Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anti-Microbial Agents
2.2. Bacterial Strains and Preparation of Inoculum
2.3. Minimum Inhibitory and Bactericidal Concentrations
2.4. Addition of Natural Anti-Microbials to Beef Burgers (Impact on Survival of L. monocytogenes)
2.5. Addition of Natural Anti-Microbials to Beef Burgers (Physicochemical Analysis and Observational Study on Visual Colour and Odour)
2.6. Statistical Analysis
3. Results
3.1. Minimum Inhibitory and Bactericidal Concentrations of Natural Anti-Microbials Against L. monocytogenes
3.2. Impact of Natural Anti-Microbials Added to Beef Burgers on the Survival of L. monocytogenes
3.3. Impact of Natural Anti-Microbials on the Quality Attributes of Beef Burgers
4. Discussion
4.1. Minimum Inhibitory and Bactericidal Concentrations of Natural Anti-Microbials Against L. monocytogenes
4.2. Impact of Natural Anti-Microbials Added to Beef Burgers on the Survival of L. monocytogenes
4.3. Impact of Natural Anti-Microbials on the Quality Attributes of Beef Burgers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sauders, B.D.; Overdevest, J.; Fortes, E.; Windham, K.; Schukken, Y.; Lembo, A.; Wiedmann, M. Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol. 2012, 78, 4420–4433. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, K.K.; Schukken, Y.H.; Nightingale, C.R.; Fortes, E.D.; Ho, A.J.; Her, Z.; Grohn, Y.T.; McDonough, P.L.; Wiedmann, M. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl. Environ. Microbiol. 2004, 70, 4458–4467. [Google Scholar] [CrossRef]
- Vivant, A.L.; Garmyn, D.; Piveteau, P. Listeria monocytogenes, a down-to-earth pathogen. Front. Cell Infect. Microbiol. 2013, 3, 87. [Google Scholar] [CrossRef]
- Weis, J.; Seeliger, H.P.R. Incidence of Listeria monocytogenes in Nature. Appl. Microbiol. 1975, 30, 29–32. [Google Scholar] [CrossRef]
- Linke, K.; Ruckerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef] [PubMed]
- Olier, M.; Pierre, F.; Tre, J.-P.L.; Divies, C.; Rousset, A.; Guzzo, J. Assessment of the pathogenic potential of two Listeria monocytogenes human faecal carriage isolates. Microbiology 2002, 148, 1855–1862. [Google Scholar] [CrossRef]
- Watkins, J.; Sleath, K.P. Isolation and Enumeration of Listeria monocytogenes from Sewage, Sewage Sludge and River Water. J. Appl. Bacteriol. 1981, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Matle, I.; Mbatha, K.R.; Madoroba, E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J. Vet. Res. 2020, 87, 1869. [Google Scholar] [CrossRef]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef]
- Zhu, Q.; Gooneratne, R.; Hussain, M.A. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef]
- Khen, B.K.; Lynch, O.A.; Carroll, J.; McDowell, D.A.; Duffy, G. Occurrence, antibiotic resistance and molecular characterization of Listeria monocytogenes in the beef chain in the Republic of Ireland. Zoonoses Public Health 2015, 62, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, J.R.; Duffy, G.; Koutsoumanis, K. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: A review. Food Microbiol. 2009, 26, 357–376. [Google Scholar] [CrossRef]
- Demaitre, N.; De Reu, K.; Haegeman, A.; Schaumont, D.; De Zutter, L.; Geeraerd, A.; Rasschaert, G. Study of the transfer of Listeria monocytogenes during the slaughter of cattle using molecular typing. Meat Sci. 2021, 175, 108450. [Google Scholar] [CrossRef]
- Wieczorek, K.; Dmowska, K.; Osek, J. Prevalence, characterization, and antimicrobial resistance of Listeria monocytogenes isolates from bovine hides and carcasses. Appl. Environ. Microbiol. 2012, 78, 2043–2045. [Google Scholar] [CrossRef]
- CAC. Guidelines on the Application of General Principles of Food Hygiene to the Control of Listeria monocytogenes in Foods. CAC/GL 61—2007. 2007. Available online: https://www.nicd.ac.za/wp-content/uploads/2018/05/Guidelines_on_the_Application_of_General_Principles_of_Food_Hygiene_to_the_Control_of_Listeria_Monocytogenes_in_Foods_CAC_GL_61-2007.pdf (accessed on 10 August 2023).
- Mintel. Gourmet Burger Sector Report—UK—January 2016. 2016. Available online: https://www.food.gov.uk/sites/default/files/media/document/fsa10029finalreport.pdf (accessed on 28 July 2023).
- Bogard, A.K.; Fuller, C.C.; Radke, V.; Selman, C.A.; Smith, K.E. Ground beef handling and cooking practices in restaurants in eight States. J. Food Prot. 2013, 76, 2132–2140. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Tau, N.P.; Smouse, S.L.; Allam, M.; Ismail, A.; Ramalwa, N.R.; Disenyeng, B.; Ngomane, M.; Thomas, J. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathog. Dis. 2019, 16, 524–530. [Google Scholar] [CrossRef]
- WHO. Listeriosis—South Africa. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/28-march-2018-listeriosis-south-africa-en (accessed on 20 July 2023).
- ECDC. Rapid Outbreak Assessment: Multi-Country Outbreak of Listeria monocytogenes Sequence Type 6 Infections Linked to Ready-to-Eat Meat Products. Available online: https://www.ecdc.europa.eu/en/publications-data/rapid-outbreak-assessment-multi-country-outbreak-listeria-monocytogenes-sequence (accessed on 3 July 2023).
- Sung, S.-Y.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A.-C.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Amit, S.K.; Uddin, M.M.; Rahman, R.; Islam, S.M.R.; Khan, M.S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 2017, 6, 51. [Google Scholar] [CrossRef]
- Quintavalla, S.; Vicini, L. Antimicrobial food packaging in meat industry. Meat Sci. 2002, 62, 373–380. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Ekonomou, S.I.; Stratakos, A.C.; Pintado, T. Clean Label Alternatives in Meat Products. Foods 2021, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Sbardelotto, P.R.R.; Balbinot-Alfaro, E.; da Rocha, M.; Alfaro, A.T. Natural alternatives for processed meat: Legislation, markets, consumers, opportunities and challenges. Crit. Rev. Food Sci. Nutr. 2023, 63, 10303–10318. [Google Scholar] [CrossRef] [PubMed]
- Papadochristopoulos, A.; Kerry, J.P.; Fegan, N.; Burgess, C.M.; Duffy, G. Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021, 10, 1598. [Google Scholar] [CrossRef] [PubMed]
- Solomakos, N.; Govaris, A.; Koidis, P.; Botsoglou, N. The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol. 2008, 25, 120–127. [Google Scholar] [CrossRef]
- Yemis, G.P.; Candogan, K. Antibacterial activity of soy edible coatings incorporated with thyme and oregano essential oils on beef against pathogenic bacteria. Food Sci. Biotechnol. 2017, 26, 1113–1121. [Google Scholar] [CrossRef]
- Veldhuizen, E.J.; Creutzberg, T.O.; Burt, S.A.; Haagsman, H.P. Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. J. Food Prot. 2007, 70, 2127–2132. [Google Scholar] [CrossRef]
- Somrani, M.; Debbabi, H.; Palop, A. Antibacterial and antibiofilm activity of essential oil of clove against Listeria monocytogenes and Salmonella Enteritidis. Food Sci. Technol. Int. 2022, 28, 331–339. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Keya, C.A.; Hasan, K.N.; Hoque, M.M.; Inatsu, Y.; Bari, M.L. Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT Food Sci. Technol. 2016, 74, 219–223. [Google Scholar] [CrossRef]
- Raeisi, M.; Tabaraei, A.; Hashemi, M.; Behnampour, N. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. Int. J. Food Microbiol. 2016, 238, 139–145. [Google Scholar] [CrossRef]
- Gouveia, A.R.; Alves, M.; de Almeida, J.M.M.M.; Monteiro-Silva, F.; González-Aguilar, G.; Silva, J.A.; Saraiva, C. The Antimicrobial Effect of Essential Oils Against Listeria monocytogenes in Sous vide Cook-Chill Beef during Storage. J. Food Process. Preserv. 2017, 41, e13066. [Google Scholar] [CrossRef]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Muranyi, P.; Wunderlich, J.; Hauser, C. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015, 118, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Kramer, B.; Mignard, C.; Warschat, D.; Gürbüz, S.; Aiglstorfer, P.; Muranyi, P. Inhibition of Listeria monocytogenes on bologna by a beta acid rich hop extract. Food Control 2021, 126, 108040. [Google Scholar] [CrossRef]
- Tamkute, L.; Gil, B.M.; Carballido, J.R.; Pukalskiene, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wu, V.C.H. Evaluation of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium and Staphylococcus aureus in ground beef with cranberry concentrate by thin agar layer method. J. Rapid Methods Autom. Microbiol. 2007, 15, 282–294. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Mahmoud, A.A.; Roby, M.H.H.; Smetanska, I.; Ramadan, M.F. Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Economou, V.; Tsitsos, A.; Theodoridis, A.; Ambrosiadis, I.; Arsenos, G. Effects of Chitosan Coatings on Controlling Listeria monocytogenes and Methicillin-Resistant Staphylococcus aureus in Beef and Mutton Cuts. Appl. Sci. 2022, 12, 11345. [Google Scholar] [CrossRef]
- Antoniadou, D.; Govaris, A.; Ambrosiadis, I.; Sergelidis, D. Effect of chitosan coating on the shelf life of ready-to-eat bovine meatballs and the control of Listeria monocytogenes growth on their surface during refrigeration storage. J. Hellenic Vet. Med. Soc. 2019, 70, 1495–1502. [Google Scholar] [CrossRef]
- Wang, G.H. Inhibition and Inactivation of Five Species of Foodborne Pathogens by Chitosan. J. Food Prot. 1992, 55, 916–919. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Balay, D.; Hu, Y.; McMullen, L.M.; Ganzle, M.G. Effect of chitosan, and bacteriocin—Producing Carnobacterium maltaromaticum on survival of Escherichia coli and Salmonella Typhimurium on beef. Int. J. Food Microbiol. 2019, 290, 68–75. [Google Scholar] [CrossRef]
- Zimoch-Korzycka, A.; Jarmoluk, A. The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. J. Food Sci. Technol. 2015, 52, 5996–6002. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zou, L.; Yang, Q.; Xia, J.; Zhou, K.; Zhu, Y.; Han, X.; Pu, B.; Hu, B.; Deng, W.; et al. Antimicrobial Activities of Nisin, Tea Polyphenols, and Chitosan and their Combinations in Chilled Mutton. J. Food Sci. 2016, 81, M1466–M1471. [Google Scholar] [CrossRef]
- Ibanez-Peinado, D.; Ubeda-Manzanaro, M.; Martinez, A.; Rodrigo, D. Antimicrobial effect of insect chitosan on Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes survival. PLoS ONE 2020, 15, e0244153. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Chen, C.H.; Tsai, G.J. Effects of Chitosan on Clostridium perfringens and Application in the Preservation of Pork Sausage. Mar. Drugs 2020, 18, 70. [Google Scholar] [CrossRef]
- Juneja, V.K.; Thippareddi, H.; Bari, L.; Inatsu, Y.; Kawamoto, S.; Friedman, M. Chitosan Protects Cooked Ground Beef and Turkey Against Clostridium perfringens Spores During Chilling. J. Food Sci. 2006, 71, M236–M240. [Google Scholar] [CrossRef]
- İncili, G.K.; Karatepe, P.; İlhak, O.İ. Effect of chitosan and Pediococcus acidilactici on E. coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in meatballs. LWT Food Sci. Technol. 2020, 117, 108706. [Google Scholar] [CrossRef]
- Ruiz-Hernández, K.; Sosa-Morales, M.E.; Cerón-García, A.; Gómez-Salazar, J.A. Physical, Chemical and Sensory Changes in Meat and Meat Products Induced by the Addition of Essential Oils: A Concise Review. Food Rev. Int. 2021, 39, 2027–2056. [Google Scholar] [CrossRef]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Effects of natural antimicrobials on inhibition of Listeria monocytogenes and on chemical, physical and sensory attributes of naturally-cured frankfurters. Meat Sci. 2012, 90, 130–138. [Google Scholar] [CrossRef]
- Chounou, N.; Chouliara, E.; Mexis, S.F.; Stavros, K.; Georgantelis, D.; Kontominas, M.G. Shelf life extension of ground meat stored at 4°C using chitosan and an oxygen absorber. Int. J. Food Sci. Technol. 2013, 48, 89–95. [Google Scholar] [CrossRef]
- Đorđević, N.; Karabegović, I.; Cvetković, D.; Šojić, B.; Savić, D.; Danilović, B. Assessment of Chitosan Coating Enriched with Free and Nanoencapsulated Satureja montana L. Essential Oil as a Novel Tool for Beef Preservation. Foods 2022, 11, 2733. [Google Scholar] [CrossRef]
- Santiesteban-Lopez, N.A.; Gomez-Salazar, J.A.; Santos, E.M.; Campagnol, P.C.B.; Teixeira, A.; Lorenzo, J.M.; Sosa-Morales, M.E.; Dominguez, R. Natural Antimicrobials: A Clean Label Strategy to Improve the Shelf Life and Safety of Reformulated Meat Products. Foods 2022, 11, 2613. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Romero, M.C.; Murphy, T.; Morris, M.; Cummins, E.; Kerry, J.P. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 2013, 34, 393–397. [Google Scholar] [CrossRef]
- Giatrakou, V.; Ntzimani, A.; Savvaidis, I.N. Effect of chitosan and thyme oil on a ready to cook chicken product. Food Microbiol. 2010, 27, 132–136. [Google Scholar] [CrossRef]
- Rivas, L.; McDonnell, M.J.; Burgess, C.M.; O’Brien, M.; Navarro-Villa, A.; Fanning, S.; Duffy, G. Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 2010, 139, 70–78. [Google Scholar] [CrossRef]
- Burt, S.A.; Vlielander, R.; Haagsman, H.P.; Veldhuizen, E.J. Increase in Activity of Essential Oil Components Carvacrol and Thymol against Escherichia coli O157:H7 by Addition of Food Stabilizers. J. Food Prot. 2005, 68, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Dygico, L.K.; Gahan, C.G.M.; Grogan, H.; Burgess, C.M. Examining the efficacy of mushroom industry biocides on Listeria monocytogenes biofilm. J. Appl. Microbiol. 2021, 130, 1106–1116. [Google Scholar] [CrossRef]
- AOAC 2008.06; Moisture and Fat in Meats. Microwave and Nuclear Magnetic Resonance Analysis. AOAC International: Gaithersburg, MD, USA, 2008.
- Busch, S.V.; Donnelly, C.W. Development of a Repair-Enrichment Broth for Resuscitation of Heat-Injured Listeria monocytogenes and Listeria innocua. Appl. Environ. Microbiol. 1992, 58, 14–20. [Google Scholar] [CrossRef]
- Moran, L.; Andres, S.; Bodas, R.; Prieto, N.; Giraldez, F.J. Meat texture and antioxidant status are improved when carnosic acid is included in the diet of fattening lambs. Meat Sci. 2012, 91, 430–434. [Google Scholar] [CrossRef]
- Maraschiello, C.; Sárraga, C.; García Regueiro, J.A. Glutathione peroxidase activity, TBARS, and α-tocopherol in meat from chickens fed different diets. J. Agric. Food Chem. 1999, 47, 867–872. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; AMSA: Champaign, IL, USA, 2016; pp. 1–106. [Google Scholar]
- King, S.; Gillette, M.; Titman, D.; Adams, J.; Ridgely, M. The Sensory Quality System: A global quality control solution. Food Qual. Prefer. 2002, 13, 385–395. [Google Scholar] [CrossRef]
- Kaur, M.; Shang, H.; Tamplin, M.; Ross, T.; Bowman, J.P. Culture-dependent and culture-independent assessment of spoilage community growth on VP lamb meat from packaging to past end of shelf-life. Food Microbiol. 2017, 68, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Sola, J.; Vinas, I.; Colas-Meda, P.; Anguera, M.; Abadias, M. Occurrence of selected viral and bacterial pathogens and microbiological quality of fresh and frozen strawberries sold in Spain. Int. J. Food Microbiol. 2020, 314, 108392. [Google Scholar] [CrossRef]
- Lamas, A.; Miranda, J.M.; Vazquez, B.; Cepeda, A.; Franco, C.M. An Evaluation of Alternatives to Nitrites and Sulfites to Inhibit the Growth of Salmonella enterica and Listeria monocytogenes in Meat Products. Foods 2016, 5, 74. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Yan, D.; Li, Y.; Liu, Y.; Li, N.; Zhang, X.; Yan, C. Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules 2021, 26, 7136. [Google Scholar] [CrossRef]
- Raafat, D.; von Bargen, K.; Haas, A.; Sahl, H.G. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 2008, 74, 3764–3773. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törrönen, A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimiä, R.; Nohynek, L.; Hartmann-Schmidlin, S.; Kähkönen, M.; Heinonen, M.; Määttä-Riihinen, K.; Oksman-Caldentey, K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005, 98, 991–1000. [Google Scholar] [CrossRef]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2018, 24, 24. [Google Scholar] [CrossRef]
- Bae, J.Y.; Seo, Y.H.; Oh, S.W. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci. Biotechnol. 2022, 31, 985–997. [Google Scholar] [CrossRef]
- Wu, V.C.H.; Qiu, X.; Bushway, A.; Harper, L. Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT Food Sci. Technol. 2008, 41, 1834–1841. [Google Scholar] [CrossRef]
- Diarra, M.S.; Block, G.; Rempel, H.; Oomah, B.D.; Harrison, J.; McCallum, J.; Boulanger, S.; Brouillette, É.; Gattuso, M.; Malouin, F. In vitro and in vivo antibacterial activities of cranberry press cake extracts alone or in combination with β-lactams against Staphylococcus aureus. BMC Complement. Altern. Med. 2013, 13, 90. [Google Scholar] [CrossRef]
- De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. Constituents of aromatic plants: Carvacrol. Fitoterapia 2004, 75, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Arioli, S.; Montanari, C.; Magnani, M.; Tabanelli, G.; Patrignani, F.; Lanciotti, R.; Mora, D.; Gardini, F. Modelling of Listeria monocytogenes Scott A after a mild heat treatment in the presence of thymol and carvacrol: Effects on culturability and viability. J. Food Eng. 2019, 240, 73–82. [Google Scholar] [CrossRef]
- Mazzarrino, G.; Paparella, A.; Chaves-López, C.; Faberi, A.; Sergi, M.; Sigismondi, C.; Compagnone, D.; Serio, A. Salmonella enterica and Listeria monocytogenes inactivation dynamics after treatment with selected essential oils. Food Control 2015, 50, 794–803. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Bilia, A.R.; Barnabei, M.; Calesini, F.; Addona, R.; Mencarelli, L.; Carmagnini, L.; Di Martino, M.C.; Lo Nostro, A. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 2015, 54, 188–199. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- He, Q.; Zhang, L.; Yang, Z.; Ding, T.; Ye, X.; Liu, D.; Guo, M. Antibacterial mechanisms of thyme essential oil nanoemulsions against Escherichia coli O157:H7 and Staphylococcus aureus: Alterations in membrane compositions and characteristics. Innov. Food Sci. Emerg. Technol. 2022, 75, 102902. [Google Scholar] [CrossRef]
- Tian, B.; Li, W.; Wang, J.; Liu, Y. Functional polysaccharide-based film prepared from chitosan and beta-acids: Structural, physicochemical, and bioactive properties. Int. J. Biol. Macromol. 2021, 181, 966–977. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.-G.; Xue, Y.-P.; Liu, C.-S.; Yu, L.-J.; Ji, Q.-X.; Cha, D.S.; Park, H.J. Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Front. Mater. Sci. China 2008, 2, 214–220. [Google Scholar] [CrossRef]
- Chien, R.C.; Yen, M.T.; Mau, J.L. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr. Polym. 2016, 138, 259–264. [Google Scholar] [CrossRef]
- Sogias, I.A.; Khutoryanskiy, V.V.; Williams, A.C. Exploring the Factors Affecting the Solubility of Chitosan in Water. Macromol. Chem. Phys. 2010, 211, 426–433. [Google Scholar] [CrossRef]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Antunes, F.; Marcal, S.; Taofiq, O.; Morais, A.; Freitas, A.C.; Ferreira, I.; Pintado, M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef] [PubMed]
- Soultos, N.; Tzikas, Z.; Abrahim, A.; Georgantelis, D.; Ambrosiadis, I. Chitosan effects on quality properties of Greek style fresh pork sausages. Meat Sci. 2008, 80, 1150–1156. [Google Scholar] [CrossRef]
- Moon, H.; Kim, N.H.; Kim, S.H.; Kim, Y.; Ryu, J.H.; Rhee, M.S. Teriyaki sauce with carvacrol or thymol effectively controls Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and indigenous flora in marinated beef and marinade. Meat Sci. 2017, 129, 147–152. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef]
- Mbandi, E.; Shelef, L.A. Enhanced inhibition of Listeria monocytogenes and Salmonella enteritidis in meat by combinations of sodium lactate and diacetate. J. Food Prot. 2001, 64, 640–644. [Google Scholar] [CrossRef]
- Lim, K.; Mustapha, A. Effects of cetylpyridinium chloride, acidified sodium chlorite, and potassium sorbate on populations of Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on fresh beef. J. Food Prot. 2004, 67, 310–315. [Google Scholar] [CrossRef]
- Mancini, R.A.; Ramanathan, R.; Hunt, M.C.; Kropf, D.H.; Mafi, G.G. Interrelationships Between Visual and Instrumental Measures of Ground Beef Color. Meat Muscle Biol. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Kerth, C.R.; Miller, R.K. Beef flavor: A review from chemistry to consumer. J. Sci. Food Agric. 2015, 95, 2783–2798. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Waimaleongora-Ek, C. Effect of pH on TBA Values of Ground Raw Poultry Meat. J. Food Sci. 1981, 46, 1946–1947. [Google Scholar] [CrossRef]
- Dominguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Pohlman, F.W.; Stivarius, M.R.; McElyea, K.S.; Johnson, Z.B.; Johnson, M.G. The effects of ozone, chlorine dioxide, cetylpyridinium chloride and trisodium phosphate as multiple antimicrobial interventions on microbiological, instrumental color, and sensory color and odor characteristics of ground beef. Meat Sci. 2002, 61, 307–313. [Google Scholar] [CrossRef] [PubMed]
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards). Scientific opinion on the growth of spoilage bacteria during storage and transport of meat. EFSA J. 2016, 14, 4523. [Google Scholar] [CrossRef]
- Suman, S.P.; Mancini, R.A.; Joseph, P.; Ramanathan, R.; Konda, M.K.; Dady, G.; Yin, S. Packaging-specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Sci. 2010, 86, 994–998. [Google Scholar] [CrossRef]
- Amoli, P.I.; Hadidi, M.; Hasiri, Z.; Rouhafza, A.; Jelyani, A.Z.; Hadian, Z.; Khaneghah, A.M.; Lorenzo, J.M. Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability. Foods 2021, 10, 1959. [Google Scholar] [CrossRef]
- Hautrive, T.P.; Piccolo, J.; Rodrigues, A.S.; Campagnol, P.C.B.; Kubota, E.H. Effect of fat replacement by chitosan and golden flaxseed flour (wholemeal and defatted) on the quality of hamburgers. LWT Food Sci. Technol. 2019, 102, 403–410. [Google Scholar] [CrossRef]
- Sagheer, F.A.A.; Al-Sughayer, M.A.; Muslim, S.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 2009, 77, 410–419. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Yang, J.Y.; Lu, H.B.; Wang, S.S.; Yang, J.; Yang, X.C.; Chai, M.; Li, L.; Cao, J.X. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. Int. J. Biol. Macromol. 2013, 61, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Tango, C.N.; Oh, D.H. Development and evaluation of chitosan and its derivative for the shelf life extension of beef meat under refrigeration storage. Int. J. Food Sci. Technol. 2017, 52, 1111–1121. [Google Scholar] [CrossRef]
- Hong, V.; Wrolstad, R.E. Cranberry juice composition. J. Assoc. Off. Anal. Chem. 1986, 69, 199–207. [Google Scholar] [CrossRef]
- Wu, V.C.; Qiu, X.; de los Reyes, B.G.; Lin, C.S.; Pan, Y. Application of cranberry concentrate (Vaccinium macrocarpon) to control Escherichia coli O157:H7 in ground beef and its antimicrobial mechanism related to the downregulated slp, hdeA and cfa. Food Microbiol. 2009, 26, 32–38. [Google Scholar] [CrossRef]
- Hulankova, R.; Borilova, G.; Steinhauserova, I. Combined antimicrobial effect of oregano essential oil and caprylic acid in minced beef. Meat Sci. 2013, 95, 190–194. [Google Scholar] [CrossRef]
- Sayas-Barbera, E.; Quesada, J.; Sanchez-Zapata, E.; Viuda-Martos, M.; Fernandez-Lopez, F.; Perez-Alvarez, J.A.; Sendra, E. Effect of the molecular weight and concentration of chitosan in pork model burgers. Meat Sci. 2011, 88, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Knorr, D. Functional Properties of Chitin and Chitosan. J. Food Sci. 1982, 47, 593–595. [Google Scholar] [CrossRef]
- Dong, J.; Kou, X.; Liu, L.; Hou, L.; Li, R.; Wang, S. Effect of water, fat, and salt contents on heating uniformity and color of ground beef subjected to radio frequency thawing process. Innov. Food Sci. Emerg. Technol. 2021, 68, 102604. [Google Scholar] [CrossRef]
- Darmadji, P.; Izumimoto, M. Effect of chitosan in meat preservation. Meat Sci. 1994, 38, 243–254. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef]
- Dunshea, F.R.; D’Souza, D.N.; Pethick, D.W.; Harper, G.S.; Warner, R.D. Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat. Meat Sci. 2005, 71, 8–38. [Google Scholar] [CrossRef]
- McKenna, D.R.; Mies, P.D.; Baird, B.E.; Pfeiffer, K.D.; Ellebracht, J.W.; Savell, J.W. Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 2005, 70, 665–682. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Muthu, M.; Gopal, J.; Chun, S.; Devadoss, A.J.P.; Hasan, N.; Sivanesan, I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants 2021, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Alimi, B.A.; Pathania, S.; Wilson, J.; Duffy, B.; Frias, J.M.C. Extraction, quantification, characterization, and application in food packaging of chitin and chitosan from mushrooms: A review. Int. J. Biol. Macromol. 2023, 237, 124195. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, V.E.; Stepnova, E.A.; Babak, V.G.; Yamskov, I.A.; Palma-Guerrero, J.; Jansson, H.-B.; Lopez-Llorca, L.V.; Salinas, J.; Gerasimenko, D.V.; Avdienko, I.D.; et al. Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr. Polym. 2006, 64, 66–72. [Google Scholar] [CrossRef]
- Duran, A.; Kahve, H.I. The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci. 2020, 162, 107961. [Google Scholar] [CrossRef]
- Jeremiah, L.E. Packaging alternatives to deliver fresh meats using short- or long-term distribution. Food Res. Int. 2001, 34, 749–772. [Google Scholar] [CrossRef]
- Lee, C.H.; Reed, J.D.; Richards, M.P. Ability of Various Polyphenolic Classes from Cranberry to Inhibit Lipid Oxidation in Mechanically Separated Turkey and Cooked Ground Pork. J. Muscle Foods 2006, 17, 248–266. [Google Scholar] [CrossRef]
- Aguiar Campolina, G.; das Gracas Cardoso, M.; Rodrigues-Silva-Caetano, A.; Lee Nelson, D.; Mendes Ramos, E. Essential Oil and Plant Extracts as Preservatives and Natural Antioxidants Applied to Meat and Meat Products: A Review. Food Technol. Biotechnol. 2023, 61, 212–225. [Google Scholar] [CrossRef]
- Belles, M.; Alonso, V.; Roncales, P.; Beltran, J.A. Sulfite-free lamb burger meat: Antimicrobial and antioxidant properties of green tea and carvacrol. J. Sci. Food Agric. 2019, 99, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Serio, A.; Chaves-Lopez, C.; Sacchetti, G.; Rossi, C.; Paparella, A. Chitosan Coating Inhibits the Growth of Listeria Monocytogenes and Extends the Shelf Life of Vacuum-Packed Pork Loins at 4 °C. Foods 2018, 7, 155. [Google Scholar] [CrossRef] [PubMed]
L. monocytogenes Counts (log10 CFU g−1) on Storage Day * | ||||||
---|---|---|---|---|---|---|
Anti-Microbial Agent | Concentration (%) | 0 d | 4 d | 8 d | 12 d | 16 d |
Chitosan (Shrimp) | 0 | 3.78 ± 0.10 cA1 | 3.79 ± 0.05 dA1 | 3.70 ± 0.05 dA1 | 3.61 ± 0.21 dA1 | 3.61 ± 0.23 dA1 |
0.313 | 3.59 ± 0.11 bcAB1 | 3.60 ± 0.06 cdB1 | 3.50 ± 0.07 cdAB1 | 3.37 ± 0.15 cdAB1 | 3.34 ± 0.12 cA1 | |
0.625 | 3.49 ± 0.11 abB1 | 3.47 ± 0.12 cB12 | 3.34 ± 0.07 cAB1 | 3.28 ± 0.07 cAB1 | 3.13 ± 0.08 cA1 | |
1.25 | 3.39 ± 0.05 abC1 | 3.05 ± 0.18 bB1 | 2.85 ± 0.10 bAB1 | 2.84 ± 0.22 bAB1 | 2.62 ± 0.13 bA1 | |
2.5 | 3.24 ± 0.16 aC1 | 2.70 ± 0.18 aB1 | 2.12 ± 0.15 aA1 | 2.15 ± 0.17 aA1 | 2.12 ± 0.15 aA1 | |
Chitosan (Mushroom) | 0 | 3.72 ± 0.03 bB1 | 3.75 ± 0.07 dB1 | 3.66 ± 0.08 dAB1 | 3.58 ± 0.04 dAB1 | 3.42 ± 0.03 dA1 |
0.313 | 3.40 ± 0.14 aB2 | 3.38 ± 0.09 cB2 | 3.22 ± 0.08 cAB2 | 3.16 ± 0.15 cAB2 | 2.99 ± 0.12 cA2 | |
0.625 | 3.23 ± 0.08 aC2 | 3.29 ± 0.03 bcC1 | 3.09 ± 0.06 cBC2 | 2.79 ± 0.20 bAB2 | 2.87 ± 0.06 cA2 | |
1.25 | 3.22 ± 0.15 aC1 | 3.10 ± 0.21 bC1 | 2.75 ± 0.06 bB1 | 2.61 ± 0.23 bAB2 | 2.47 ± 0.22 bA1 | |
2.5 | 3.19 ± 0.16 aD1 | 2.66 ± 0.16 aC1 | 2.00 ± 0.35 aB1 | 1.50 ± 0.34 aA2 | 1.52 ± 0.35 aA2 | |
Cranberry extract | 0 | 3.63 ± 0.04 aA1 | 3.69 ± 0.08 bA1 | 3.69 ± 0.05 bA1 | 3.59 ± 0.05 cA1 | 3.68 ± 0.09 bA1 |
0.625 | 3.65 ± 0.11 aB1 | 3.57 ± 0.14 bB2 | 3.59 ± 0.05 bB3 | 3.24 ± 0.17 abA1 | 3.17 ± 0.05 aA1 | |
1.25 | 3.64 ± 0.04 aB2 | 3.47 ± 0.13 abB2 | 3.51 ± 0.09 abB2 | 3.40 ± 0.13 bcB3 | 3.09 ± 0.21 aA2 | |
2.5 | 3.49 ± 0.16 aC2 | 3.24 ± 0.21 aABC2 | 3.32 ± 0.23 aAB2 | 3.15 ± 0.15 aAB3 | 3.07 ± 0.21 aA3 | |
Carvacrol | 0 | 3.71 ± 0.06 cA | 3.67 ± 0.09 cA | 3.70 ± 0.13 cA | 3.54 ± 0.33 bA | 3.49 ± 0.13 bA |
0.1 | 3.60 ± 0.08 bcA | 3.57 ± 0.13 bcA | 3.54 ± 0.09 bcA | 3.42 ± 0.20 bA | 3.41 ± 0.21 bA | |
0.2 | 3.39 ± 0.14 bA | 3.40 ± 0.06 bA | 3.35 ± 0.09 bA | 3.37 ± 0.18 bA | 3.29 ± 0.03 bA | |
0.4 | 3.06 ± 0.11 aA | 2.99 ± 0.06 aA | 2.94 ± 0.14 aA | 2.92 ± 0.05 aA | 2.86 ± 0.07 aA | |
Thyme EO | 0 | 3.74 ± 0.02 aA | 3.78 ± 0.07 aA | 3.76 ± 0.02 aA | 3.70 ± 0.04 aA | 3.63 ± 0.07 bA |
0.125 | 3.76 ± 0.05 aA | 3.73 ± 0.07 aA | 3.71 ± 0.03 aA | 3.68 ± 0.07 aA | 3.57 ± 0.10 abA | |
0.25 | 3.74 ± 0.06 aB | 3.70 ± 0.05 aB | 3.60 ± 0.05 aAB | 3.56 ± 0.04 aAB | 3.42 ± 0.06 abA | |
0.5 | 3.73 ± 0.06 aB | 3.65 ± 0.07 aB | 3.57 ± 0.07 aAB | 3.53 ± 0.11 aAB | 3.36 ± 0.12 aA | |
Hop extract | 0 | 3.77 ± 0.03 aA | 3.75 ± 0.06 aA | 3.78 ± 0.05 aA | 3.68 ± 0.19 aA | 3.55 ± 0.18 aA |
0.1 | 3.80 ± 0.02 aB | 3.76 ± 0.06 aB | 3.78 ± 0.05 aB | 3.68 ± 0.08 aAB | 3.48 ± 0.20 aA | |
0.2 | 3.76 ± 0.07 aA | 3.78 ± 0.07 aA | 3.76 ± 0.08 aA | 3.71 ± 0.04 aA | 3.72 ± 0.07 aA | |
0.4 | 3.71 ± 0.06 aA | 3.57 ± 0.12 aA | 3.69 ± 0.03 aA | 3.56 ± 0.15 aA | 3.52 ± 0.20 aA |
L. monocytogenes Counts (log10 CFU g−1) on Storage Day * | ||||||
---|---|---|---|---|---|---|
Anti-Microbial Agent | Concentration (%) | 0 d | 4 d | 8 d | 12 d | 16 d |
Chitosan (Shrimp) | 0 | 3.84 ± 0.07 bA1 | 3.77 ± 0.04 dA1 | 3.71 ± 0.04 dA1 | 3.64 ± 0.16 dA1 | 3.67 ± 0.19 cA1 |
0.313 | 3.52 ± 0.14 aA1 | 3.52 ± 0.09 cdA1 | 3.52 ± 0.09 cdA1 | 3.25 ± 0.10 cA1 | 3.27 ± 0.15 bA1 | |
0.625 | 3.45 ± 0.09 aB1 | 3.36 ± 0.16 cAB1 | 3.28 ± 0.09 cAB1 | 3.22 ± 0.17 cAB1 | 3.13 ± 0.06 bA1 | |
1.25 | 3.30 ± 0.10 aB1 | 2.91 ± 0.21 bA1 | 2.83 ± 0.07 bA1 | 2.80 ± 0.16 bA1 | 2.66 ± 0.17 aA1 | |
2.5 | 3.24 ± 0.09 aD1 | 2.59 ± 0.19 aC1 | 2.04 ± 0.26 aB1 | 1.46 ± 1.11 aA1 | 2.46 ± 0.31 aC1 | |
Chitosan (Mushroom) | 0 | 3.71 ± 0.07 bB1 | 3.77 ± 0.10 dAB1 | 3.67 ± 0.03 dAB1 | 3.60 ± 0.05 dAB1 | 3.42 ± 0.05 dA1 |
0.313 | 3.41 ± 0.10 aC1 | 3.36 ± 0.07 cBC1 | 3.15 ± 0.09 cABC2 | 3.08 ± 0.07 cAB1 | 3.01 ± 0.13 cA2 | |
0.625 | 3.28 ± 0.06 aB1 | 3.16 ± 0.03 bcB1 | 3.03 ± 0.11 bcAB1 | 2.74 ± 0.21 bA2 | 2.75 ± 0.11 cA2 | |
1.25 | 3.24 ± 0.12 aC1 | 3.02 ± 0.02 bBC1 | 2.79 ± 0.10 bB1 | 2.45 ± 0.05 bA2 | 2.38 ± 0.17 bB2 | |
2.5 | 3.18 ± 0.21 aD1 | 2.59 ± 0.15 aC1 | 2.01 ± 0.23 aB1 | < 1.00 aB2 | 1.87 ± 0.35 aA2 | |
Cranberry extract | 0 | 3.79 ± 0.08 aA1 | 3.72 ± 0.07 aA1 | 3.74 ± 0.04 aA1 | 3.65 ± 0.06 bA1 | 3.68 ± 0.09 bA1 |
0.625 | 3.77 ± 0.04 aB2 | 3.64 ± 0.01 aB2 | 3.59 ± 0.08 aB2 | 3.27 ± 0.14 aA1 | 3.22 ± 0.11 aA1 | |
1.25 | 3.66 ± 0.04 aB2 | 3.63 ± 0.04 aB2 | 3.55 ± 0.04 aB2 | 3.46 ± 0.16 abAB3 | 3.27 ± 0.24 aA3 | |
2.5 | 3.57 ± 0.10 aB2 | 3.44 ± 0.10 aAB2 | 3.46 ± 0.18 aAB2 | 3.26 ± 0.14 aA3 | 3.29 ± 0.08 aAB3 | |
Carvacrol | 0 | 3.80 ± 0.04 cA | 3.80 ± 0.03 cA | 3.71 ± 0.17 bA | 3.69 ± 0.23 bA | 3.55 ± 0.13 bA |
0.1 | 3.74 ± 0.07 bcA | 3.71 ± 0.04 bcA | 3.61 ± 0.07 bA | 3.52 ± 0.23 bA | 3.53 ± 018 bA | |
0.2 | 3.51 ± 0.02 abA | 3.49 ± 0.07 bA | 3.48 ± 0.12 bA | 3.41 ± 0.18 bA | 3.49 ± 0.13 bA | |
0.4 | 3.33 ± 0.11 aB | 3.18 ± 0.13 aAB | 3.00 ± 0.17 aA | 2.95 ± 0.13 aA | 2.94 ± 0.09 aA | |
Thyme EO | 0 | 3.81 ± 0.03 aA | 3.78 ± 0.05 aA | 3.77 ± 0.06 aA | 3.73 ± 0.04 aA | 3.68 ± 0.11 aA |
0.125 | 3.81 ± 0.05 aA | 3.78 ± 0.07 aA | 3.76 ± 0.06 aA | 3.69 ± 0.07 aA | 3.61 ± 0.09 aA | |
0.25 | 3.76 ± 0.03 aB | 3.77 ± 0.03 aB | 3.71 ± 0.03 aAB | 3.61 ± 0.05 aAB | 3.42 ± 0.09 aA | |
0.5 | 3.74 ± 0.03 aB | 3.69 ± 0.09 aAB | 3.61 ± 0.04 aAB | 3.61 ± 0.07 aAB | 3.41 ± 0.12 aA | |
Hop extract | 0 | 3.82 ± 0.05 aA | 3.74 ± 0.04 aA | 3.82 ± 0.04 aA | 3.76 ± 0.15 aA | 3.63 ± 0.20 abA |
0.1 | 3.81 ± 0.05 aB | 3.84 ± 0.05 aB | 3.79 ± 0.06 aB | 3.69 ± 0.04 aAB | 3.47 ± 0.22 aA | |
0.2 | 3.79 ± 0.04 aA | 3.77 ± 0.04 aA | 3.80 ± 0.05 aA | 3.77 ± 0.03 aA | 3.77 ± 0.06 bA | |
0.4 | 3.83 ± 0.07 aA | 3.80 ± 0.03 aA | 3.76 ± 0.03 aA | 3.74 ± 0.10 aA | 3.74 ± 0.15 abA |
Treatment | Storage Day | ||
---|---|---|---|
0 d | 8 d | 16 d | |
Control | 5.68 ± 0.02 bB 1 | 5.65 ± 0.03 bAB | 5.58 ± 0.09 bA |
Chitosan (Shrimp) (2.5%) | 6.55 ± 0.09 cB | 6.57 ± 0.08 cB | 6.40 ± 0.07 cA |
Chitosan (Mushroom) (2.5%) | 6.62 ± 0.04 cB | 6.68 ± 0.02 cB | 6.49 ± 0.12 cA |
Cranberry extract (2.5%) | 5.31 ± 0.02 aA | 5.27 ± 0.02 aA | 5.22 ± 0.11 aA |
Carvacrol (0.4%) | 5.66 ± 0.02 bA | 5.65 ± 0.03 bA | 5.60 ± 0.09 bA |
Colour | Treatment | Storage Day | ||
---|---|---|---|---|
0 d | 8 d | 16 d | ||
L* | Control | 46.30 ± 1.93 bA 1 | 46.63 ± 0.19 bA | 46.20 ± 2.28 bA |
Chitosan (Shrimp) (2.5%) | 45.21 ± 1.16 bA | 48.71 ± 2.46 bcB | 49.04 ± 3.32 bcB | |
Chitosan (Mushroom) (2.5%) | 45.63 ± 2.44 bA | 46.48 ± 1.04 bA | 46.53 ± 1.18 bcA | |
Cranberry extract (2.5%) | 31.25 ± 0.71 aA | 33.09 ± 1.58 aAB | 33.83 ± 0.64 aB | |
Carvacrol (0.4%) | 47.82 ± 1.51 bA | 49.66 ± 1.82 cA | 49.39 ± 2.28 cA | |
a* | Control | 11.81 ± 3.32 bA | 10.91 ± 0.31 aA | 10.76 ± 0.84 bA |
Chitosan (Shrimp) (2.5%) | 8.67 ± 0.36 aA | 9.33 ± 0.58 aA | 9.98 ± 1.21 abA | |
Chitosan (Mushroom) (2.5%) | 9.05 ± 0.53 aA | 9.89 ± 0.51 aA | 10.42 ± 0.57 abA | |
Cranberry extract (2.5%) | 9.20 ± 0.73 aA | 9.02 ± 0.18 aA | 8.64 ± 0.57 aA | |
Carvacrol (0.4%) | 10.30 ± 2.12 abA | 10.41 ± 0.38 aA | 10.32 ± 1 abA | |
b* | Control | 14.40 ± 2.07 cB | 11.90 ± 0.21 bA | 11.98 ± 0.81 bA |
Chitosan (Shrimp) (2.5%) | 12.80 ± 0.87 bA | 13.36 ± 1.14 bA | 13.46 ± 1.46 bA | |
Chitosan (Mushroom) (2.5%) | 12.65 ± 1.42 bA | 12.46 ± 0.51 bA | 12.95 ± 0.60 bA | |
Cranberry extract (2.5%) | 0.00 ± 0.30 aA | 0.25 ± 0.33 aA | 0.74 ± 0.19 aB | |
Carvacrol (0.4%) | 14.44 ± 1.01 cA | 13.10 ± 0.85 bA | 13.56 ± 0.83 bA |
Attribute | Treatment | Storage Day | ||
---|---|---|---|---|
0 d | 8 d | 16 d | ||
Visual colour 2 | Control | 3.15 aB 1 [2.69–3.61] | 2.08 aA [1.66–2.5] | 2.58 aAB [2.16–3] |
Chitosan (Shrimp) (2.5%) | 3.20 aA [2.74–3.66] | 2.58 aA [2.16–3] | 2.83 aA [2.41–3.25] | |
Chitosan (Mushroom) (2.5%) | 3.25 aB [2.79–3.71] | 2.5 aA [2.08–2.92] | 2.71 aAB [2.29–3.13] | |
Cranberry extract (2.5%) | 5.95 bA [5.49–6] 6 | 6 bA [5.58–6] 6 | 6 bA [5.58–6] 6 | |
Carvacrol (0.4%) | 3.25 aB [2.79–3.71] | 2.38 aA [1.96–2.79] | 2.88 aAB [2.46–3.29] | |
Off-odour 3 | Control | 1.25 aA [1–1.58] 6 | 1.63 aA [1.33–1.92] | 1.63 abA [1.33–1.92] |
Chitosan (Shrimp) (2.5%) | 1.3 aA [1–1.63] 6 | 1.29 aA [1–1.59] 6 | 2 bB [1.7–2.3] | |
Chitosan (Mushroom) (2.5%) | 1.55 aA [1.22–1.88] | 1.29 aA [1–1.59] 6 | 1.46 abA [1.16–1.76] | |
Cranberry extract (2.5%) | 1.45 aA [1.12–1.78] | 1.29 aA [1–1.59] 5 | 1.21 aA [1–1.51] 5 | |
Carvacrol (0.4%) | 1.5 aA [1.17–1.83] | 1.25 aA [1–1.55] 6 | 1.33 aA [1.03–1.63] | |
Overall odour 4 | Control | 3.55 aA [2.61–4.49] | 3.79 aA [2.94–4.65] | 4.04 aA [3.19–4.9] |
Chitosan (Shrimp) (2.5%) | 3.35 aA [2.41–4.29] | 4.04 abA [3.19–4.9] | 4.17 aA [3.31–5.02] | |
Chitosan (Mushroom) (2.5%) | 3.6 aA [2.66–4.54] | 4 aA [3.14–4.86] | 4.42 aA [3.56–5.27] | |
Cranberry extract (2.5%) | 5.1 abA [4.16–6.04] | 4.67 abA [3.81–5.52] | 4.21 aA [3.35–5.06] | |
Carvacrol (0.4%) | 5.6 bA [4.66–6.54] | 5.71 bA [4.85–6.56] | 5.29 aA [4.44–6.15] | |
Overall quality 5 | Control | 7.15 bA [6.66–7.64] | 7.21 bA [6.76–7.66] | 7.17 bA [6.72–7.62] |
Chitosan (Shrimp) (2.5%) | 7.01 bA [6.61–7.59] | 7.46 bA [7.01–7.91] | 6.71 bA [6.26–7.16] | |
Chitosan (Mushroom) (2.5%) | 7.3 bA [6.81–7.79] | 7.5 bA [7.05–7.95] | 7.42 bA [6.97–7.87] | |
Cranberry extract (2.5%) | 5.35 aA [4.86–5.84] | 5.42 aA [4.97–5.87] | 5.42 aA [4.97–5.87] | |
Carvacrol (0.4%) | 5.55 aA [5.06–6.04] | 6.04 aA [5.59–6.49] | 5.79 aA [5.34–6.24] |
Attribute | Treatment | Storage Day | ||
---|---|---|---|---|
0 d | 8 d | 16 d | ||
Visual colour 2 | Control | 3.15 Ab 1 [2.66–3.64] | 2.25 aA [1.81–2.69] | 2.42 aAB [1.97–2.86] |
Chitosan (Shrimp) (2.5%) | 2.9 aA [2.41–3.39] | 2.42 aA [1.97–2.86] | 2.75 aA [2.31–3.19] | |
Chitosan (Mushroom) (2.5%) | 2.85 aA [2.36–3.34] | 2.21 aA [1.76–2.65] | 2.29 aA [1.85–2.74] | |
Cranberry extract (2.5%) | 5.8 bA [5.31–6] 6 | 6 bA [5.56–6] 6 | 5.75 bA [5.31–6] 6 | |
Carvacrol (0.4%) | 3.2 aB [2.71–3.69] | 2.58 aAB [2.14–3.03] | 2.29 aA [1.85–2.74] | |
Off-odour 3 | Control | 1.15 aA [1–1.45] 6 | 1.67 aB [1.39–1.94] | 1.38 abAB [1.10–1.65] |
Chitosan (Shrimp) (2.5%) | 1.25 aA [1–1.55] 6 | 1.42 aAB [1.14–1.69] | 1.75 bB [1.47–2.03] | |
Chitosan (Mushroom) (2.5%) | 1.4 aA [1.10–1.70] | 1.33 aA [1.06–1.61] | 1.5 abA [1.22–1.78] | |
Cranberry extract (2.5%) | 1.25 aA [1–1.55] 6 | 1.17 aA [1–1.44] 6 | 1 aA [1–1.28] 6 | |
Carvacrol (0.4%) | 1.55 aA [1–1.44] 6 | 1.17 aA [1–1.55] 6 | 1.21 abA [1–1.49] 6 | |
Overall odour 4 | Control | 3.35 aA [2.46–4.24] | 3.96 aA [3.15–4.77] | 3.71 aA [2.90–4.52] |
Chitosan (Shrimp) (2.5%) | 3.5 aA [2.61–4.39] | 3.96 aA [3.15–4.77] | 3.88 aA [3.06–4.69] | |
Chitosan (Mushroom) (2.5%) | 3.55 aA [2.66–4.44] | 3.75 aA [2.94–4.56] | 4.33 aA [3.52–5.14] | |
Cranberry extract (2.5%) | 5 abA [4.11–5.89] | 4.75 aA [3.94–5.56] | 4.17 aA [3.36–4.98] | |
Carvacrol (0.4%) | 5.35 bA [4.46–6.24] | 5.33 aA [4.52–6.14] | 5 aA [4.19–5.81] | |
Overall quality 5 | Control | 7.3 bA [6.84–7.76] | 7.25 bA [6.83–7.67] | 6.96 cA [6.54–7.38] |
Chitosan (Shrimp) (2.5%) | 7.15 bAB [6.69–7.61] | 7.46 bB [7.04–7.88] | 6.58 bcA [6.17–7] | |
Chitosan (Mushroom) (2.5%) | 7.2 bA [6.74–7.66] | 7.54 bA [7.12–7.96] | 7.13 cA [6.71–7.54] | |
Cranberry extract (2.5%) | 5.1 aA [4.64–5.56] | 5.46 aA [5.04–5.88] | 5.67 aA [5.25–6.08] | |
Carvacrol (0.4%) | 5.35 aA [4.89–5.81] | 5.83 aA [5.42–6.25] | 5.79 abA [5.37–6.21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadochristopoulos, A.; Kerry, J.P.; Fegan, N.; Burgess, C.M.; Duffy, G. Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes. Microorganisms 2025, 13, 910. https://doi.org/10.3390/microorganisms13040910
Papadochristopoulos A, Kerry JP, Fegan N, Burgess CM, Duffy G. Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes. Microorganisms. 2025; 13(4):910. https://doi.org/10.3390/microorganisms13040910
Chicago/Turabian StylePapadochristopoulos, Angelos, Joseph P. Kerry, Narelle Fegan, Catherine M. Burgess, and Geraldine Duffy. 2025. "Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes" Microorganisms 13, no. 4: 910. https://doi.org/10.3390/microorganisms13040910
APA StylePapadochristopoulos, A., Kerry, J. P., Fegan, N., Burgess, C. M., & Duffy, G. (2025). Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes. Microorganisms, 13(4), 910. https://doi.org/10.3390/microorganisms13040910