Gulf Coast Tick Amblyomma maculatum. Ticks Tick Borne Dis. 2022, 14, 102090. [Google Scholar] [CrossRef]
- Rosani, U.; Sollitto, M.; Fogal, N.; Salata, C. Comparative Analysis of Presence-Absence Gene Variations in Five Hard Tick Species: Impact and Functional Considerations. Int. J. Parasitol. 2024, 54, 147–156. [Google Scholar] [CrossRef]
- Hernández-Jarguín, A.; Díaz-Sánchez, S.; Villar, M.; de la Fuente, J. Integrated Metatranscriptomics and Metaproteomics for the Characterization of Bacterial Microbiota in Unfed Ixodes ricinus. Ticks Tick Borne Dis. 2018, 9, 1241–1251. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Aromataris, E.; Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. JBI Manual for Evidence Synthesis. JBI Evid Synth. 2024, 2106–2107. [Google Scholar] [CrossRef]
- Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Santos, V.T.; Ribeiro, L.; Fraga, A.; De Barros, C.M.; Campos, E.; Moraes, J.; Fontenele, M.R.; Araújo, H.M.; Feitosa, N.M.; Logullo, C.; et al. The Embryogenesis of the Tick Rhipicephalus (Boophilus) microplus: The Establishment of a New Chelicerate Model System. Genesis 2013, 51, 803–818. [Google Scholar] [CrossRef] [PubMed]
- Ruiling, Z.; Wenjuan, L.; Kexin, Z.; Xuejun, W.; Zhong, Z. Developmental Transcriptomics Throughout the Embryonic Developmental Process of Rhipicephalus turanicus Reveals Stage-Specific Gene Expression Profiles. Parasit. Vectors 2022, 15, 89. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Li, D.; Duan, D.Y.; Parry, R.; Cheng, T.Y.; Liu, L. Egg Protein Profile and Dynamics During Embryogenesis in Haemaphysalis flava ticks. Ticks Tick Borne Dis. 2023, 14, 102180. [Google Scholar] [CrossRef]
- Kim, T.K.; Waldman, J.; Ibanez-Carrasco, F.; Tirloni, L.; Waltero, C.; Calixo, C.; Braz, G.R.; Mulenga, A.; Da Soçva Vaz, I.; Logullo, C. Stable Internal Reference Genes for Quantitative RT-PCR Analyses in Rhipicephalus microplus During Embryogenesis. Ticks Tick Borne Dis. 2023, 14, 102251. [Google Scholar] [CrossRef]
- Kim, T.K.; Tirloni, L.; Pinto, A.F.M.; Diedrich, J.K.; Moresco, J.J.; Yates, J.R.; Da Silva Vaz, I.; Mulenga, A. Time-Resolved Proteomic Profile of Amblyomma americanum Tick Saliva During Feeding. PLoS Negl. Trop. Dis. 2020, 14, e0007758. [Google Scholar] [CrossRef]
- Lu, S.; Martins, L.A.; Kotál, J.; Ribeiro, J.M.C.; Tirloni, L. A Longitudinal Transcriptomic Analysis from Unfed to Post-Engorgement Midguts of Adult Female Ixodes scapularis. Sci. Rep. 2023, 13, 11360. [Google Scholar] [CrossRef]
- De Sousa-Paula, L.C.; Berger, M.; Talyuli, O.a.C.; Schwartz, C.L.; Saturday, G.A.; Ribeiro, J.M.C.; Tirloni, L. Exploring the Transcriptome of Immature Stages of Ornithodoros hermsi, the Soft-Tick Vector of Tick-Borne Relapsing Fever. Sci. Rep. 2024, 14, 12466. [Google Scholar] [CrossRef]
- Adegoke, A.; Hanson, J.; Smith, R.C.; Karim, S. Ehrlichia chaffeensis Co-opts Phagocytic Hemocytes for Systemic Dissemination in the Lone Star Tick, Amblyomma americanum. J. Innate Immun. 2024, 16, 66–79. [Google Scholar] [CrossRef]
- Xavier, M.A.; Tirloni, L.; Pinto, A.F.M.; Diedrich, J.K.; Yates, J.R.; Mulenga, A.; Logullo, C.; Da Silva Vaz, I.; Seixas, A.; Termignoni, C. A Proteomic Insight into Vitellogenesis During Tick Ovary Maturation. Sci. Rep. 2018, 8, 4698. [Google Scholar] [CrossRef] [PubMed]
- Barrero, R.A.; Guerrero, F.D.; Black, M.; McCooke, J.; Chapman, B.; Schilkey, F.; De León, A.A.P.; Miller, R.J.; Bruns, S.; Dobry, J.; et al. Gene-Enriched Draft Genome of the Cattle Tick Rhipicephalus microplus: Assembly by the Hybrid Pacific Biosciences/Illumina Approach Enabled Analysis of the Highly Repetitive Genome. Int. J. Parasitol. 2017, 47, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Vechtova, P.; Fussy, Z.; Cegan, R.; Sterba, J.; Erhart, J.; Benes, V.; Grubhoffer, L. Catalogue of Stage-Specific Transcripts in Ixodes ricinus and Their Potential Functions During the Tick Life-Cycle. Parasites Vectors 2020, 13, 311. [Google Scholar] [CrossRef]
- Rispe, C.; Hervet, C.; De La Cotte, N.; Daveu, R.; Labadie, K.; Noel, B.; Aury, J.; Thany, S.; Taillebois, E.; Cartereau, A.; et al. Transcriptome of the Synganglion in the Tick Ixodes ricinus and Evolution of the Cys-Loop Ligand-Gated Ion Channel Family in Ticks. BMC Genom. 2022, 23, 463. [Google Scholar] [CrossRef]
- Garcia, G.R.; Ribeiro, J.M.C.; Maruyama, S.R.; Gardinassi, L.G.; Nelson, K.; Ferreira, B.R.; Andrade, T.G.; De Miranda Santos, I.K.F. A Transcriptome and Proteome of the Tick Rhipicephalus microplus Shaped by the Genetic Composition of Its Hosts and Developmental Stage. Sci. Rep. 2020, 10, 12857. [Google Scholar] [CrossRef]
- Ma, H.; Lao, Y.; Liu, S.; Ai, J.; Sun, X.; Zhang, W.; Kang, M.; Li, J.; Sun, Y. The Diurnal Salivary Glands Transcriptome of Dermacentor nuttalli from the First Four Days of Blood Feeding. Ticks Tick Borne Dis. 2023, 14, 102178. [Google Scholar] [CrossRef]
- Maitre, A.; Kratou, M.; Corona-Guerrero, I.; Abuin-Denis, L.; Mateos-Hernández, L.; Mosqueda, J.; Almazan, C.; Said, M.B.; Piloto-Sardiñas, E.; Obregon, D.; et al. Differential Interactions of Rickettsia Species with Tick Microbiota in Rhipicephalus sanguineus and Rhipicephalus turanicus. Sci. Rep. 2024, 14, 20674. [Google Scholar] [CrossRef]
- Adegoke, A.; Ribeiro, J.M.C.; Brown, S.; Smith, R.C.; Karim, S. Rickettsia parkeri Hijacks Tick Hemocytes to Manipulate Cellular and Humoral Transcriptional Responses. Front. Immunol. 2023, 14, 1094326. [Google Scholar] [CrossRef]
- Guizzo, M.; Neupane, S.; Kucera, M.; Perner, J.; Frantová, H.; da Silva Vaz, I.; Oliveira, P.; Kopacek, P.; Zurek, L. Poor Unstable Midgut Microbiome of Hard Ticks Contrasts with Abundant and Stable Monospecific Microbiome in Ovaries. Front. Cell. Infect. Microbiol. 2020, 10, 211. [Google Scholar] [CrossRef]
- Freitas, D.R.J.; Rosa, R.M.; Moraes, J.; Campos, E.; Logullo, C.; Da Silva Vaz, I.; Masuda, A. Relationship Between Glutathione S-Transferase, Catalase, Oxygen Consumption, Lipid Peroxidation and Oxidative Stress in Eggs and Larvae of Boophilus microplus (Acarina: Ixodidae). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.P.; Shimazaki, K.; Niihara, H.; Umemiya-Shirafuji, R.; Fujisaki, K.; Tanaka, T. Expression Analysis of Glutathione S-Transferases and Ferritins During the Embryogenesis of the Tick Haemaphysalis longicornis. Heliyon 2020, 6, e03644. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zheng, P.; Wang, K.; Ji, X.; Shi, Y.; Song, X.; Liu, J.; Yu, Z.; Yang, X. The Molecular and Functional Characterization of Ferritins in the Hard Tick Hyalomma rufipes. Parasit. Vectors 2022, 15, 368. [Google Scholar] [CrossRef]
- Tang, X.; Huang, Y.; Lei, J.; Luo, H.; Zhu, X. The Single-Cell Sequencing: New Developments and Medical Applications. Cell Biosci. 2019, 9, 53. [Google Scholar] [CrossRef]
- De La Fuente, J.; Kocan, K.M.; Almazán, C.; Blouin, E.F. RNA Interference for the Study and Genetic Manipulation of Ticks. Trends Parasitol. 2007, 23, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Moraes, J.; Galina, A.; Alvarenga, P.H.; Rezende, G.L.; Masuda, A.; Da Silva Vaz, I.; Logullo, C. Glucose Metabolism During Embryogenesis of the Hard Tick Boophilus microplus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 528–533. [Google Scholar] [CrossRef]
- Logullo, C.; Witola, W.H.; Andrade, C.; Abreu, L.; Gomes, J.; Da Silva Vaz, I.; Imamura, S.; Konnai, S.; Ohashi, K.; Onuma, M. Expression and Activity of Glycogen Synthase Kinase During Vitellogenesis and Embryogenesis of Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2009, 161, 261–269. [Google Scholar] [CrossRef]
- De Abreu, L.A.; Calixto, C.; Waltero, C.F.; Noce, B.P.D.; Githaka, N.W.; Seixas, A.; Parizi, L.F.; Konnai, S.; da Silva Vaz, I.; Ohashi, K.; et al. The Conserved Role of the AKT/GSK3 Axis in Cell Survival and Glycogen Metabolism in Rhipicephalus (Boophilus) microplus Embryo Tick Cell Line BME26. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 2574–2582. [Google Scholar] [CrossRef]
- Fabres, A.; De Andrade, C.P.; Guizzo, M.; Sorgine, M.H.F.; Paiva-Silva, G.O.; Masuda, A.; da Silva Vaz, I.; Logullo, C. Effect of GSK-3 Activity, Enzymatic Inhibition and Gene Silencing by RNAi on Tick Oviposition and Egg Hatching. Parasitology 2010, 137, 1537–1546. [Google Scholar] [CrossRef]
- Pohl, P.C.; Sorgine, M.H.F.; Leal, A.T.; Logullo, C.; Oliveira, P.L.; Da Silva Vaz, I.; Masuda, A. An Extraovarian Aspartic Protease Accumulated in Tick Oocytes with Vitellin-Degradation Activity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 392–399. [Google Scholar] [CrossRef]
- Lyu, B.; Li, J.; Niemeyer, B.; Anderson, D.; Beerntsen, B.; Song, Q. Identification, Structural Modeling, Gene Expression Analysis and RNAi Effect of Putative Phospholipase A2 in the Lone Star Tick Amblyomma americanum. Ticks Tick Borne Dis. 2024, 15, 102256. [Google Scholar] [CrossRef] [PubMed]
- Nascimento-Silva, M.C.L.; Leal, A.T.; Daffre, S.; Juliano, L.; Da Silva Vaz, I.; Paiva-Silva, G.O.; Oliveira, P.L.; Sorgine, M.H.F. BYC, an Atypical Aspartic Endopeptidase from Rhipicephalus (Boophilus) microplus Eggs. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Campos, E.; Façanha, A.R.; Costa, E.P.; Da Silva Vaz, I.; Masuda, A.; Logullo, C. Exopolyphosphatases in Nuclear and Mitochondrial Fractions During Embryogenesis of the Hard Tick Rhipicephalus (Boophilus) microplus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 311–316. [Google Scholar] [CrossRef]
- De Dios-Blázquez, L.; Cano-Argüelles, A.L.; Pérez-Sánchez, R.; González-Sánchez, M.; Oleaga, A. First Data on Cholesterol Metabolism in Ornithodoros Argasid Ticks: Molecular and Functional Characterization of the N-Terminal Domain of Niemann-Pick C1 proteins. Ticks Tick Borne Dis. 2024, 15, 102382. [Google Scholar] [CrossRef] [PubMed]
- Seixas, A.; Dos Santos, P.C.; Velloso, F.F.; Da Silva Vaz, I.; Masuda, A.; Horn, F.; Termignoni, C. A Boophilus microplus Vitellin-Degrading Cysteine Endopeptidase. Parasitology 2003, 126, 155–163. [Google Scholar] [CrossRef]
- Seixas, A.; Oliveira, P.; Termignoni, C.; Logullo, C.; Masuda, A.; da Silva Vaz, I. Rhipicephalus (Boophilus) microplus Embryo Proteins as Target for Tick Vaccine. Vet. Immunol. Immunopathol. 2012, 148, 149–156. [Google Scholar] [CrossRef]
- Alzugaray, M.F.; Parizi, L.F.; Seixas, A.; Benavides, U.; da Silva Vaz, I. Molecular and Functional Characterization of Bm05br Antigen from Rhipicephalus microplus. Ticks Tick Borne Dis. 2017, 8, 320–329. [Google Scholar] [CrossRef]
- Rosche, K.L.; Hurtado, J.; Fisk, E.A.; Vosbigian, K.A.; Warren, A.L.; Sidak-Loftis, L.C.; Wright, S.J.; Ramirez-Zepp, E.; Park, J.M.; Shaw, D.K. PERK-Mediated Antioxidant Response is Key for Pathogen Persistence in Ticks. mSphere 2023, 8, e00321-23. [Google Scholar] [CrossRef]
- Waltero, C.; de Abreu, L.A.; Alonso, T.; Nunes-da-Fonseca, R.; da Silva Vaz, I., Jr.; Logullo, C. TOR as a Regulatory Target in Rhipicephalus microplus Embryogenesis. Front. Physiol. 2019, 10, 965. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Daumas Filho, C.R.O.; Calixto, C.; da Silva, J.N.; Lopes, C.; da Silva Vaz, I., Jr.; Logullo, C. PEPCK and Glucose Metabolism Homeostasis in Arthropods. Insect Biochem. Mol. Biol. 2023, 160, 103986. [Google Scholar] [CrossRef]
- Murfin, K.E.; Kleinbard, R.; Aydin, M.; Salazar, S.A.; Fikrig, E. Borrelia burgdorferi Chemotaxis Toward Tick Protein Salp12 Contributes to Acquisition. Ticks Tick Borne Dis. 2019, 10, 1124–1134. [Google Scholar] [CrossRef]
- Seixas, A.; Alzugaray, M.F.; Tirloni, L.; Parizi, L.F.; Pinto, A.F.M.; Githaka, N.W.; Konnai, S.; Ohashi, K.; Yates, J.R., III; Termignoni, C.; et al. Expression Profile of Rhipicephalus microplus Vitellogenin Receptor During Oogenesis. Ticks Tick Borne Dis. 2018, 9, 72–81. [Google Scholar] [CrossRef]
- Tarazona, S.; Balzano-Nogueira, L.; Gómez-Cabrero, D.; Schmidt, A.; Imhof, A.; Hankemeier, T.; Tegnér, J.; Westerhuis, J.A.; Conesa, A. Harmonization of Quality Metrics and Power Calculation in Multi-Omic Studies. Nat. Commun. 2020, 11, 3092. [Google Scholar] [CrossRef]
- Micheel, C.M.; Nass, S.J.; Omenn, G.S. Evolution of Translational Omics: Lessons Learned and the Path Forward. Institute of Medicine; The National Academies Press: Washington, DC, USA, 2012; p. 354. [Google Scholar]
- Xiao, J.; Yao, X.; Guan, X.; Xiong, J.; Fang, Y.; Zhang, Y.; Zhang, Y.; Moming, A.; Su, Z.; Jin, J.; et al. Viromes of Haemaphysalis longicornis Reveal Different Viral Abundance and Diversity in Free and Engorged Ticks. Virol. Sin. 2024, 39, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.B.; McVicar, M.; Beniwal, S.; Sharma, A.; Tillett, R.; Petereit, J.; Nuss, A.; Gulia-Nuss, M. A Multi-Omics Approach for Understanding Blood Digestion Dynamics in Ixodes scapularis and Identification of Anti-Tick Vaccine Targets. Ticks Tick Borne Dis. 2024, 15, 102379. [Google Scholar] [CrossRef] [PubMed]
- Sojka, D.; Franta, Z.; Horn, M.; Caffrey, C.R.; Mareš, M.; Kopáček, P. New Insights into the Machinery of Blood Digestion by Ticks. Trends Parasitol. 2013, 29, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Oleaga, A.; Obolo-Mvoulouga, P.; Manzano-Román, R.; Pérez-Sánchez, R. Midgut Proteome of an Argasid Tick, Ornithodoros erraticus: A Comparison between Unfed and Engorged Females. Parasites Vectors 2015, 8, 525. [Google Scholar] [CrossRef]
- Cramaro, W.J.; Revets, D.; Hunewald, O.E.; Sinner, R.; Reye, A.L.; Muller, C.P. Integration of Ixodes ricinus Genome Sequencing with Transcriptome and Proteome Annotation of the Naïve Midgut. BMC Genom. 2015, 16, 871. [Google Scholar] [CrossRef]
- Lu, S.; De Sousa, L.C.; Ribeiro, J.; Tirloni, L. Exploring Midgut Expression Dynamics: Longitudinal Transcriptomic Analysis of Adult Female Amblyomma americanum Midgut and Comparative Insights with Other Hard Tick Species. bioRxiv 2024. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, T.; He, X. Proteomic Profiling of the Midgut Contents of Haemaphysalis flava. Ticks Tick Borne Dis. 2018, 9, 490–495. [Google Scholar] [CrossRef]
- Mahmood, S.; Sima, R.; Urbanova, V.; Trentelman, J.J.A.; Krezdorn, N.; Winter, P.; Kopacek, P.; Hovius, J.W.; Hajdusek, O. Identification of Tick Ixodes ricinus Midgut Genes Differentially Expressed During the Transmission of Borrelia afzelii Spirochetes Using a Transcriptomic Approach. Front. Immunol. 2021, 11, 612412. [Google Scholar] [CrossRef]
- Gulia-Nuss, M.; Nuss, A.B.; Meyer, J.M.; Sonenshine, D.E.; Roe, R.M.; Waterhouse, R.M.; Sattelle, D.B.; De La Fuente, J.; Ribeiro, J.M.; Megy, K.; et al. Genomic Insights into the Ixodes scapularis Tick Vector of Lyme Disease. Nat. Commun. 2016, 7, 10507. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, J.; Shi, W.; Du, L.; Sun, Y.; Zhan, W.; Jiang, J.F.; Wang, Q.; Zhang, B.; Ji, P.; et al. Large-Scale Comparative Analyses of Tick Genomes Elucidate Their Genetic Diversity and Vector Capacities. Cell 2020, 182, 1328–1340.e13. [Google Scholar] [CrossRef] [PubMed]
- Tirloni, L.; Lu, S.; Calvo, E.; Sabadin, G.; Di Maggio, L.; Suzuki, M.; Nardone, G.; Da Silva Vaz, I.; Ribeiro, J. Integrated Analysis of Sialotranscriptome and Sialoproteome of the Brown Dog Tick Rhipicephalus sanguineus (s.l.): Insights into Gene Expression During Blood Feeding. J. Proteom. 2020, 229, 103899. [Google Scholar] [CrossRef]
- Da Silva Vaz, I.; Lu, S.; Pinto, A.F.M.; Diedrich, J.K.; Yates, J.R.; Mulenga, A.; Termignoni, C.; Ribeiro, J.M.; Tirloni, L. Changes in Saliva Protein Profile Throughout Rhipicephalus microplus Blood Feeding. Parasites Vectors 2024, 17, 36. [Google Scholar] [CrossRef]
- Perner, J.; Kropáčková, S.; Kopáček, P.; Ribeiro, J.M.C. Sialome Diversity of Ticks Revealed by RNAseq of Single Tick Salivary Glands. PLoS Negl. Trop. Dis. 2018, 12, e0006410. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, R.; Mao, S.Q.; Duan, D.Y.; Feng, L.L.; Cheng, T.Y. Saliva Proteome of Partially- and Fully-Engorged Adult Female Haemaphysalis flava Ticks. Vet. Parasitol. 2023, 318, 109933. [Google Scholar] [CrossRef]
- Tirloni, L.; Kim, T.K.; Coutinho, M.L.; Ali, A.; Seixas, A.; Termignoni, C.; Mulenga, A.; Da Silva Vaz, I. The Putative Role of Rhipicephalus microplus Salivary Serpins in the Tick-Host Relationship. Insect Biochem. Mol. Biol. 2016, 71, 12–28. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Makoul, G.T.; Levine, J.; Robinson, D.R.; Spielman, A. Antihemostatic, Antiinflammatory, and Immunosuppressive Properties of the Saliva of a Tick, Ixodes dammini. J. Exp. Med. 1985, 161, 332–344. [Google Scholar] [CrossRef]
- Šimo, L.; Kazimirova, M.; Richardson, J.; Bonnet, S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell. Infect. Microbiol. 2017, 7, 281. [Google Scholar] [CrossRef]
- Ali, A.; Zeb, I.; Alouffi, A.; Zahid, H.; Almutairi, M.M.; Alshammari, F.A.; Alrouji, M.; Termignoni, C.; Da Silva Vaz, I.; Tanaka, T. Host Immune Responses to Salivary Components—A Critical Facet of Tick-Host Interactions. Front. Cell. Infect. Microbiol. 2022, 12, 809052. [Google Scholar] [CrossRef]
- Hamsten, C.; Starkhammar, M.; Tran, T.; Johansson, M.; Bengtsson, U.; Ahlén, G.; Sällberg, M.; Grönlund, M.; van Hage, M. Identification of Galactose-α-1,3-Galactose in the Gastrointestinal Tract of the Tick Ixodes ricinus; Possible Relationship With Red Meat Allergy. Allergy 2013, 68, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Crispell, G.; Mohamed, A.; Cox, C.; Lange, J.; Choudhary, S.; Commins, S.; Karim, S. Alpha-Gal Syndrome: Involvement of Amblyomma americanum α-D-Galactosidase and β-1,4 Galactosyltransferase Enzymes in α-Gal Metabolism. Front. Cell. Infect. Microbiol. 2021, 11, 775371. [Google Scholar] [CrossRef]
- McGill, S.K.; Hashash, J.G.; Platts-Mills, T.A. AGA Clinical Practice Update on Alpha-Gal Syndrome for the GI Clinician: Commentary. Clin. Gastroenterol. Hepatol. 2023, 21, 891–896. [Google Scholar] [CrossRef]
- Román-Carrasco, P.; Lieder, B.; Somoza, V.; Ponce, M.; Szépfalusi, Z.; Martin, D.; Hemmer, W.; Swoboda, I. Only α-Gal Bound to Lipids, but not to Proteins, is Transported Across Enterocytes as an IgE-Reactive Molecule that Can Induce Effector Cell Activation. Allergy 2019, 74, 1956–1968. [Google Scholar] [CrossRef]
- Vaz-Rodrigues, R.; Mazuecos, L.; Villar, M.; Contreras, M.; González-García, A.; Bonini, P.; Scimeca, R.C.; Mulenga, A.; De La Fuente, J. Tick Salivary Proteome and Lipidome with Low Glycan Content Correlate with Allergic Type Reactions in the Zebrafish Model. Int. J. Parasitol. 2024, 54, 649–659. [Google Scholar] [CrossRef]
- Mans, B.J.; Andersen, J.F.; Francischetti, I.M.B.; Valenzuela, J.G.; Schwan, T.G.; Pham, V.M.; Garfield, M.K.; Hammer, C.H.; Ribeiro, J.M.C. Comparative Sialomics Between Hard and Soft Ticks: Implications for the Evolution of Blood-Feeding Behavior. Insect Biochem. Mol. Biol. 2008, 38, 42–58. [Google Scholar] [CrossRef]
- Chmelař, J.; Anderson, J.M.; Mu, J.; Jochim, R.C.; Valenzuela, J.G.; Kopecký, J. Insight into the Sialome of the Castor Bean Tick, Ixodes ricinus. BMC Genom. 2008, 9, 233. [Google Scholar] [CrossRef]
- Tirloni, L.; Reck, J.; Terra, R.M.S.; Martins, J.R.; Mulenga, A.; Sherman, N.E.; Fox, J.W.; Yates, J.R.; Termignoni, C.; Pinto, A.F.M.; et al. Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison Between Partially and Fully Engorged Females. PLoS ONE 2014, 9, e94831. [Google Scholar] [CrossRef]
- Kim, T.K.; Tirloni, L.; Bencosme-Cuevas, E.; Kim, T.H.; Diedrich, J.K.; Yates, J.R.; Mulenga, A. Borrelia burgdorferi Infection Modifies Protein Content in Saliva of Ixodes scapularis Nymphs. BMC Genom. 2021, 22, 152. [Google Scholar] [CrossRef]
- Troxell, B.; Zhang, J.J.; Bourret, T.J.; Zeng, M.Y.; Blum, J.; Gherardini, F.; Hassan, H.M.; Yang, X.F. Pyruvate Protects Pathogenic Spirochetes from H2O2 Killing. PLoS ONE 2014, 9, e84625. [Google Scholar] [CrossRef]
- Pietrantonio, P.V.; Xiong, C.; Nachman, R.J.; Shen, Y. G Protein-Coupled Receptors in Arthropod Vectors: Omics and Pharmacological Approaches to Elucidate Ligand-Receptor Interactions and Novel Organismal Functions. Curr. Opin. Insect Sci. 2018, 29, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-Coupled Receptors in the Human Genome Form Five Main Families. Phylogenetic Analysis, Paralogon Groups, and Fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef] [PubMed]
- Kolakowski, L.F., Jr. GCRDb: A G-Protein-Coupled Receptor Database. Recept. Channels 1994, 2, 1–7. [Google Scholar] [PubMed]
- Pándy-Szekeres, G.; Munk, C.; Tsonkov, T.M.; Mordalski, S.; Harpsøe, K.; Hauser, A.S.; Bojarski, A.J.; Gloriam, D.E. GPCRdb in 2018: Adding GPCR Structure Models and Ligands. Nucleic Acids Res. 2018, 46, D440–D446. [Google Scholar] [CrossRef]
- Guerrero, F.D.; Kellogg, A.; Ogrey, A.N.; Heekin, A.M.; Barrero, R.; Bellgard, M.I.; Dowd, S.E.; Leung, M.Y. Prediction of G Protein-Coupled Receptor Encoding Sequences from the Synganglion Transcriptome of the Cattle Tick, Rhipicephalus microplus. Ticks Tick Borne Dis. 2016, 7, 670–677. [Google Scholar] [CrossRef]
- Hauser, F.; Pallesen, M.; Lehnhoff, J.; Li, S.; Lind, A.; Grimmelikhuijzen, C.J. A Corazonin G Protein-Coupled Receptor Gene in the Tick Ixodes scapularis Yields Two Splice Variants, Each Coding for a Specific Corazonin Receptor. Biochem. Biophys. Res. Commun. 2023, 666, 162–169. [Google Scholar] [CrossRef]
- Waldman, J.; Klafke, G.M.; Tirloni, L.; Logullo, C.; da Silva Vaz, I., Jr. Putative Target Sites in Synganglion for Novel Ixodid Tick Control Strategies. Ticks Tick Borne Dis. 2023, 14, 102123. [Google Scholar] [CrossRef]
- Waldman, J.; Xavier, M.A.; Vieira, L.R.; Logullo, R.; Braz, G.R.C.; Tirloni, L.; Ribeiro, J.M.C.; Veenstra, J.A.; Silva Vaz, I.D. Neuropeptides in Rhipicephalus microplus and Other Hard Ticks. Ticks Tick Borne Dis. 2022, 13, 101910. [Google Scholar] [CrossRef]
- Rutz, C.; Klein, W.; Schülein, R. N-Terminal Signal Peptides of G Protein-Coupled Receptors: Significance for Receptor Biosynthesis, Trafficking, and Signal Transduction. Prog. Mol. Biol. Transl. Sci. 2015, 132, 267–287. [Google Scholar] [CrossRef]
- Hauser, F.; Cazzamali, G.; Williamson, M.; Park, Y.; Li, B.; Tanaka, Y.; Predel, R.; Neupert, S.; Schachtner, J.; Verleyen, P.; et al. A Genome-Wide Inventory of Neurohormone GPCRs in the Red Flour Beetle Tribolium castaneum. Front. Neuroendocrinol. 2008, 29, 142–165. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.J.; Toschi, A.; Miller, C.A.; Kataoka, H.; Quistad, G.B.; Li, J.P.; Carney, R.L.; Schooley, D.A. Identification of an Allatostatin from the Tobacco Hornworm Manduca sexta. Proc. Natl. Acad. Sci. USA 1991, 88, 9458–9462. [Google Scholar] [CrossRef]
- Veenstra, J.A. Allatostatins C, Double C and Triple C: The Result of a Local Gene Triplication in an Ancestral Arthropod. Gen. Comp. Endocrinol. 2016, 230–231, 153–157. [Google Scholar] [CrossRef]
- Kreienkamp, H.J.; Larusson, H.J.; Witte, I.; Roeder, T.; Birgul, N.; Honck, H.H.; Harder, S.; Ellinghausen, G.; Buck, F.; Richter, D. Functional Annotation of Two Orphan G-Protein-Coupled Receptors, Drostar1 and -2, from Drosophila melanogaster and Their Ligands by Reverse Pharmacology. J. Biol. Chem. 2002, 277, 39937–39943. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, J.A. Allatostatin C and Its Paralog Allatostatin Double C: The Arthropod Somatostatins. Insect Biochem. Mol. Biol. 2009, 39, 161–170. [Google Scholar] [CrossRef]
- Debnath, M.; Prasad, G.B.; Bisen, P.S. Omics Technology. In Molecular Diagnostics: Promises and Possibilities; Springer eBook: Dordrecht, The Netherlands, 2010; pp. 11–31. [Google Scholar] [CrossRef]
- De Araujo, A.C.; Noël, B.; Bretaudeau, A.; Labadie, K.; Boudet, M.; Tadrent, N.; Istace, B.; Kritli, S.; Cruaud, C.; Olaso, R.; et al. Genome Sequences of Four Ixodes Species Expands Understanding of Tick Evolution. BMC Biol. 2024, 23, 17. [Google Scholar] [CrossRef]
- Narasimhan, S.; Fikrig, E. Tick Microbiome: The Force Within. Trends Parasitol. 2015, 31, 315–323. [Google Scholar] [CrossRef]
- De, S.; Kingan, S.; Kitsou, C.; Portik, D.; Foor, S.; Frederick, C.; Rana, V.; Paulat, N.; Ray, D.; Wang, Y.; et al. A high-quality Ixodes scapularis genome advances tick science. Nat Genet. 2023, 55, 301–311. [Google Scholar] [CrossRef]
- Duron, O.; Morel, O.; Noël, V.; Buysse, M.; Binetruy, F.; Lancelot, R.; Loire, E.; Ménard, C.; Bouchez, O.; Vavre, F.; et al. Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Curr. Biol. 2018, 28, 1896–1902.e5. [Google Scholar] [CrossRef]
- Xu, Z.; Li, W.; Dong, X.; Chen, Y.; Zhang, D.; Wang, J.; Zhou, L.; He, G. Precision Medicine in Colorectal Cancer: Leveraging Multi-Omics, Spatial Omics, and Artificial Intelligence. Clin. Chim. Acta 2024, 559, 119686. [Google Scholar] [CrossRef]
- Fountain-Jones, N.M.; Khoo, B.S.; Rau, A.; Berman, J.D.; Burton, E.N.; Oliver, J.D. Positive Associations Matter: Microbial Relationships Drive Tick Microbiome Composition. Mol. Ecol. 2023, 32, 4078–4092. [Google Scholar] [CrossRef] [PubMed]
- Swei, A.; Kwan, J.Y. Tick Microbiome and Pathogen Acquisition Altered by Host Blood Meal. ISME J. 2017, 11, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Du, L.F.; Zhang, M.Z.; Yuan, T.T.; Ni, X.B.; Wei, W.; Cui, X.M.; Wang, N.; Xiong, T.; Zhang, J.; Pan, Y.S.; et al. New Insights Into the Impact of Microbiome on Horizontal and Vertical Transmission of a Tick-Borne Pathogen. Microbiome 2023, 11, 50. [Google Scholar] [CrossRef]
- Kocan, K.M.; De La Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S.A. The Natural History of Anaplasma marginale. Vet. Parasitol. 2010, 167, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Díaz, H.; Quiroz-Castañeda, R.E.; Salazar-Morales, K.; Cossío-Bayúgar, R.; Miranda-Miranda, E. Tick Immunobiology and Extracellular Traps: An Integrative Vision to Control of Vectors. Pathogens 2021, 10, 1511. [Google Scholar] [CrossRef]
- Bonnet, S.I.; Pollet, T. Update on the Intricate Tango Between Tick Microbiomes and Tick-Borne Pathogens. Parasite Immunol. 2021, 43, e12813. [Google Scholar] [CrossRef]
- Adegoke, A.; Ribeiro, J.M.C.; Smith, R.C.; Karim, S. Tick Innate Immune Responses to Hematophagy and Ehrlichia Infection at Single-Cell Resolution. Front. Immunol. 2024, 14, 1305976. [Google Scholar] [CrossRef]
- Egan, S.L.; Loh, S.M.; Banks, P.B.; Gillett, A.; Ahlstrom, L.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. Bacterial Community Profiling Highlights Complex Diversity and Novel Organisms in Wildlife Ticks. Ticks Tick Borne Dis. 2020, 11, 101407. [Google Scholar] [CrossRef]
- Gofton, A.W.; Doggett, S.; Ratchford, A.; Ryan, U.; Irwin, P. Phylogenetic Characterisation of Two Novel Anaplasmataceae From Australian Ixodes holocyclus Ticks: ’Candidatus Neoehrlichia australis’ and ’Candidatus Neoehrlichia arcana’. Int. J. Syst. Evol. Microbiol. 2016, 66, 4256–4261. [Google Scholar] [CrossRef]
- Egan, S.L.; Taylor, C.L.; Banks, P.B.; Northover, A.S.; Ahlstrom, L.A.; Ryan, U.M.; Irwin, P.J.; Oskam, C.L. The Bacterial Biome of Ticks and Their Wildlife Hosts at the Urban-Wildland Interface. Microb. Genom. 2021, 7, 000730. [Google Scholar] [CrossRef]
- Guizzo, M.G.; Dolezelikova, K.; Neupane, S.; Frantova, H.; Hrbatova, A.; Pafco, B.; Fiorotti, J.; Kopacek, P.; Zurek, L. Characterization and Manipulation of the Bacterial Community in the Midgut of Ixodes ricinus. Parasites Vectors 2022, 15, 248. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.X.; Moy, F.; Daniels, T.J.; Godfrey, H.P.; Cabello, F.C. Molecular Analysis of Microbial Communities Identified in Different Developmental Stages of Ixodes scapularis Ticks from Westchester and Dutchess Counties, New York. Environ. Microbiol. 2006, 8, 761–772. [Google Scholar] [CrossRef]
- Duan, D.; Cheng, T. Determination of the Microbial Community Features of Haemaphysalis flava in Different Developmental Stages by High-Throughput Sequencing. J. Basic Microbiol. 2017, 57, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Umemiya-Shirafuji, R.; Xuan, X.; Fujisaki, K.; Yamagishi, J. Draft Genome Sequence Data of Haemaphysalis longicornis Oita Strain. Data Brief. 2023, 49, 109352. [Google Scholar] [CrossRef]
- Duan, D.Y.; Liu, Y.K.; Liu, L.; Liu, G.H.; Cheng, T.Y. Microbiome Analysis of the Midguts of Different Developmental Stages of Argas persicus in China. Ticks Tick Borne Dis. 2022, 13, 101868. [Google Scholar] [CrossRef] [PubMed]
- Li, L.F.; Wei, R.; Liu, H.B.; Jiang, B.G.; Cui, X.M.; Wei, W.; Hu, Y.L. Characterization of Microbial Communities in Ixodes persulcatus (Ixodida: Ixodidae), A Veterinary and Medical Important Tick Species in Northeastern China. J. Med. Entomol. 2020, 57, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yu, G.; Huang, Z.; Zhang, Z. Microbiota Assessment Across Different Developmental Stages of Dermacentor silvarum (Acari: Ixodidae) Revealed Stage-Specific Signatures. Ticks Tick Borne Dis. 2020, 11, 101321. [Google Scholar] [CrossRef]
- Wilson, J.M.; Breitschwerdt, E.B.; Juhasz, N.B.; Marr, H.S.; de Brito Galvão, J.F.; Pratt, C.L.; Qurollo, B.A. Novel Rickettsia Species Infecting Dogs, United States. Emerg. Infect. Dis. 2020, 12, 3011–3015. [Google Scholar] [CrossRef]
- Duncan, K.T.; Elshahed, M.S.; Sundstrom, K.D.; Little, S.E.; Youssef, N.H. Influence of Tick Sex and Geographic Region on the Microbiome of Dermacentor variabilis Collected from Dogs and Cats Across the United States. Ticks Tick Borne Dis. 2022, 13, 102002. [Google Scholar] [CrossRef]
- Wu-Chuang, A.; Mateos-Hernandez, L.; Maitre, A.; Rego, R.O.M.; Šíma, R.; Porcelli, S.; Rakotobe, S.; Foucault-Simonin, A.; Moutailler, S.; Palinauskas, V.; et al. Microbiota Perturbation by Anti-Microbiota Vaccine Reduces the Colonization of Borrelia afzelii in Ixodes ricinus. Microbiome 2023, 11, 151. [Google Scholar] [CrossRef]
- Lew-Tabor, A.E.; Valle, M.R. A Review of Reverse Vaccinology Approaches for the Development of Vaccines Against Ticks and Tick Borne Diseases. Ticks Tick Borne Dis. 2016, 7, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, N.; Zheng, T.; Lu, M.; Baoli, B.; Jie, R.; Wang, X.; Li, K. Tick-borne bacterial agents in Hyalomma asiaticum ticks from Xinjiang Uygur Autonomous Region, Northwest China. Parasites Vectors 2024, 17, 167. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Hernández, L.; Obregón, D.; Maye, J.; Borneres, J.; Versille, N.; de la Fuente, J.; Estrada-Peña, A.; Hodžić, A.; Šimo, L.; Cabezas-Cruz, A. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance During Feeding. Vaccines 2020, 8, 702. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Hernández, L.; Obregón, D.; Wu-Chuang, A.; Maye, J.; Bornères, J.; Versillé, N.; de la Fuente, J.; Díaz-Sánchez, S.; Bermúdez-Humarán, L.G.; Torres-Maravilla, E.; et al. Anti-Microbiota Vaccines Modulate the Tick Microbiome in a Taxon-Specific Manner. Front. Immunol. 2021, 12, 704621. [Google Scholar] [CrossRef]
- Cano-Argüelles, A.L.; Piloto-Sardiñas, E.; Maitre, A.; Mateos-Hernández, L.; Maye, J.; Wu-Chuang, A.; Abuin-Denis, L.; Obregón, D.; Bamgbose, T.; Oleaga, A.; et al. Microbiota-Driven Vaccination in Soft Ticks: Implications for Survival, Fitness and Reproductive Capabilities in Ornithodoros moubata. Mol. Ecol. 2024, 33, e17506. [Google Scholar] [CrossRef]
- Kim, D.; Li, R.; Dudek, S.; Ritchie, M. Identifying Interactions Between Different Levels of Genomic Data Associated with Cancer Clinical Outcomes Using Grammatical Evolution Neural Network. BioData Min. 2013, 6, 23. [Google Scholar] [CrossRef]
- Xian, T.; Cao, M.; Chen, K.; Zhao, W.; Liu, Y.; Yao, W.; Guang, H.; Yang, Y.; Su, M.; Zhang, R.; et al. Identification of a Novel Protein Hq023 of the Hard Tick Haemaphysalis qinghaiensis and Preliminary Evaluation of Its Analgesic Effect in Mice Model. Parasitol. Int. 2024, 103, 102933. [Google Scholar] [CrossRef]
- Batista, I.F.; Chudzinski-Tavassi, A.M.; Faria, F.; Simons, S.M.; Barros-Batestti, D.M.; Labruna, M.B.; Leão, L.I.; Ho, P.L.; Junqueira-De-Azevedo, I.L.M. Expressed Sequence Tags (ESTs) from the Salivary Glands of the Tick Amblyomma cajennense (Acari: Ixodidae). Toxicon 2007, 51, 823–834. [Google Scholar] [CrossRef]
- Batista, I.F.C.; Ramos, O.H.P.; Ventura, J.S.; Junqueira-De-Azevedo, I.L.M.; Ho, P.L.; Chudzinski-Tavassi, A.M. A New Factor Xa Inhibitor from Amblyomma cajennense with a Unique Domain Composition. Arch. Biochem. Biophys. 2009, 493, 151–156. [Google Scholar] [CrossRef]
- Chudzinski-Tavassi, A.M.; De-Sá-Júnior, P.L.; Simons, S.M.; Maria, D.A.; De Souza Ventura, J.; De Fátima Correia Batista, I.; Faria, F.; Durães, E.; Reis, E.M.; Demasi, M. A New Tick Kunitz Type Inhibitor, Amblyomin-X, Induces Tumor Cell Death by Modulating Genes Related to the Cell Cycle and Targeting the Ubiquitin-Proteasome System. Toxicon 2010, 56, 1145–1154. [Google Scholar] [CrossRef]
- Cabezas-Cruz, A.; Tonk, M.; Bouchut, A.; Pierrot, C.; Pierce, R.J.; Kotsyfakis, M.; Rahnamaeian, M.; Vilcinskas, A.; Khalife, J.; Valdés, J.J. Antiplasmodial Activity Is an Ancient and Conserved Feature of Tick Defensins. Front. Microbiol. 2016, 7, 1682. [Google Scholar] [CrossRef]
- Aljamali, M.N.; Hern, L.; Kupfer, D.; Downard, S.; So, S.; Roe, B.A.; Sauer, J.R.; Essenberg, R.C. Transcriptome Analysis of the Salivary Glands of the Female Tick Amblyomma americanum (Acari: Ixodidae). Insect Mol. Biol. 2009, 18, 129–154. [Google Scholar] [CrossRef] [PubMed]
- Bullard, R.L.; Williams, J.; Karim, S. Temporal Gene Expression Analysis and RNA Silencing of Single and Multiple Members of Gene Family in the Lone Star Tick Amblyomma americanum. PLoS ONE 2016, 11, e0147966. [Google Scholar] [CrossRef]
- Murfin, K.E.; Fikrig, E. Tick Bioactive Molecules as Novel Therapeutics: Beyond Vaccine Targets. Front. Cell. Infect. Microbiol. 2017, 7, 222. [Google Scholar] [CrossRef]
- Kuhn, N.; Schmidt, C.Q.; Schlapschy, M.; Skerra, A. PASylated Coversin, a C5-Specific Complement Inhibitor with Extended Pharmacokinetics, Shows Enhanced Anti-Hemolytic Activity in Vitro. Bioconjugate Chem. 2016, 27, 2359–2371. [Google Scholar] [CrossRef]
- Pischke, S.E.; Gustavsen, A.; Orrem, H.L.; Egge, K.H.; Courivaud, F.; Fontenelle, H.; Despont, A.; Bongoni, A.K.; Rieben, R.; Tønnessen, T.I.; et al. Complement Factor 5 Blockade Reduces Porcine Myocardial Infarction Size and Improves Immediate Cardiac Function. Basic Res. Cardiol. 2017, 112, 20. [Google Scholar] [CrossRef] [PubMed]
- Cano-Argüelles, A.L.; Pérez-Sánchez, R.; Oleaga, A. A microRNA Profile of the Saliva in the Argasid Ticks Ornithodoros erraticus and Ornithodoros moubata and Prediction of Specific Target Genes. Ticks Tick Borne Dis. 2023, 14, 102249. [Google Scholar] [CrossRef]
- Luo, J.; Tan, Y.; Zhao, S.; Ren, Q.; Guan, G.; Luo, J.; Yin, H.; Liu, G. Role of Recognition MicroRNAs in Haemaphysalis longicornis and Theileria orientalis Interactions. Pathogens 2024, 13, 288. [Google Scholar] [CrossRef]
- Léger, E.; Vourc’h, G.; Vial, L.; Chevillon, C.; McCoy, K.D. Changing Distributions of Ticks: Causes and Consequences. Exp. Appl. Acarol. 2013, 59, 219–244. [Google Scholar] [CrossRef] [PubMed]
- Makwarela, T.G.; Nyangiwe, N.; Masebe, T.; Mbizeni, S.; Nesengani, L.T.; Djikeng, A.; Mapholi, N.O. Tick Diversity and Distribution of Hard (Ixodidae) Cattle Ticks in South Africa. Microbiol. Res. 2023, 14, 42–59. [Google Scholar] [CrossRef]
- Agwunobi, D.; Pei, T.; Bai, R.; Wang, Z.; Shi, X.; Zhang, M.; Yu, Z.; Liu, J. miR-2a and miR-279 are Functionally Associated with Cold Tolerance in Dermacentor silvarum (Acari: Ixodidae). Comp. Biochem. Physiol. D Genom. Proteom. 2022, 41, 100946. [Google Scholar] [CrossRef]
- De Rouck, S.; İnak, E.; Dermauw, W.; Van Leeuwen, T. A Review of the Molecular Mechanisms of Acaricide Resistance in Mites and Ticks. Insect Biochem. Mol. Biol. 2023, 159, 103981. [Google Scholar] [CrossRef]
- Kunz, S.E.; Kemp, D.H. Insecticides and Acaricides: Resistance and Environmental Impact. Rev. Sci. Tech. (Int. Off. Epizoot.) 1994, 13, 1249–1286. [Google Scholar] [CrossRef]
- Araya-Anchetta, A.; Busch, J.D.; Scoles, G.A.; Wagner, D.M. Thirty Years of Tick Population Genetics: A Comprehensive Review. Infect. Genet. Evol. 2015, 29, 164–179. [Google Scholar] [CrossRef]
- Robbertse, L.; Baron, S.; van der Merwe, N.A.; Madder, M.; Stoltsz, W.H.; Maritz-Olivier, C. Genetic Diversity, Acaricide Resistance Status and Evolutionary Potential of a Rhipicephalus microplus Population from a Disease-Controlled Cattle Farming Area in South Africa. Ticks Tick Borne Dis. 2016, 7, 595–603. [Google Scholar] [CrossRef]
- Kumar, R. Molecular Markers and Their Application in the Monitoring of Acaricide Resistance in Rhipicephalus microplus. Exp. Appl. Acarol. 2019, 78, 149–172. [Google Scholar] [CrossRef]
- Templeton, A.R. Nested Clade Analyses of Phylogeographic Data: Testing Hypotheses about Gene Flow and Population History. Mol. Ecol. 1998, 7, 381–397. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography: The History and Formation of Species; Harvard University Press: Cambridge, MA, USA, 2000; Volume 447. [Google Scholar] [CrossRef]
- Røed, K.H.; Kvie, K.S.; Hasle, G.; Gilbert, L.; Leinaas, H.P. Phylogenetic Lineages and Postglacial Dispersal Dynamics Characterize the Genetic Structure of the Tick, Ixodes ricinus, in Northwest Europe. PLoS ONE 2016, 11, e0167450. [Google Scholar] [CrossRef]
- Wu, C. Heat Shock Transcription Factors: Structure and Regulation. Annu. Rev. Cell Dev. Biol. 1995, 11, 441–469. [Google Scholar] [CrossRef]
- Tutar, L.; Tutar, Y. Heat Shock Proteins; An Overview. Curr. Pharm. Biotechnol. 2010, 11, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Villar, M.; Ayllón, N.; Busby, A.T.; Galindo, R.C.; Blouin, E.F.; Kocan, K.M.; de la Fuente, J. Expression of Heat Shock and Other Stress Response Proteins in Ticks and Cultured Tick Cells in Response to Anaplasma spp. Infection and Heat Shock. Int. J. Proteom. 2010, 2010, 657261. [Google Scholar] [CrossRef]
- Bullard, R.; Sharma, S.R.; Das, P.K.; Morgan, S.E.; Karim, S. Repurposing of Glycine-Rich Proteins in Abiotic and Biotic Stresses in the Lone-Star Tick (Amblyomma americanum). Front. Physiol. 2019, 10, 744. [Google Scholar] [CrossRef]
- Yunik, M.E.; Chilton, N.B. Supercooling Points of Adult Dermacentor variabilis (Acari: Ixodidae) from a Population Near the Northern Distribution Limit. J. Med. Entomol. 2021, 58, 961–964. [Google Scholar] [CrossRef]
- Maldonado-Ruiz, L.P.; Urban, J.; Davis, B.N.; Park, J.J.; Zurek, L.; Park, Y. Dermal Secretion Physiology and Thermoregulation in the Lone Star Tick, Amblyomma americanum. Ticks Tick Borne Dis. 2022, 13, 101962. [Google Scholar] [CrossRef]
- Toxopeus, J.; Sinclair, B.J. Mechanisms Underlying Insect Freeze Tolerance. Biol. Rev. 2018, 93, 1891–1914. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; He, L.; Wu, X.; Yin, Y. Long-Term l-Serine Administration Reduces Food Intake and Improves Oxidative Stress and Sirt1/NFκB Signaling in the Hypothalamus of Aging Mice. Front. Endocrinol. 2018, 9, 476. [Google Scholar] [CrossRef]
- Agwunobi, D.O.; Wang, T.; Zhang, M. Functional Implication of Heat Shock Protein 70/90 and Tubulin in Cold Stress of Dermacentor silvarum. Parasites Vectors 2021, 14, 542. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Li, X.; Oetting, R.D. Rapid Cold Hardening and Expression of Heat Shock Protein Genes in the B-Biotype Bemisia tabaci. Environ. Entomol. 2011, 40, 132–139. [Google Scholar] [CrossRef]
- Ji, H.; Wu, Y.K.; Guo, J.R.; Wang, J.F.; Li, S.Z.; Yang, H.M.; Liu, J.X. Effects of Cold Stress on Expression of Hsp70 Gene in Blood Lymphocyte of Piglets. Int. J. Anim. Vet. Adv. 2012, 11, 3914–3920. [Google Scholar]
- Garbuz, D.G. Regulation of Heat Shock Gene Expression in Response to Stress. Mol. Biol. 2017, 51, 352–367. [Google Scholar] [CrossRef]
- Reinders, J.; Wulff, B.B.; Mirouze, M.; Marí-Ordóñez, A.; Dapp, M.; Rozhon, W. Compromised Stability of DNA Methylation and Transposon Immobilization in Mosaic Arabidopsis Epigenomes. Genes Dev. 2009, 23, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Agwunobi, D.O.; Zhang, M.; Shi, X.; Zhang, S.; Zhang, M.; Wang, T.; Masoudi, A.; Yu, Z.; Liu, J. DNA Methyltransferases Contribute to Cold Tolerance in Ticks Dermacentor silvarum and Haemaphysalis longicornis (Acari: Ixodidae). Front. Vet. Sci. 2021, 8, 726731. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Eisen, L.; Ogden, N.H.; Beard, C.B. Linkages of Weather and Climate with Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae), Enzootic Transmission of Borrelia burgdorferi, and Lyme Disease in North America. J. Med. Entomol. 2016, 53, 250–261. [Google Scholar] [CrossRef]
- De Silva, A.M.; Fikrig, E. Growth and Migration of Borrelia burgdorferi in Ixodes Ticks During Blood Feeding. Am. J. Trop. Med. Hyg. 1995, 53, 397–404. [Google Scholar] [CrossRef]
- De la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Rego, R.O. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef]
- Kurokawa, C.; Lynn, G.E.; Pedra, J.H.; Pal, U.; Narasimhan, S.; Fikrig, E. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 2020, 18, 587–600. [Google Scholar] [CrossRef]
- De Castro, M.H.; De Klerk, D.; Pienaar, R.; Rees, D.J.G.; Mans, B.J. Sialotranscriptomics of Rhipicephalus zambeziensis Reveals Intricate Expression Profiles of Secretory Proteins and Suggests Tight Temporal Transcriptional Regulation During Blood-Feeding. Parasites Vectors 2017, 10, 384. [Google Scholar] [CrossRef]
- Rodriguez-Valle, M.; Moolhuijzen, P.; Barrero, R.A.; Ong, C.T.; Busch, G.; Karbanowicz, T.; Tabor, A.E. Transcriptome and Toxin Family Analysis of the Paralysis Tick, Ixodes holocyclus. Int. J. Parasitol. 2018, 48, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, S.; Booth, C.J.; DePonte, K.; Wu, M.J.; Liang, X.; Mohanty, S.; Fikrig, E. Host-Specific Expression of Ixodes scapularis Salivary Genes. Ticks Tick Borne Dis. 2019, 10, 386–397. [Google Scholar] [CrossRef]
- Corley, S.W.; Jonsson, N.N.; Piper, E.K.; Cutullé, C.; Stear, M.J.; Seddon, J.M. Mutation in the RmβAOR Gene Is Associated with Amitraz Resistance in the Cattle Tick Rhipicephalus microplus. Proc. Natl. Acad. Sci. USA 2013, 110, 16772–16777. [Google Scholar] [CrossRef]
- Margos, G.; Hepner, S.; Mang, C.; Marosevic, D.; Reynolds, S.E.; Krebs, S.; Fingerle, V. Lost in Plasmids: Next Generation Sequencing and the Complex Genome of the Tick-Borne Pathogen Borrelia burgdorferi. BMC Genom. 2017, 18, 422. [Google Scholar] [CrossRef]
- De la Canal, L.H.; Dall’Agnol, B.; Webster, A.; Reck, J.; Martins, J.R.; Klafke, G.M. Mechanisms of Amitraz Resistance in a Rhipicephalus microplus Strain from Southern Brazil. Ticks Tick Borne Dis. 2021, 12, 101764. [Google Scholar] [CrossRef]
- Villar, D.; Klafke, G.M.; Rodríguez-Durán, A.; Bossio, F.; Miller, R.; Perez de Leon, A.A.; Chaparro-Gutiérrez, J.J. Resistance Profile and Molecular Characterization of Pyrethroid Resistance in a Rhipicephalus microplus Strain from Colombia. Med. Vet. Entomol. 2020, 34, 105–115. [Google Scholar] [CrossRef]
- Obaid, M.K.; Almutairi, M.M.; Alouffi, A.; Safi, S.Z.; Tanaka, T.; Ali, A. Assessment of Cypermethrin and Amitraz Resistance and Molecular Profiling of Voltage-Gated Sodium Channel and Octopamine Tyramine Genes of Rhipicephalus microplus. Front. Cell. Infect. Microbiol. 2023, 13, 1176013. [Google Scholar] [CrossRef]
- Kanampalliwar, A.; Soni, R.; Girdhar, A.; Tiwari, A. Reverse Vaccinology: Basics and Applications. Open Vaccine J. 2013, 4, 1–5. [Google Scholar] [CrossRef]
- Abbas, M.N.; Jmel, M.A.; Mekki, I.; Dijkgraaf, I.; Kotsyfakis, M. Recent Advances in Tick Antigen Discovery and Anti-Tick Vaccine Development. Int. J. Mol. Sci. 2023, 24, 4969. [Google Scholar] [CrossRef]
- De La Fuente, J.; Ghosh, S. Evolution of Tick Vaccinology. Parasitology 2024, 151, 1045–1052. [Google Scholar] [CrossRef]
- Sobrino, I.; Villar, M.; De La Fuente, J. The Path to Anti-Vector Vaccines: Current Advances and Limitations in Proteomics and Bioinformatics. Expert Rev. Proteom. 2024, 21, 497–500. [Google Scholar] [CrossRef]
- Díaz-Martín, V.; Manzano-Román, R.; Obolo-Mvoulouga, P.; Oleaga, A.; Pérez-Sánchez, R. Development of Vaccines against Ornithodoros Soft Ticks: An Update. Ticks Tick Borne Dis. 2015, 6, 211–220. [Google Scholar] [CrossRef]
- Domingues, L.N.; Bendele, K.G.; Bodine, D.M.; Halos, L.; Cutolo, A.A.; Liebstein, M.; Widener, J.; Figueiredo, M.; Moreno, Y.; Epe, C.; et al. A Reverse Vaccinology Approach Identified Novel Recombinant Tick Proteins with Protective Efficacy against Rhipicephalus Microplus Infestation. Ticks Tick Borne Dis. 2024, 15, 102403. [Google Scholar] [CrossRef]
- Ndekezi, C.; Nkamwesiga, J.; Ochwo, S.; Kimuda, M.P.; Mwiine, F.N.; Tweyongyere, R.; Amanyire, W.; Muhanguzi, D. In Silico Analysis of Ixodid Tick Aqauporin-1 Protein as a Candidate Anti-Tick Vaccine Antigen. BioRxiv 2019. [Google Scholar] [CrossRef]
- Couto, J.; Seixas, G.; Stutzer, C.; Olivier, N.A.; Maritz-Olivier, C.; Antunes, S.; Domingos, A. Probing the Rhipicephalus bursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021, 9, 363. [Google Scholar] [CrossRef]
- Obolo-Mvoulouga, P.; Oleaga, A.; Manzano-Román, R.; Pérez-Sánchez, R. Evaluation of the Protective Efficacy of Ornithodoros Moubata Midgut Membrane Antigens Selected Using Omics and in Silico Prediction Algorithms. Ticks Tick Borne Dis. 2018, 9, 1158–1172. [Google Scholar] [CrossRef]
- Naranjo, V.; Ayllón, N.; Pérez de la Lastra, J.M.; Galindo, R.C.; Kocan, K.M.; Blouin, E.F.; Mitra, R.; Alberdi, P.; Villar, M.; de la Fuente, J. Reciprocal Regulation of NF-kB (Relish) and Subolesin in the Tick Vector, Ixodes scapularis. PLoS ONE 2013, 8, e65915. [Google Scholar] [CrossRef]
- Busch, J.D.; Stone, N.E.; Pemberton, G.L.; Roberts, M.L.; Turner, R.E.; Thornton, N.B.; Sahl, J.W.; Lemmer, D.; Buckmeier, G.; Davis, S.K.; et al. Leading Anti-Tick Vaccine Targets Are Variably Conserved in Cattle Fever Ticks. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Rodríguez-Camarillo, S.D.; Quiroz-Castañeda, R.E.; Aguilar-Díaz, H.; Vara-Pastrana, J.E.; Pescador-Pérez, D.; Amaro-Estrada, I.; Martínez-Ocampo, F. Immunoinformatic Analysis to Identify Proteins to Be Used as Potential Targets to Control Bovine Anaplasmosis. Int. J. Microbiol. 2020, 2020, 8882031. [Google Scholar] [CrossRef]
- Artigas-Jerónimo, S.; Estrada-Peña, A.; Cabezas-Cruz, A.; Alberdi, P.; Villar, M.; de la Fuente, J. Modeling Modulation of the Tick Regulome in Response to Anaplasma phagocytophilum for the Identification of New Control Targets. Front. Physiol. 2019, 10, 462. [Google Scholar] [CrossRef]
- Wen, L.; Tang, F. Boosting the Power of Single-Cell Analysis. Nat. Biotechnol. 2018, 36, 408–409. [Google Scholar] [CrossRef]
- Purushothaman, S.; Meola, M.; Egli, A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int. J. Mol. Sci. 2022, 23, 9834. [Google Scholar] [CrossRef]
- Marnin, L.; Bogale, H.N.; Laukaitis-Yousey, H.J.; Valencia, L.M.; Rolandelli, A.; O’Neal, A.J.; Ferraz, C.R.; Schmitter-Sánchez, A.D.; Cuevas, E.B.; Nguyen, T.T.; et al. Tick Extracellular Vesicles Impair Epidermal Homeostasis Through Immune-Epithelial Networks During Hematophagy. BioRxiv 2023. [Google Scholar] [CrossRef]
- Jiang, R.; Meng, H.; Raddassi, K.; Fleming, I.; Hoehn, K.B.; Dardick, K.R.; Belperron, A.A.; Montgomery, R.R.; Shalek, A.K.; Hafler, D.A.; et al. Single-cell Immunophenotyping of the Skin Lesion Erythema Migrans Identifies IgM Memory B cells. JCI Insight 2021, 6, e148035. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, V.; Ingle, T.M.; Kilgore, N.; Zhang, G.; Hermann, B.P.; Seshu, J. Cellular and Transcriptome Signatures Unveiled by Single-cell RNA-Seq Following Ex Vivo Infection of Murine Splenocytes with Borrelia burgdorferi. Front. Immunol. 2023, 14, 1296580. [Google Scholar] [CrossRef]
- Han, Z.; Quan, Z.; Zeng, S.; Wen, L.; Wang, H. Utilizing Omics Technologies in the Investigation of Depsis-Induced Cardiomyopathy. IJC Heart Vasc. 2024, 54, 101477. [Google Scholar] [CrossRef]
- Liu, L.; Chen, A.; Li, Y.; Mulder, J.; Heyn, H.; Xu, X. Spatiotemporal Omics for Biology and Medicine. Cell 2024, 187, 4488–4519. [Google Scholar] [CrossRef]
- Odriozola, I.; Rasmussen, J.A.; Gilbert, M.T.P.; Limborg, M.T.; Alberdi, A. A Practical Introduction to Holo-omics. Cell Rep. Methods 2024, 4, 100820. [Google Scholar] [CrossRef]
Area | Omics | Technology 1 | Tick | Highlights | Ref. |
---|---|---|---|---|---|
Feeding and Digestion | |||||
Proteomic | LC-MS/MS | Amblyomma americanum | Profile of tick saliva proteins during different phases of the tick feeding process | [18] | |
Transcriptomics | RNA-seq | Ixodes scapularis | Morphological changes in tick midgut are accomplished through transcriptional changes | [19] | |
Transcriptomics | RNA-seq | Ornithodoros hermsi | Unfed soft ticks intensify the transcription of genes related to blood feeding/digestion prior to the blood meal | [20] | |
Transcriptomics | sc-RNA-seq | A. americanum | Hemocyte heterogeneity in blood-feeding tick and changes in Ehrlichia-infected hemocytes | [21] | |
Reproduction and Embryology | |||||
Proteomic | LC-MS/MS | R. microplus | Protein profile during ovary maturation | [22,23] | |
Transcriptomic | RNA-seq | Ixodes ricinus | Importance of ovaries as molting regulators | [24] | |
Transcriptomic | RNA-seq | R. turanicus | Gene expression profiles at different stages in embryonic development | [15] | |
Neural and Endocrine Regulation | |||||
Transcriptomic | I. ricinus | Evolution of the cys-loop ion-ligand channel family | [25] | ||
Tick Control | |||||
Transcriptomic and proteomic | RNA-seq and LC-MS | R. microplus | Transcripts and protein profile of salivary glands are affected by developmental stage and the source of blood | [26] | |
Transcriptomic | RNA-seq | Dermacentor nuttalli | Transcriptome composition shows variation through the life cycle | [27] | |
Bacterial Microbiota | |||||
Metagenomic | WGS | Rhipicephalus sanguineus s.l. and R. turanicus | Implications of tick microbiota in rickettsial diseases | [28] | |
Transcriptomics | RNA-seq | Amblyomma maculatum | Rickettsia parkeri infects hemocytes to modify tick cellular immune response | [29] | |
Changes in Tick Populations | |||||
Genomics | NGS | I. ricinus, Ixodes persulcatus, Ixodes pacificus, and Ixodes hexagonus | Improve the understand of gene evolution in tick biology | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Durán, A.; Andrade-Silva, V.; Numan, M.; Waldman, J.; Ali, A.; Logullo, C.; da Silva Vaz Junior, I.; Parizi, L.F. Multi-Omics Technologies Applied to Improve Tick Research. Microorganisms 2025, 13, 795. https://doi.org/10.3390/microorganisms13040795
Rodríguez-Durán A, Andrade-Silva V, Numan M, Waldman J, Ali A, Logullo C, da Silva Vaz Junior I, Parizi LF. Multi-Omics Technologies Applied to Improve Tick Research. Microorganisms. 2025; 13(4):795. https://doi.org/10.3390/microorganisms13040795
Chicago/Turabian StyleRodríguez-Durán, Arlex, Vinícius Andrade-Silva, Muhammad Numan, Jéssica Waldman, Abid Ali, Carlos Logullo, Itabajara da Silva Vaz Junior, and Luís Fernando Parizi. 2025. "Multi-Omics Technologies Applied to Improve Tick Research" Microorganisms 13, no. 4: 795. https://doi.org/10.3390/microorganisms13040795
APA StyleRodríguez-Durán, A., Andrade-Silva, V., Numan, M., Waldman, J., Ali, A., Logullo, C., da Silva Vaz Junior, I., & Parizi, L. F. (2025). Multi-Omics Technologies Applied to Improve Tick Research. Microorganisms, 13(4), 795. https://doi.org/10.3390/microorganisms13040795