Microcycle Conidia Production in an Entomopathogenic Fungus Beauveria bassiana: The Role of Chitin Deacetylase in the Conidiation and the Contribution of Nanocoating in Conidial Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain
2.2. Culture Conditions
2.3. Light and Fluorescence Microscopy
2.4. Appressorium Formation in Aerial and MC of B. bassiana
2.5. Surface Characterization of Aerial and MC
2.5.1. Conidial Settling Time
2.5.2. Adhesion to Polypropylene
2.5.3. Microbial Adhesion to Hydrocarbons (MATHs) Assay
2.6. Enzyme Assays
2.7. Nanocoaoating of B. bassiana MC
2.7.1. Synthesis of Chitosan and Alginate–Chitosan Nanoparticles
2.7.2. Nanocoating of MC
2.7.3. Viability of AC and MC
2.7.4. Viability of Nanocoated MC
2.8. Bioassays with Spodoptera litura
2.9. Statistical Analysis
3. Results
3.1. AC and MC Production
3.2. Visualization of Cell Wall Staining with Light and Fluorescence Microscopy
3.3. Development of Appressorium in Aerial and MC of B. bassiana
3.4. Surface Characterization of AC and MC
3.5. Biochemical Correlates of MC in B. bassiana
3.6. Nanocoaoating of Conidia
3.6.1. Synthesis and Characterization of Chitosan and Alginate–Chitosan Nanoparticles
3.6.2. Visualization of MC Nanocoating
3.6.3. Viability of MC With and Without Nanocoating
3.6.4. Temperature and UV Stability of Microcycle Conidia With and Without Nanocoating
3.7. Spodoptera Litura Mortality with AC, MC and Nanocoated MC
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J.G.; Smith, J.E. The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (Microcycle conidiation). J. Gen. Microbiol. 1971, 69, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Hanlin, R.T. ‘Microcyle conidiation’—A Review. Mycoscience 1994, 35, 113–123. [Google Scholar] [CrossRef]
- Ahearn, D.G.; Price, D.; Simmons, R.B.; Mayo, A.; Zhang, S.T.; Crow, S.A., Jr. Microcyle conidiation and medusa head conidiophores of aspergilli on indoor construction materials and air filters from hospitals. Mycologia 2007, 99, 1–6. [Google Scholar] [CrossRef]
- Reese, S.; Chelius, C.; Riekhof, W.; Marten, M.R.; Harris, S.D. Micafungin-induced cell wall damage stimulates morphological changes consistent with Microcyle conidiation in Aspergillus nidulans. J. Fungi 2021, 7, 525. [Google Scholar] [CrossRef]
- Jung, B.; Kim, S.; Lee, J. Microcycle conidiation in filamentous fungi. Mycobiology 2014, 42, 1–5. [Google Scholar] [CrossRef]
- Li, C.; Xu, D.; Hu, M.; Zhang, Q.; Xia, Y.; Jin, K. MaNCP1, a C2H2 Zinc finger protein, governs the conidiation pattern shift through regulating the reductive pathway for nitric oxide synthesis in the filamentous fungus Metarhizium acridum. Microbiol. Spectr. 2022, 10, e0053822. [Google Scholar] [CrossRef]
- Zou, Y.; Li, C.; Wang, S.; Xia, Y.; Jin, K. MaCts1, an Endochitinase, is involved in conidial germination, conidial yield, stress tolerances and microcycle conidiation in Metarhizium acridum. Biology 2022, 11, 1730. [Google Scholar] [CrossRef]
- Nahar, P.B.; Ghormade, V.; Deshpande, M.V. The extracellular constitutive production of chitin deacetylase in Metarhizium ansiopliae: Possible edge to entomo-pathogenic fungi in the bio-control of insect pest. J. Invertebr. Pathol. 2004, 85, 80–88. [Google Scholar] [CrossRef]
- Khale, A.; Deshpande, M.V. Dimorphism in Benjaminiella poitrasii: Cell wall chemistry of parent and two stable yeast mutants. Antonie Van Leeuwenhoek 1992, 62, 299–307. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Ghormade, V.; Kulkarni, G.; Kapoor, M.; Chavan, S.B.; Rajendran, A.; Patil, S.K.; Shouche, Y.; Deshpande, M.V. Comparison of Metarhizium isolates for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) in chickpea. Biocontrol Sci. Technol. 2008, 18, 809–828. [Google Scholar] [CrossRef]
- Ayliffe, M.; Periyannan, S.K.; Feechan, A.; Dry, I.; Schumann, U.; Wang, M.-B.; Pryor, A.; Lagudah, E. A Simple method for comparing fungal biomass in infected plant tissues. MPMI 2013, 26, 658–667. [Google Scholar] [CrossRef]
- Nahar, P.B.; Kulkarni, S.A.; Kulye, M.S.; Chavan, S.B.; Kulkarni, G.; Rajendran, A.; Yadav, P.D.; Shouche, Y.; Deshpande, M.V. Effect of repeated in vitro sub-culturing on the virulence of Metarhizium anisopliae against Helicoverpa armigera (Lepidoptera: Noctuidae). Biocontrol Sci. Technol. 2008, 18, 337–355. [Google Scholar] [CrossRef]
- Jeffs, L.B.; Khachatourians, G.G. Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 1997, 35, 1351–1356. [Google Scholar] [CrossRef]
- Rosenberg, M. Bacterial adherence to polystyrene: A replica method of screening for bacterial hydrophobicity. Appl. Environ. Microbiol. 1981, 42, 375–377. [Google Scholar] [CrossRef]
- Smith, S.N.; Chohan, R.; Armstrong, R.A.; Whipps, J.M. Hydrophobicity and surface electrostatic charge of conidia of the mycoparasite Coniothyrium minitans. Mycol. Res. 1998, 102, 243–249. [Google Scholar] [CrossRef]
- Vyas, P.R.; Deshpande, M.V. Chitinase production by Myrothecium verrucaria and its significance for fungal mycelia degradation. J. Gen. Appl. Microbiol. 1989, 35, 343–350. [Google Scholar] [CrossRef]
- Reissig, J.; Storminger, J.; Leloir, L. A modified colorimetric method for the estimation of N-Acetylamino sugars. J. Biol. Chem. 1955, 217, 959–966. [Google Scholar] [CrossRef]
- Kauss, H.; Bausch, B. Chitin deacetylase from Colletotrichum lindemuthianum. Methods Enzymol. 1988, 161, 518–552. [Google Scholar]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/Chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 2007, 24, 2198–2206. [Google Scholar] [CrossRef]
- Joshi, C.V.; Ghormade, V.; Kunde, P.; Kulkarni, P.; Mamgain, H.; Bhat, S.; Paknikar, K.M.; Deshpande, M.V. Flocculation of dimorphic yeast Benjaminiella poitrasii is altered by modulation of NAD-glutamate dehydrogenase. Bioresour. Technol. 2010, 101, 1393–1395. [Google Scholar] [CrossRef]
- Zaki, O.; Weekers, F.; Thonart, P.; Tesch, E.; Kuenemann, P.; Jacques, P. Limiting factors of mycopesticide development. Biol. Control 2020, 144, 104220. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, G.; Xia, Y. Microcycle conidiation and the conidial properties in the entomopathogenic fungus Metarhizium acridum on agar medium. Biocontrol Sci. Technol. 2010, 20, 809–819. [Google Scholar] [CrossRef]
- Holder, D.J.; Keyhani, N.O. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl. Environ. Microbiol. 2005, 71, 5260–5266. [Google Scholar] [CrossRef]
- Chethana, K.W.T.; Jayawardena, R.S.; Chen, Y.-J.; Konta, S.; Tibpromma, S.; Abeywickrama, P.D.; Gomdola, D.; Balasuriya, A.; Xu, J.; Lumyong, S.; et al. Diversity and function of appressoria. Pathogens 2021, 10, 746. [Google Scholar] [CrossRef]
- Mirabito, P.M.; Adams, T.H.; Timberlake, W.E. Interactions of three sequentially expressed genes control temporal and spatial specificity in Aspergillus development. Cell 1989, 57, 859–868. [Google Scholar] [CrossRef]
- Song, D.; Shi, Y.; Ji, H.Q.; Xia, Y.; Peng, G. The MaCreA gene regulates normal conidiation and Microcycle conidiation in Metarhizium acridum. Front. Microbiol. 2019, 10, 1946. [Google Scholar] [CrossRef]
- Hamid, R.; Khan, M.A.; Ahmad, M.; Ahmad, M.M.; Abdin, M.Z.; Musarrat, J.; Javed, S. Chitinases: An update. J. Pharm. Bioallied Sci. 2013, 5, 21–29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghormade, V.; Kulkarni, S.; Doiphode, N.; Rajamohanan, P.R.; Deshpande, M.V. Chitin deacetylase: A comprehensive account on its role in nature and its biotechnological applications. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2010; pp. 1054–1066. [Google Scholar]
- Liu, J.-H.; Dong, J.-C.; Gao, J.-J.; Li, X.-P.; Hu, S.-J.; Hu, W.-X.; Zhao, X.-Y.; Wang, J.-J.; Qiua, L. Three chitin deacetylase family members of Beauveria bassiana modulate asexual reproduction and virulence of fungi by mediating chitin metabolism and affect fungal parasitism and saprophytic life. Microbiol. Spectr. 2023, 11, e0474822. [Google Scholar] [CrossRef]
- Gao, L.; Bretscher, A. Polarized growth in budding yeast in the absence of a localized formin. Mol. Biol. Cell 2009, 20, 2540–2548. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cagáň, L.; Švercel, M. The influence of ultraviolet light on pathogenicity of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin to the european corn borer, Ostrinia nubilalis hbn. (lepidoptera: Crambidae). J. Cent. Eur. Agric. 2001, 2, 228–233. [Google Scholar]
- Fernandes, E.K.K.; Rangel, D.E.N.; Moraes, A.M.L.; Bittencourt, V.R.E.P.; Roberts, D.W. Variability in tolerance to UV-B radiation among Beauveria spp. Isolates. J. Invertebr. Pathol. 2007, 96, 237–243. [Google Scholar] [CrossRef]
- Rodrigues, I.; Forim, M.; Silva, M.; Fernandes, J.; Filho, A. Effect of ultraviolet radiation on fungi Beauveria bassiana and Metarhizium anisopliae, pure and encapsulated, and bio-insecticide action on Diatraea saccharalis. Adv. Entomol. 2016, 4, 151–162. [Google Scholar] [CrossRef]
- Tupe, S.G.; Pathan, E.K.; Deshpande, M.V. Development of Metarhizium anisopliae as a mycoinsecticide: From isolation to field performance. J. Vis. Exp. 2017, 125, e55272. [Google Scholar] [CrossRef]
- Bosch, A.; Yantorno, O. Microcycle conidiation in the entomopathogenic fungus Beauveria bassiana bals. (vuill.). Process Biochem. 1999, 34, 707–716. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial Insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef]
Medium | No. of | Chitinase | Chitosanase | CDA | CDA: |
---|---|---|---|---|---|
conidia × 109/ | Chitosanase | ||||
plate, 28 °C, 6 d | ratio | ||||
mU/mg | mU/mg | mU/mg | |||
YPG, pH 6 | 1.71 ± 0.3 | 1.5 ± 0.2 | 6.41 ± 0.7 | 41.02 ± 3.0 | 6.39 |
YPG + Co++ | 0.4 ± 0.1 | 1.8 ± 0.2 | 159.00 ± 2.0 | 79.00 ± 32.1 | 2.38 |
YPG + Zn++ | 2.2 ± 0.4 | 1.96 ± 0.23 | 60.00 ± 1.2 | 405.00 ± 38.0 | 6.75 |
SYB, pH 5.5 | 4.7 ± 0.5 | 1.16 ± 0.4 | 26.45 ± 2.1 | 815.00 ± 14.0 | 30.81 |
SYB + Co++ | 0.8 ± 0.1 | ND | 100.00 ± 10.0 | 1530.00 ± 90.5 | 15.30 |
SYB + Zn++ | 4.5 ± 0.3 | 0.77 ± 0.3 | 40.00 ± 5.0 | 1240.00 ± 87.0 | 31.00 |
Inoculum | Conidial Count/g | Conidial Count/kg | Conidial Count/kg |
---|---|---|---|
Rice, 28 °C, 4 d | Rice, 28 °C, 4 d | Rice, 28 °C, 10 d | |
True mycelium | 1.9 ± 0.2 × 108 | NS | 3.6 ± 0.3 × 1011 |
Pseudomycelium | 3.1 ± 0.3 × 108 | 3.1 ± 0.5 × 1012 | 1.48 ± 0.15 × 1012 |
Characteristics Settling Time (ST50), h | Aerial Conidia | Microcycle Conidia |
---|---|---|
Settling time (ST50), h | 1.8 ± 0.2 | 3.0 ± 0.2 |
Adherence to polypropylene (%) | ||
pH 3.0 | 17.6 ± 2.0 | 16 ± 2.0 |
pH 5.0 | 33.6 ± 3.0 | 22.5 ± 4.0 |
pH 7.0 | 67.4 ± 9.0 | 44.0 ± 2.0 |
MATH assay (HI) | 0.794 ± 0.13 | 0.67 ± 0.1 |
Temperature stability at 50 °C, 30 min, and incubation at 28 °C on YPG agar, 24 h | 75 ± 2% CFU | 66 ± 3.5% CFU |
Temperature of 65 °C, 30 min, and incubation at 28 °C on YPG agar, 48 h | 52 ± 5.0% CFU | ND (48 h), |
-- | Delayed 51 ± 2.0% (72 h) | |
UV stability (36 W germicidal lamp, 0.6 m distance, 10 min) | 50 ± 1.0% CFU | 45.5 ± 2.0% CFU |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambare, R.; Bhagwat, V.; Singh, S.; Guntha, M.; Ghormade, V.; Tupe, S.G.; Shaikh, S.; Deshpande, M.V. Microcycle Conidia Production in an Entomopathogenic Fungus Beauveria bassiana: The Role of Chitin Deacetylase in the Conidiation and the Contribution of Nanocoating in Conidial Stability. Microorganisms 2025, 13, 900. https://doi.org/10.3390/microorganisms13040900
Zambare R, Bhagwat V, Singh S, Guntha M, Ghormade V, Tupe SG, Shaikh S, Deshpande MV. Microcycle Conidia Production in an Entomopathogenic Fungus Beauveria bassiana: The Role of Chitin Deacetylase in the Conidiation and the Contribution of Nanocoating in Conidial Stability. Microorganisms. 2025; 13(4):900. https://doi.org/10.3390/microorganisms13040900
Chicago/Turabian StyleZambare, Rutuja, Vaidehi Bhagwat, Shivangni Singh, Maheswari Guntha, Vandana Ghormade, Santosh G. Tupe, Shamim Shaikh, and Mukund V. Deshpande. 2025. "Microcycle Conidia Production in an Entomopathogenic Fungus Beauveria bassiana: The Role of Chitin Deacetylase in the Conidiation and the Contribution of Nanocoating in Conidial Stability" Microorganisms 13, no. 4: 900. https://doi.org/10.3390/microorganisms13040900
APA StyleZambare, R., Bhagwat, V., Singh, S., Guntha, M., Ghormade, V., Tupe, S. G., Shaikh, S., & Deshpande, M. V. (2025). Microcycle Conidia Production in an Entomopathogenic Fungus Beauveria bassiana: The Role of Chitin Deacetylase in the Conidiation and the Contribution of Nanocoating in Conidial Stability. Microorganisms, 13(4), 900. https://doi.org/10.3390/microorganisms13040900