Genomic Insights into Phosphorus Solubilization of Pseudomonas extremaustralis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacteria from Pisciculture Samples
2.2. In Vitro Identification of Putative Phosphate-Solubilizing Bacteria
2.3. Total DNA Extraction and Quantification
2.4. De Novo Sequencing and Genome Assembly
2.5. Taxonomic Analysis
2.6. Phylogenetic Analysis and Identification of Phosphorus-Cycling-Related Genes
3. Results and Discussion
3.1. In Vitro Screening of Phosphate-Solubilizing Bacteria
3.2. Genetic Characterization Based on Whole-Genome Sequencing
3.3. Phosphorus-Cycling Genes with P. extremaustralis Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López, G.; Diaz-Cárdenas, C.; Shapiro, N.; Woyke, T.; Kyrpides, N.C.; Alzate, J.D.; González, L.N.; Restrepo, S.; Baena, S. Draft genome sequence of Pseudomonas extremaustralis strain USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand. Genom. Sci. 2017, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- López, N.I.; Pettinari, M.J.; Stackebrandt, E.; Tribelli, P.M.; Põtter, M.; Steinbüchel, A.; Méndez, B.S. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) Producer Isolated from an Antarctic Environment. Curr. Microbiol. 2009, 59, 514–519. [Google Scholar] [CrossRef]
- Tribelli, P.M.; Iustman, L.J.R.; Catone, M.V.; Di Martino, C.; Revale, S.; Méndez, B.S.; López, N.I. Genome Sequence of the Polyhydroxybutyrate Producer Pseudomonas extremaustralis, a Highly Stress-Resistant Antarctic Bacterium. J. Bacteriol. 2012, 194, 2381–2382. [Google Scholar] [CrossRef] [PubMed]
- Iustman, L.J.R.; Tribelli, P.M.; Ibarra, J.G.; Catone, M.V.; Venero, E.C.S.; López, N.I. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 2015, 19, 207–220. [Google Scholar] [CrossRef]
- Colonnella, M.A.; Lizarraga, L.; Rossi, L.; Peña, R.D.; Egoburo, D.; López, N.I.; Iustman, L.J.R. Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles 2019, 23, 91–99. [Google Scholar] [CrossRef]
- Hou, E.; Chen, C.; McGroddy, M.E.; Wen, D. Nutrient Limitation on Ecosystem Productivity and Processes of Mature and Old-Growth Subtropical Forests in China. PLoS ONE 2012, 7, e52071. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Sci. Total Environ. 2023, 901, 166468. [Google Scholar] [CrossRef] [PubMed]
- Kannan, P.; Paramasivan, M.; Marimuthu, S.; Swaminathan, C.; Bose, J. Applying both biochar and phosphobacteria enhances Vigna mungo L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability. Agric. Ecosyst. Environ. 2021, 308, 107258. [Google Scholar]
- Castagno, L.N.; Sannazzaro, A.I.; Gonzalez, M.E.; Pieckenstain, F.L.; Estrella, M.J. Phosphobacteria as key actors to overcome phosphorus deficiency in plants. Ann. Appl. Biol. 2021, 178, 256–267. [Google Scholar] [CrossRef]
- Gurbanov, R.; Kalkanci, B.; Karadag, H.; Samgane, G. Phosphorus Solubilizing Microorganisms. In Biofertilizers; Inamuddin, Ahamed, M.I., Boddula, R., Rezakazemi, M., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 151–182. [Google Scholar]
- Kour, D.; Rana, K.L.; Kaur, T.; Yadav, N.; Yadav, A.N.; Kumar, M.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: A review. Pedosphere 2021, 31, 43–75. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Schwengers, O.; Jelonek, L.; Dieckmann, M.A.; Beyvers, S.; Blom, J.; Goesmann, A. Bakta: Rapid and standardized annotation of bacterial genomes via alignment-free sequence identification: Find out more about Bakta, the motivation, challenges and applications, here. Microb. Genom. 2021, 7, 000685. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Zeng, J.; Tu, Q.; Yu, X.; Qian, L.; Wang, C.; Shu, L.; Liu, F.; Liu, S.; Huang, Z.; He, J.; et al. PCycDB: A comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome 2022, 10, 101. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.A.; Gotting, A.S.; Beraha, N.; Malgaretti, P.; Carusela, M.F.; Vullo, D.L. Combined theoretical and experimental approaches for bacterial aggregation studies towards the improvement of bioremediation processes. Clean Technol. Environ. Policy 2024. [Google Scholar] [CrossRef]
- Vargas-Ordóñez, A.; Aguilar-Romero, I.; Villaverde, J.; Madrid, F.; Morillo, E. Isolation of Novel Bacterial Strains Pseudomonas extremaustralis CSW01 and Stutzerimonas stutzeri CSW02 from Sewage Sludge for Paracetamol Biodegradation. Microorganisms 2023, 11, 196. [Google Scholar] [CrossRef]
- Wu, X.; Cui, Z.; Peng, J.; Zhang, F.; Liesack, W. Genome-resolved metagenomics identifies the particular genetic traits of phosphate-solubilizing bacteria in agricultural soil. ISME Commun. 2022, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.H. Recent Progress in Understanding the Molecular Genetics and Biochemistry of Calcium Phosphate Solubilization by Gram Negative Bacteria. Biol. Agric. Hortic. 1995, 12, 185–193. [Google Scholar] [CrossRef]
- Bhanja, E.; Das, R.; Begum, Y.; Mondal, S.K. Study of Pyrroloquinoline Quinine From Phosphate-Solubilizing Microbes Responsible for Plant Growth: In silico Approach. Front. Agron. 2021, 3, 667339. [Google Scholar] [CrossRef]
- Hong, S.; Pan, Q.; Chen, S.; Zu, Y.; Xu, C.; Li, J. Identification and characterization of alkaline phosphatase gene phoX in Microcystis aeruginosa PCC7806. 3 Biotech 2021, 11, 218. [Google Scholar] [CrossRef]
- Farh, M.E.-A.; Kim, Y.-J.; Sukweenadhi, J.; Singh, P.; Yang, D.-C. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiol. Res. 2017, 200, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Deng, X.; Song, R.; Song, X. Plant Growth-Promoting Rhizobacteria Promote Growth of Seedlings, Regulate Soil Microbial Community, and Alleviate Damping-Off Disease Caused by Rhizoctonia solani on Pinus sylvestris var. mongolica. Plant Dis. 2022, 106, 2730–2740. [Google Scholar] [CrossRef]
- Kudoyarova, G.R.; Vysotskaya, L.B.; Arkhipova, T.N.; Kuzmina, L.Y.; Galimsyanova, N.F.; Sidorova, L.V.; Gabbasova, I.M.; Melentiev, A.I.; Veselov, S.Y. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol. Plant. 2017, 39, 253. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, R.; Qin, W.; Yang, J. Screening of rhizosphere nitrogen fixing, phosphorus and potassium solubilizing bacteria of Malus sieversii (Ldb.) Roem. and the effect on apple growth. J. Plant Physiol. 2024, 292, 154142. [Google Scholar] [CrossRef] [PubMed]
- Benforte, F.C.; Colonnella, M.A.; Ricardi, M.M.; Venero, E.C.S.; Lizarraga, L.; López, N.I.; Tribelli, P.M. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS ONE 2018, 13, e0192559. [Google Scholar] [CrossRef] [PubMed]
- Gasser, I.; Müller, H.; Berg, G. Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants: PHA producers on and in plants. FEMS Microbiol. Ecol. 2009, 70, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Tribelli, P.M.; Di Martino, C.; López, N.I.; Iustman, L.J.R. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation 2012, 23, 645–651. [Google Scholar] [CrossRef]
- De Sousa, L.P. Pseudomonas from Extreme Environments: Physiological and Molecular Adaptations. J. Basic Microbiol. 2025, e028. [Google Scholar] [CrossRef]
- Santos-Torres, M.; Romero-Perdomo, F.; Mendoza-Labrador, J.; Gutiérrez, A.Y.; Vargas, C.; Castro-Rincon, E.; Caro-Quintero, A.; Uribe-Velez, D.; Estrada-Bonilla, G.A. Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria. Rhizosphere 2021, 17, 100290. [Google Scholar] [CrossRef]
Strain | PeCHP-2 | PeCHP-3 |
---|---|---|
Name | Pseudomonas extremaustralis | Pseudomonas extremaustralis |
Length (bp) | 6,192,902 | 6,201,072 |
Contigs | 176 | 178 |
G+C (%) | 60.7 | 60.7 |
N50 | 115,271 | 109,599 |
L50 | 15 | 19 |
Plasmids | 1 (63,855 bp) | 1 (63,704 bp) |
Annotation | ||
tRNA | 60 | 60 |
tmRNA | 2 | 2 |
rRNA | 3 | 2 |
ncRNA | 48 | 48 |
ncRNA regions | 35 | 35 |
CRISPR | 0 | 1 |
CDS | 5601 | 5601 |
ORFs | 5 | 5 |
Hypothetical | 559 | 559 |
oriC | 1 | 1 |
Metabolic Process | Genes | KO Number | Function |
---|---|---|---|
Pyruvate metabolism | pps | K01007 | Pyruvate, water dikinase |
ppc | K01595 | Phosphoenolpyruvate carboxylase | |
Pentose phosphate pathway | gcd | K00117 | Quinoprotein glucose dehydrogenase |
Phosphotransferase system | ptsl | K08483 | Phosphoenolpyruvate–protein phosphotransferase |
Oxidative phosphorylation | ppk | K00937 | Polyphosphate kinase |
Two-component system | phoB | K07657 | Two-component system, OmpR family, phosphate regulon response regulator PhoB |
phoP | K07658, K07660 | Two-component system, OmpR family, alkaline phosphatase synthesis response regulator PhoP | |
Transporters | pstC | K02037 | Phosphate transport system permease protein |
Organic phosphoester hydrolysis | phoX | K07093 | Alkaline phosphatase |
Purine metabolism | purL | K23269 | Phosphoribosylformylglycinamidine synthase |
Pyrimidine metabolism | nrdD | K21636 | Ribonucleoside-triphosphate reductase |
nrdA | K00525 | Ribonucleoside-diphosphate reductase alpha chain |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, C.; Urrutia, C.; Jerez-Quezada, C.; Barra, P.J.; Abanto, M. Genomic Insights into Phosphorus Solubilization of Pseudomonas extremaustralis. Microorganisms 2025, 13, 911. https://doi.org/10.3390/microorganisms13040911
Mayer C, Urrutia C, Jerez-Quezada C, Barra PJ, Abanto M. Genomic Insights into Phosphorus Solubilization of Pseudomonas extremaustralis. Microorganisms. 2025; 13(4):911. https://doi.org/10.3390/microorganisms13040911
Chicago/Turabian StyleMayer, Carolyn, Catherine Urrutia, Carol Jerez-Quezada, Patricio Javier Barra, and Michel Abanto. 2025. "Genomic Insights into Phosphorus Solubilization of Pseudomonas extremaustralis" Microorganisms 13, no. 4: 911. https://doi.org/10.3390/microorganisms13040911
APA StyleMayer, C., Urrutia, C., Jerez-Quezada, C., Barra, P. J., & Abanto, M. (2025). Genomic Insights into Phosphorus Solubilization of Pseudomonas extremaustralis. Microorganisms, 13(4), 911. https://doi.org/10.3390/microorganisms13040911