Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS)
Abstract
:1. Introduction
2. GAD
3. Anti-GAD in SPS and Autoimmune Diabetes (T1D)
4. GAD, Molecular Mimicry, M. Paratuberculosis and Mycobacterial HSP65
5. SPS: Current Treatments
6. 16 Alpha-Bromoepiandrosterone—BEA
7. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McEvoy, K.M. Stiff-man syndrome. Mayo Clin. Proc. 1991, 66, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Moersch, F.P.; Woltman, H.W. Progressive fluctuating muscular rigidity and spasm (“stiff-man” syndrome); report of a case and some observations in 13 other cases. Proc. Staff Meet Mayo Clin. 1956, 38, 421–427. [Google Scholar] [PubMed]
- Ortiz, J.F.; Ghani, M.R.; Cox, Á.M.; Tambo, W.; Bashir, F.; Wirth, M.; Moya, G. Stiff-Person Syndrome: A Treatment Update and New Directions. Cureus 2020, 12, e11995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chia, N.H.; McKeon, A.; Dalakas, M.C.; Flanagan, E.P.; Bower, J.H.; Klassen, B.T.; Dubey, D.; Zalewski, N.L.; Duffy, D.; Pittock, S.J.; et al. Stiff person spectrum disorder diagnosis, misdiagnosis, and suggested diagnostic criteria. Ann. Clin. Transl. Neurol. 2023, 10, 1083–1094. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadavi, S.; Noyce, A.J.; Leslie, R.D.; Giovannoni, G. Stiff person syndrome. Pract. Neurol. 2011, 11, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Advances in the pathogenesis and treatment of patients with stiff person syndrome. Curr. Neurol. Neurosci. Rep. 2008, 8, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Crane, P.D.; Sillau, S.; Dreher, R.; Fix, R.; Winters, P.; Van Coevering, R.; Engebretson, E.; Valdez, B.; Matthews, E.; Nair, K.V.; et al. Population-Based Study of the Epidemiology of Stiff Person Syndrome in a Large Colorado-Based Health System. Neurology 2024, 103, e210078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yadav, R.; Abrol, N.; Terebelo, S. One in a Million: A Case Report of Stiff Person Syndrome. Case Rep. Rheumatol. 2022, 2022, 7741545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Abassi, R.; Soliman, M.Y.; Villemarette-Pittman, N.; England, J.D. SPS: Understanding the complexity. J. Neurol. Sci. 2019, 404, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Newsome, S.D.; Johnson, T. Stiff person syndrome spectrum disorders; more than meets the eye. J. Neuroimmunol. 2022, 369, 577915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baizabal-Carvallo, J.F.; Jankovic, J. Stiff-person syndrome: Insights into a complex autoimmune disorder. J. Neurol. Neurosurg. Psychiatry 2015, 86, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Rakocevic, G.; Raju, R.; Dalakas, M.C. Anti-glutamic acid decarboxylase antibodies in the serum and cerebrospinal fluid of patients with stiff-person syndrome: Correlation with clinical severity. Arch. Neurol. 2004, 61, 902–904. [Google Scholar] [CrossRef] [PubMed]
- Dade, M.; Berzero, G.; Izquierdo, C.; Giry, M.; Benazra, M.; Delattre, J.Y.; Psimaras, D.; Alentorn, A. Neurological Syndromes Associated with Anti-GAD Antibodies. Int. J. Mol. Sci. 2020, 21, 3701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Solimena, M.; Folli, F.; Denis-Donini, S.; Comi, G.C.; Pozza, G.; De Camilli, P.; Vicari, Y.A. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N. Engl. J. Med. 1988, 318, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Tsiortou, P.; Alexopoulos, H.; Dalakas, M.C. GAD antibody-spectrum disorders: Progress in clinical phenotypes, immunopathogenesis and therapeutic interventions. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211003486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saiz, A.; Arpa, J.; Sagasta, A.; Casamitjana, R.; Zarranz, J.J.; Tolosa, E.; Graus, Y.F. Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology 1997, 49, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.L.; Rimvall, K. Regulation of gamma-aminobutyric acid synthesis in the brain. J. Neurochem. 1993, 60, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.L.; Houser, C.R.; Tobin, A.J. Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J. Neurochem. 1991, 56, 720–723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Erlander, M.G.; Tillakaratne, N.J.; Feldblum, S.; Patel, N.; Tobin, A.J. Two genes encode distinct glutamate decarboxylases. Neuron 1991, 7, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Dayalu, P.; Teener, J.W. Stiff Person syndrome and other anti-GAD-associated neurologic disorders. In Seminars in Neurology; Thieme Medical Publisher: New York, NY, USA, 2012; Volume 32, pp. 544–549. [Google Scholar] [CrossRef] [PubMed]
- Balshi, A.; Taylor, E.; Huang, Y.; Obando, D.; Miles, A.; Comisac, M.; Wang, Y.; Newsome, S.D. Prevalence of non-neurological autoantibodies and related comorbidities in stiff person spectrum disorders. Front. Neurol. 2023, 14, 1289460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKeon, A.; Robinson, M.T.; McEvoy, K.M.; Matsumoto, J.Y.; Lennon, V.A.; Ahlskog, J.E.; Pittock, S.J. Stiff-man syndrome and variants: Clinical course, treatments, and outcomes. Arch. Neurol. 2012, 69, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Björk, E.; Velloso, L.A.; Kämpe, O.; Karlsson, F.A. GAD autoantibodies in IDDM, stiff-man syndrome, and autoimmune polyendocrine syndrome type I recognize different epitopes. Diabetes 1994, 43, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Daw, K.; Ujihara, N.; Atkinson, M.; Powers, A.C. Glutamic acid decarboxylase autoantibodies in stiff-man syndrome and insulin-dependent diabetes mellitus exhibit similarities and differences in epitope recognition. J. Immunol. 1996, 156, 818–825. [Google Scholar] [PubMed]
- Hagan, D.W.; Ferreira, S.M.; Santos, G.J.; Phelps, E. A The role of GABA in islet function. Front. Endocrinol. 2022, 13, 972115, Erratum in Front. Endocrinol. 2023, 14, 1301830. https://doi.org/10.3389/fendo.2023.1301830. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baekkeskov, S.; Aanstoot, H.J.; Christgai, S.; Reetz, A.; Solimena, M.; Cascalho, M.; Folli, F.; Richter-Olesen, H.; De Camilli, P. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990, 347, 151–156, Erratum in Nature 1990, 347, 782. [Google Scholar] [CrossRef] [PubMed]
- Pihoker, C.; Gilliam, L.K.; Hampe, C.S.; Lernmark, A. Autoantibodies in diabetes. Diabetes 2005, 54 (Suppl. S2), S52–S61. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.A. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2012, 2, a007641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gale, E.A. The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002, 51, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
- The 64 K question in diabetes. Lancet 1990, 336, 597–598. [PubMed]
- Baekkeskov, S.; Nielsen, J.H.; Marner, B.; Bilde, T.; Ludvigsson, J.; Lernmark, A. Autoantibodies in newly diagnosed diabetic children immunoprecipitate human pancreatic islet cell proteins. Nature 1982, 298, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.B.; Hunter, N.R.; Duff, G.W. Heat-shock protein 65 as a beta cell antigen of insulin-dependent diabetes. Lancet 1990, 336, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Scheinin, T.; Minh, N.N.T.; Tuomi, T.; Miettinen, A.; Kontiainen, S. Islet cell and glutamic acid decarboxylase antibodies and heat-shock protein 65 responses in children with newly diagnosed insulin-dependent diabetes mellitus. Immunol. Lett. 1996, 49, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D. International efforts at paratuberculosis control. Vet. Clin. Food Anim. Pract. 2011, 27, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Lombard, J.E.; Gardner, I.A.; Jafarzadeh, S.R.; Fossler, C.P.; Harris, B.; Capsel, R.T.; Wagner, B.A.; Johnson, W.O. Herd-level prevalence of Mycobacterium avium subsp. paratuberculosis infection in United States dairy herds in 2007. Prev. Vet. Med. 2013, 108, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, T.C.; Okoh, A.I. Systematic Assessment of Mycobacterium avium Subspecies Paratuberculosis Infections from 1911–2019: A Growth Analysis of Association with Human Autoimmune Diseases. Microorganisms 2020, 8, 1212. [Google Scholar] [CrossRef]
- Available online: https://johnes.org (accessed on 5 February 2025).
- Garvey, M. Mycobacterium Avium Paratuberculosis: A Disease Burden on the Dairy Industry. Animals 2020, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O.; Saucier, L.; Meadus, W.J. Mycobacterium avium subsp. paratuberculosis in dairy products, meat, and drinking water. J. Food Prot. 2011, 74, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Eltholth, M.M.; Marsh, V.R.; Van Winden, S.; Guitian, F.J. Contamination of food products with Mycobacterium avium paratuberculosis: A systematic review. J. Appl. Microbiol. 2009, 107, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Hammer, P.; Hans-georg, C.W.; Matzen, S.; Hensel, J.; Kiesner, C. Inactivation of Mycobacterium avium subsp. paratuberculosis during cooking of hamburger patties. J. Food Prot. 2013, 76, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C. Cow’s milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes Care 1994, 17, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T. Paratuberculosis and Type I diabetes: Is this the trigger? Med. Hypotheses 2006, 67, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Ekundayo, T.C.; Falade, A.O.; Igere, B.E.; Iwu, C.D.; Adewoyin, M.A.; Olasehinde, T.A.; Ijabadeniyi, O.A. Systematic and meta-analysis of Mycobacterium avium subsp. paratuberculosis related type 1 and type 2 diabetes mellitus. Sci. Rep. 2022, 12, 4608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaufmann, S.H.; Väth, U.; Thole, J.E.; Van Embden, J.D.; Emmrich, F. Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur. J. Immunol. 1987, 17, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Danieli, M.G.; Markovits, D.; Gabrielli, A.; Corvetta, A.; Giorgi, P.L.; van der Zee, R.; van Embden, J.D.; Danieli, G.; Cohen, I.R. Juvenile rheumatoid arthritis patients manifest immune reactivity to the mycobacterial 65-kDa heat shock protein, to its 180–188 peptide, and to a partially homologous peptide of the proteoglycan link protein. Clin. Immunol. Immunopathol. 1992, 64, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Karopoulos, C.; Rowley, M.J.; Handley, C.J.; Strugnell, R.A. Antibody reactivity to mycobacterial 65 kDa heat shock protein: Relevance to autoimmunity. J. Autoimmun. 1995, 8, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Dow, C.T. M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity. Autoimmune Dis. 2012, 2012, 150824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raju, R.; Foote, J.; Banga, J.P.; Hall, T.R.; Padoa, C.J.; Dalakas, M.C.; Ortqvist, E.; Hampe, C.S. Analysis of GAD65 autoantibodies in Stiff-Person syndrome patients. J. Immunol. 2005, 175, 7755–7762. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C. Stiff Person Syndrome and GAD Antibody-Spectrum Disorders. CONTINUUM Lifelong Learn. Neurol. 2024, 30, 1110–1135. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.A.; Davies, J.M.; Tong, J.C.; Whisstock, J.; Scealy, M.; Mackay, I.R.; Rowley, M.J. Conformational epitopes on the diabetes autoantigen GAD65 identified by peptide phage display and molecular modeling. J. Immunol. 2000, 165, 3830–3838. [Google Scholar] [CrossRef] [PubMed]
- Naser, S.A.; Thanigachalam, S.; Dow, C.T.; Collins, M.T. Exploring the role of Mycobacterium avium subspecies paratuberculosis in the pathogenesis of type 1 diabetes mellitus: A pilot study. Gut Pathog. 2013, 5, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalakas, M.C. Therapies in Stiff-Person Syndrome: Advances and Future Prospects Based on Disease Pathophysiology. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200109. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalakas, M.C.; Fujii, M.; Li, M.; Lutfi, B.; Kyhos, J.; McElroy, B. High-dose intravenous immune globulin for stiff-person syndrome. N. Engl. J. Med. 2001, 345, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, T.; Kleiter, I.; Fujihara, K.; Palace, J.; Greenberg, B.; Zakrzewska-Pniewska, B.; Patti, F.; Tsai, C.P.; Saiz, A.; Yamazaki, H.; et al. Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Schett, G. Physiological effects of modulating the interleukin-6 axis. Rheumatology 2018, 57 (Suppl. S2), ii43–ii50. [Google Scholar] [CrossRef] [PubMed]
- Slavin, Y.N.; Bo, M.; Caggiu, E.; Sechi, G.; Arru, G.; Bach, H.; Sechi, L.A. High levels of antibodies against PtpA and PknG secreted by Mycobacterium avium ssp. paratuberculosis are present in Neuromyelitis optica spectrum disorder and multiple sclerosis patients. J. Neuroimmunol. 2018, 323, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.; Niegowska, M.; Arru, G.; Sechi, E.; Mariotto, S.; Mancinelli, C.; Farinazzo, A.; Alberti, D.; Gajofatto, A.; Ferrari, S.; et al. Mycobacterium avium subspecies paratuberculosis and myelin basic protein specific epitopes are highly recognized by sera from patients with Neuromyelitis optica spectrum disorder. J. Neuroimmunol. 2018, 318, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Dote-Montero, M.; Amaro-Gahete, F.J.; Jurado-Fasoli, L.; Gutierrez, A.; Castillo, M.J. Study of the association of DHEAS, testosterone and cortisol with S-Klotho plasma levels in healthy sedentary middle-aged adults. Exp. Gerontol. 2019, 121, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Genazzani, A.D.; Lanzoni, C.; Genazzani, A.R. Might DHEA be considered a beneficial replacement therapy in the elderly? Drugs Aging 2007, 24, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Storbeck, K.H.; Schiffer, L.; Baranowski, E.S.; Chortis, V.; Prete, A.; Barnard, L.; Gilligan, L.C.; Taylor, A.E.; Idkowiak, J.; Arlt, W.; et al. Steroid Metabolome Analysis in Disorders of Adrenal Steroid Biosynthesis and Metabolism. Endocr. Rev. 2019, 40, 1605–1625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hauray, B.; Dalgalarrondo, S. Incarnation and the dynamics of medical promises: DHEA as a fountain of youth hormone. Health 2019, 23, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Seddon, J.A.; Chiang, S.S.; Esmail, H.; Coussens, A.K. The Wonder Years: What Can Primary School Children Teach Us About Immunity to Mycobacterium tuberculosis? Front. Immunol. 2018, 9, 2946. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Souza-Talarico, J.N.; Chesak, S.; Elizalde, N.; Liu, W.; Moon, C.; Oberfrank, N.D.C.F.; Rauer, A.J.; Takao, C.L.; Shaw, C.; Saravanan, A.; et al. Exploring the interplay of psychological and biological components of stress response and telomere length in the transition from middle age to late adulthood: A systematic review. Stress Health 2024, 40, e3389. [Google Scholar] [CrossRef] [PubMed]
- Forti, P.; Maltoni, B.; Olivelli, V.; Pirazzoli, G.L.; Ravaglia, G.; Zoli, M. Serum dehydroepiandrosterone sulfate and adverse health outcomes in older men and women. Rejuvenation Res. 2012, 15, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, C.; Labrie, F.; Barrett-Connor, E.; Karlsson, M.K.; Ljunggren, O.; Vandenput, L.; Mellström, D.; Tivesten, A. Low serum levels of dehydroepiandrosterone sulfate predict all-cause and cardiovascular mortality in elderly Swedish men. J. Clin. Endocrinol. Metab. 2010, 95, 4406–4414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Otsuka, R.; Shimokata, H.; Nishita, Y.; Tange, C.; Takemura, M.; Satake, S. Serum levels of dehydroepiandrosterone sulfate are associated with a lower risk of mobility-subtype frailty in older Japanese community-dwellers. Arch. Gerontol. Geriatr. 2023, 105, 104846. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.X.; Cappola, A.R.; Andersen, R.E.; Blackman, M.R.; Koenig, K.; Blair, M.; Walston, J.D. Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin. Exp. Res. 2004, 16, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.; Cho, A.R.; Haam, J.H.; Gil, M.; Lee, Y.K.; Kim, Y.S. Relationship between Serum Cortisol, Dehydroepiandrosterone Sulfate (DHEAS) Levels, and Natural Killer Cell Activity: A Cross-Sectional Study. J. Clin. Med. 2023, 12, 4027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Straub, R.H.; Konecna, L.; Hrach, S.; Rothe, G.; Kreutz, M.; Scholmerich, J.; Falk, W.; Lang, B. Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: Possible link between endocrinosenescence and immunosenescence. J. Clin. Endocrinol. Metab. 1998, 83, 2012–2017. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.E.; Jeckel, C.M.M.; Luz, C. The role of stress factors during aging of the immune system. Ann. N. Y. Acad. Sci. 2009, 1153, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Buoso, E.; Lanni, C.; Molteni, E.; Rousset, F.; Corsini, E.; Racchi, M. Opposing effects of cortisol and dehydroepiandrosterone on the expression of the receptor for Activated C Kinase 1: Implications in immunosenescence. Exp. Gerontol. 2011, 46, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.; Schwartz, A.; Pashko, L.; Abou-Gharbia, M.; Swern, D. Dehydroepiandrosterone and 16 alpha-bromo-epiandrosterone: Inhibitors of Epstein-Barr virus-induced transformation of human lymphocytes. Carcinogenesis 1981, 2, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, A.T.; Thiemann, O.H. 16-bromoepiandrosterone, an activator of the mammalian immune system, inhibits glucose 6-phosphate dehydrogenase from Trypanosoma cruzi and is toxic to these parasites grown in culture. Bioorganic Med. Chem. 2010, 18, 4762–4768. [Google Scholar] [CrossRef] [PubMed]
- Frincke, J.M.; Stickney, D.R.; Onizuka-Handa, N.; Garsd, A.; Reading, C.; Krudsood, S.; Wilairatana, P.; Looareesuwan, S. Reduction of parasite levels in patients with uncomplicated malaria by treatment with HE2000. Am. J. Trop. Med. Hyg. 2007, 76, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Freilich, D.; Ferris, S.; Wallace, M.; Leach, L.; Kallen, A.; Frincke, J.; Ahlem, C.; Hacker, M.; Nelson, D.; Hebert, J. 16alpha-bromoepiandrosterone, a dehydroepiandrosterone (DHEA) analogue, inhibits Plasmodium falciparum and Plasmodium berghei growth. Am. J. Trop. Med. Hyg. 2000, 63, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Ayi, K.; Giribaldi, G.; Skorokhod, A.; Schwarzer, E.; Prendergast, P.T.; Arese, P. 16α-bromoepiandrosterone, an antimalarial analogue of the hormone dehydroepiandrosterone, enhances phagocytosis of ring stage parasitized erythrocytes: A novel mechanism for antimalarial activity. Antimicrob. Agents Chemother. 2002, 46, 3180–3184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frincke, J. HE2000 begins clinical trials: Interview with James Frincke, Ph.D. Interview by John, S. James. AIDS Treat News 1999, 320, 4–7. [Google Scholar] [PubMed]
- Starving the virus. Res. Initiat. Treat Action 1999, 5, 32–33. [PubMed]
- Reading, C.; Dowding, C.; Schramm, B.; Garsd, A.; Onizuka-Handa, N.; Stickney, D.; Frincke, J. Improvement in immune parameters and human immunodeficiency virus-1 viral response in individuals treated with 16alpha-bromoepiandrosterone (HE2000). Clin. Microbiol. Infect. 2006, 12, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, F.; Conrad, D.; Wang, A.; Pieters, R.; Mangano, K.; Van Heeckeren, A.; White, S.K.; Frincke, J.; Reading, C.L.; Auci, D.L.; et al. 16α-Bromoepiandrosterone (HE2000) limits non-productive inflammation and stimulates immunity in lungs. Clin. Exp. Immunol. 2009, 158, 308–316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Torres, M.O.; Marquina-Castillo, B.; Ramos-Espinosa, O.; Mata-Espinosa, D.; Barrios-Payan, J.A.; Baay-Guzman, G.; Yepez, S.H.; Bini, E.; Torre-Villalvazo, I.; Torres, N.; et al. 16α-Bromoepiandrosterone as a new candidate for experimental diabetes-tuberculosis co-morbidity treatment. Clin. Exp. Immunol. 2021, 205, 232–245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hernández-Pando, R.; Aguilar-Leon, D.; Orozco, H.; Serrano, A.; Ahlem, C.; Trauger, R.; Schramm, B.; Reading, C.; Frincke, J.; Rook, G.A. 16alpha-Bromoepiandrosterone restores T helper cell type 1 activity and accelerates chemotherapy-induced bacterial clearance in a model of progressive pulmonary tuberculosis. J. Infect. Dis. 2005, 191, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Targonski, P.V.; Jacobson, R.M.; Poland, G.A. Immunosenescence: Role and measurement in influenza vaccine response among the elderly. Vaccine 2007, 25, 3066–3069. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2018, 8, 1960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Briceño, O.; Lissina, A.; Wanke, K.; Afonso, G.; Von Braun, A.; Ragon, K.; Miquel, T.; Gostick, E.; Papagno, L.; Stiasny, K.; et al. Reduced naïve CD8+ T-cell priming efficacy in elderly adults. Aging Cell 2016, 15, 14–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://www.protibea.com/lead-product (accessed on 8 February 2025).
- Vianello, M.; Keir, G.; Giometto, B.; Betterle, C.; Tavolato, B.; Thompson, Y.E. Antigenic differences between neurological and diabetic patients with anti-glutamic acid decarboxylase antibodies. Eur. J. Neurol. 2005, 12, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Walikonis, J.E.; Lennon, V.A. Radioimmunoassay for glutamic acid decarboxylase (GAD65) autoantibodies as a diagnostic aid for stiff-man syndrome and a correlate of susceptibility to type 1 diabetes mellitus. Mayo Clin. Proc. 1998, 73, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Dalakas, M.C. Long-term Effectiveness of IVIg Maintenance Therapy in 36 Patients with GAD Antibody-Positive Stiff-Person Syndrome. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Available online: https://ameripharmaspecialty.com/ivig/cost-of-ivig-treatment/?utm_source=chatgpt.com (accessed on 8 February 2025).
- Dow, C.T.; Kidess, Z. Proposing Bromo-epi-androsterone (BEA) for perioperative neurocognitive disorders with Interleukin-6 as a druggable target. J. Clin. Anesth. 2025, 101, 111736. [Google Scholar] [CrossRef] [PubMed]
- Imirzalioglu, C.; Dahmen, H.; Hain, T.; Billion, A.; Kuenne, C.; Chakraborty, T.; Domann, E. Highly specific and quick detection of Mycobacterium avium subsp. paratuberculosis in feces and gut tissue of cattle and humans by multiple real-time PCR assays. J. Clin. Microbiol. 2011, 49, 1843–1852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dow, C.T. Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS). Microorganisms 2025, 13, 824. https://doi.org/10.3390/microorganisms13040824
Dow CT. Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS). Microorganisms. 2025; 13(4):824. https://doi.org/10.3390/microorganisms13040824
Chicago/Turabian StyleDow, Coad Thomas. 2025. "Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS)" Microorganisms 13, no. 4: 824. https://doi.org/10.3390/microorganisms13040824
APA StyleDow, C. T. (2025). Proposing Bromo-Epi-Androsterone (BEA) for Stiff Person Syndrome (SPS). Microorganisms, 13(4), 824. https://doi.org/10.3390/microorganisms13040824