Streptomyces flavusporus sp. nov., a Novel Actinomycete Isolated from Naidong, Xizang (Tibet), China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation Conditions
2.2. 16S rRNA Gene and Phylogeny
2.3. Genome Sequencing, Assembly and Annotation
2.4. Phenotypic Characteristics and Chemotaxonomy Test
2.5. Secondary Metabolite Biosynthetic Gene Cluster Prediction
3. Results
3.1. 16S rRNA Gene and Phylogeny Analysis
3.2. Genome Features
3.3. Phenotypic Characteristics and Chemotaxonomy
3.4. Characteristics of Secondary Metabolite BGCs
4. Discussion
5. Conclusions
Description of Streptomyces flavusporus sp. nov.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Hasani, A.; Kariminik, A.; Issazadeh, K. Streptomycetes: Characteristics and their antimicrobial activities. Int. J. Adv. Biol. Biomed. 2014, 2, 63–75. [Google Scholar]
- Kämpfer, P. The family Streptomycetaceae, Part I: Taxonomy. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Eds.; Springer: New York, NY, USA, 2006; Volume 3, pp. 538–604. [Google Scholar]
- Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 2021, 19, 72. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clément, C.; Ouhdouch, Y.; Van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef]
- Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs 2021, 19, 365. [Google Scholar] [CrossRef]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J. Med. Microbiol. 2020, 69, 1040–1048. [Google Scholar] [CrossRef]
- Alam, K.; Mazumder, A.; Sikdar, S.; Zhao, Y.M.; Hao, J.; Song, C.; Wang, Y.; Sarkar, R.; Islam, S.; Zhang, Y.; et al. Streptomyces: The biofactory of secondary metabolites. Front. Microbiol. 2022, 13, 968053. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, L.Y.; Chen, P.J.; Shazly, M.E.; Peng, B.R.; Chen, Y.C.; Su, C.H.; Su, J.H.; Sung, P.J.; Yen, P.T.; et al. Probing anti-leukemic metabolites from marine-derived Streptomyces sp. LY1209. Metabolites 2022, 12, 320. [Google Scholar] [CrossRef]
- Hassan, H.M.; Degen, D.; Jang, K.H.; Ebright, R.H.; Fenical, W. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J. Antibiot. 2015, 68, 206–209. [Google Scholar] [CrossRef]
- Kim, L. The science of antibiotic discovery. Cell. 2020, 181, 29–45. [Google Scholar]
- Van Bergeijk, D.A.; Terlouw, B.R.; Medema, M.H.; Van Wezel, G.P. Ecology and genomics of actinobacteria: New concepts for natural product discovery. Nat. Rev. Microbiol. 2020, 18, 546–558. [Google Scholar] [CrossRef]
- Wright, G.D. Something old, something new: Revisiting natural products in antibiotic drug discovery. Can. J. Microbiol. 2014, 60, 147–154. [Google Scholar] [CrossRef]
- Trenozhnikova, L.P.; Baimakhanova, G.B.; Baimakhanova, B.B.; Balgimbayeva, A.S.; Daugaliyeva, S.T.; Faizulina, E.R.; Tatarkina, L.G.; Spankulova, G.A.; Berillo, D.A.; Beutler, J.A. Beyond traditional screening: Unveiling antibiotic potentials of actinomycetes in extreme environments. Heliyon 2024, 10, e40371. [Google Scholar] [CrossRef]
- Sunaryanto, R.; Marwoto, B.; Hartoto, L.; Mas’ud, Z.A.; Irawadi, T. Cyclo (tyrosyl-prolyl) produced by sp.: Bioactivity and molecular structure elucidation Streptomyces. Microbiol. Indones 2011, 5, 81–87. [Google Scholar] [CrossRef]
- Alshaibani, M.M.; Jalil, J.; Sidik, N.M.; Edrada-Ebel, R.; Zin, N.M. Isolation and characterization of cyclo-(tryptophanyl-prolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. Drug Des. Dev. Ther. 2016, 10, 1817–1827. [Google Scholar]
- Jose, P.A.; Jebakumar, S.R.D. Unexplored hypersaline habitats are sources of novel actinomycetes. Front. Microbiol. 2014, 5, 242. [Google Scholar] [CrossRef]
- Abdelkader, M.S.A.; Philippon, T.; Asenjo, J.A.; Bull, A.T.; Goodfellow, M.; Ebel, R.; Jaspars, M.; Rateb, M.E. Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil. J. Antibiot. 2018, 71, 425–431. [Google Scholar] [CrossRef]
- Baral, B.; Akhgari, A.; Metsä-Ketelä, M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth. Syst. Biotechnol. 2018, 3, 163–178. [Google Scholar] [CrossRef]
- Hei, Y.; Zhang, H.; Tan, N.; Zhou, Y.; Wei, X.; Hu, C.; Liu, Y.; Wang, L.; Qi, J.; Gao, J.M. Antimicrobial activity and biosynthetic potential of cultivable actinomycetes associated with Lichen symbiosis from Qinghai-Tibet Plateau. Microbiol. Res. 2021, 244, 126652. [Google Scholar] [CrossRef]
- Ser, H.L.; Zainal, N.; Palanisamy, U.D.; Goh, B.H.; Yin, W.F.; Chan, K.G.; Lee, L.H. Streptomyces gilvigriseus sp. nov., a novel actinobacterium isolated from mangrove forest soil. Antonie Van Leeuwenhoek. 2015, 107, 1369–1378. [Google Scholar] [CrossRef]
- Huq, M.A.; NAM, K.; Rahman, M.S.; Rahman, M.M.; Parvez, M.A.K.; Kang, K.K.; Akter, S. Nocardioides agri sp. nov., isolated from garden soil. Int. J. Syst. Evol. Microbiol. 2024, 74, 006407. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Alanjary, M.; Steinke, K.; Ziemert, N. AutoMLST: An automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019, 47, W276–W282. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf. 2013, 14, 60. [Google Scholar] [CrossRef]
- Kolthoff, J.P.M.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef]
- Tresner, H.D.; Hayes, J.A.; Backus, E.J. Streptomyces prasinosporus sp. nov. a new green-spored species. Int. J. Syst. Evol. Microbiol. 1966, 16, 161–170. [Google Scholar] [CrossRef]
- Chakraborty, B.; Kumar, R.S.; Almansour, A.I.; Perumal, K.; Nayaka, S.; Brindhadevi, K. Streptomyces filamentosus strain KS17 isolated from microbiologically unexplored marine ecosystems exhibited a broad spectrum of antimicrobial activity against human pathogens. Process Biochem. 2022, 117, 42–52. [Google Scholar] [CrossRef]
- Sandoval-Powers, M.; Králová, S.; Nguyen, G.-S.; Fawwal, D.V.; Degnes, K.; Lewin, A.S.; Klinkenberg, G.; Wentzel, A.; Liles, M.R. Streptomyces poriferorum sp. nov., a novel marine sponge-derived actinobacteria species expressing anti-MRSA activity. Syst. Appl. Microbiol. 2021, 44, 126244. [Google Scholar] [CrossRef]
- Han, D.; Wang, L.; Luo, Y. Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of Mikania micrantha Kunth. Microbiol. Res. 2018, 208, 1–11. [Google Scholar] [CrossRef]
- Xie, J.; Cheng, K.; Zhao, D.; Yang, G.; Qiao, Z.; Qiu, S.; Yu, X.; Liu, H.; Li, T.; Feng, H.; et al. Bacillus aquiflavi sp. nov., isolated from yellow water of strongly flavored Chinese baijiu. Int. J. Syst. Evol. Microbiol. 2020, 70, 3406–3412. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Li, K.; Tang, X.; Zhao, J.; Guo, Y.; Tang, Y.; Gao, J. Streptomyces cadmiisoli sp. nov., a novel actinomycete isolated from cadmium-contaminated soil. Int. J. Syst. Evol. Microbiol. 2019, 69, 1024–1029. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Qin, S.; Luo, X.X.; Xia, Z.F. Streptomyces gossypiisoli sp. nov., isolated from cotton soil in Xinjiang, PR China. Int. J. Syst. Evol. Microbiol. 2021, 71, 004561. [Google Scholar] [CrossRef] [PubMed]
- Wink, J.; Schumann, P.; Atasayar, E.; Klenk, H.P.; Zaburannyi, N.; Westermann, M.; Martin, K.; Glaeser, S.; Kämpfer, P. “Streptomyces caelicus” an antibiotic producing species of the genus Streptomyces and Streptomyces canchipurensis Li et al. 2015 are later heterotypic synonym of Streptomyces muensis Ningthoujam et al. 2014. Int. J. Syst. Evol. Microbiol. 2017, 67, 548–556. [Google Scholar] [CrossRef]
- Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious gram-positive infections. J. Antimicrob. Chemother. 2005, 55, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Sottorff, I.; Wiese, J.; Lipfert, M.; Preußke, N.; Sönnichsen, F.D.; Imhoff, J.F. Different secondary metabolite profiles of phylogenetically almost identical Streptomyces griseus strains originating from geographically remote locations. Microorganisms 2019, 7, 166. [Google Scholar] [CrossRef]
- Kanchanasin, P.; Sripreechasak, P.; Suriyachadkun, C.; Rueangsawang, K.; Tanasupawat, S.; Phongsopitanun, W. Streptomyces cylindrosporus sp. nov. and Streptomyces spinosisporus sp. nov.: Two new endophytic actinobacteria isolated from the roots of Barleria lupulina Lindl. Int. J. Syst. Evol. Microbiol. 2023, 73, 005926. [Google Scholar] [CrossRef]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; Costa, M.S.d.; Rooney, A.P.; Yi, H.; Xu, X.W.; Meyer, S.D.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Kolthoff, J.P.M.; Klenk, H.P.; Göker, M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int. J. Syst. Evol. Microbiol. 2014, 64, 352–356. [Google Scholar] [CrossRef]
- Gonzalez-Silva, A.; Juan-Mendo, M.S.; Delgado-Prudencio, G.; Hernández-García, J.A.; Larios-Serrato, V.; Aguilar, C.; Villa-Tanaca, L.; Hernández-Rodríguez, C. Comparative genomics and biosynthetic cluster analysis of antifungal secondary metabolites of three strains of Streptomyces albidoflavus isolated from rhizospheric soils. Microorganisms 2024, 12, 2637. [Google Scholar] [CrossRef]
- Riesco, R.; Trujillo, M.E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2024, 74, 006300. [Google Scholar] [CrossRef] [PubMed]
- Pavlopoulos, G.A.; Baltoumas, F.A.; Liu, S.; Selvitopi, O.; Camargo, A.P.; Nayfach, S.; Azad, A.; Roux, S.; Call, L.; Ivanova, N.N.; et al. Unraveling the functional dark matter through global metagenomics. Nature 2023, 622, 594–602. [Google Scholar] [CrossRef]
- Abraham, J.; Chauhan, R. Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech. 2017, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Rammali, S.; Rahim, A.; Aalaoui, M.E.; Bencharki, B.; Dari, K.; Habach, A.; Abdeslam, L.; Khattabi, A. Antimicrobial potential of Streptomyces coeruleofuscus SCJ isolated from microbiologically unexplored garden soil in Northwest Morocco. Sci. Rep. 2024, 14, 3359. [Google Scholar] [CrossRef]
- Krysenko, S.; Wohlleben, W. Role of carbon, nitrogen, phosphate and sulfur metabolism in secondary metabolism precursor supply in Streptomyces spp. Microorganisms 2024, 12, 1571. [Google Scholar] [CrossRef] [PubMed]
- Sujarit, K.; Kudo, T.; Ohkuma, M.; Pathom-Aree, W.; Lumyong, S. Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 3983–3988. [Google Scholar] [CrossRef]
- Martins, T.P.; Rouger, C.; Glasser, N.R.; Freitas, S.; Fraissinette, N.B.; Balskus, E.P.; Tasdemir, D.; Leao, P.N. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat. Prod. Rep. 2019, 36, 1437–1461. [Google Scholar] [CrossRef]
- Funabashi, M.; Funa, N.; Horinouchi, S. Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus. J. Biol. Chem. 2008, 283, 13983–13991. [Google Scholar] [CrossRef]
- Zabolotneva, A.A.; Shatova, O.P.; Sadova, A.A.; Shestopalov, A.V.; Roumiantsev, S.A. An overview of alkylresorcinols biological properties and effects. J. Nutr. Metab. 2022, 2022, 4667607. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.N.; Bi, H.Y.; Wang, G.Y. Antimicrobial biosynthetic potential and phylogenetic analysis of culturable bacteria associated with the sponge ophlitaspongia sp. from the Yellow Sea, China. Mar. Drugs 2022, 20, 588. [Google Scholar] [CrossRef]
- Laskaris, P.; Karagouni, A.D. Streptomyces, greek habitats and novel pharmaceuticals: A promising challenge. Microbiol. Res. 2021, 12, 840–846. [Google Scholar] [CrossRef]
- Gleissner, C.M.L.; Pyka, C.L.; Heydenreuter, W.; Gronauer, T.F.; Atzberger, C.; Korotkov, V.S.; Cheng, W.; Hacker, S.M.; Vollmar, A.M.; Braig, S.; et al. Neocarzilin A is a potent inhibitor of cancer cell motility targeting VAT-1 controlled pathways. ACS Cent. Sci. 2019, 5, 1170–1178. [Google Scholar] [CrossRef]
- Takano, E. γ-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 2006, 9, 287–294. [Google Scholar] [CrossRef]
- Kudo, Y.; Awakawa, T.; Du, Y.L.; Jordan, P.A.; Creamer, K.E.; Jensen, P.R.; Linington, R.G.; Ryan, K.S.; Moore, B.S. Expansion of gamma-butyrolactone signaling molecule biosynthesis to phosphotriester natural products. ACS Chem. Biol. 2020, 15, 3253–3261. [Google Scholar] [CrossRef]
- Sedeek, A.M.; Salah, I.; Kamel, H.L.; Soltan, M.A.; Nour, E.; Alshammar, A.; Rajoka, M.S.R.; Elsayed, T.R. Genome-based analysis of the potential bioactivity of the terrestrial Streptomyces vinaceusdrappus strain AC-40. Biology 2023, 12, 345. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, C.; Zhu, L.; Chang, R.; Ma, W.; Deng, Y.; Chen, X. Bioactivity profiling of the extremolyte ectoine as a promising protectant and its heterologous production. 3 Biotech. 2022, 12, 331. [Google Scholar] [CrossRef]
Morphological Characterizations | |||||
---|---|---|---|---|---|
Gause’s No.1 medium | Aerial mycelium | Substrate mycelium | |||
Color | Yellow | Brown | |||
Colony morphology | Radial | ||||
Elevation | Raised | ||||
Texture | Dry, powdery | ||||
Pigmentation | Pink | ||||
Physiological characterizations | |||||
Range of NaCl tolerance | 0–6% (optimum, 0% NaCl) | ||||
pH growth range | Temperature growth range | ||||
pH 3 | - | 25 °C | + | ||
pH 4 | - | 28 °C | ++ | ||
pH 5 | ++ | 30 °C | + | ||
pH 6 | ++ | 34 °C | + | ||
pH 7 | ++ | 37 °C | + | ||
pH 8 | + | 40 °C | + | ||
pH 9 | + | ||||
pH 10 | - | ||||
pH 11 | - | ||||
pH 12 | - |
Characteristic | Result | Characteristic | Result | Characteristic | Result |
---|---|---|---|---|---|
Biochemical Test | Nitrogen Source Utilization | Carbon Source Utilization | |||
Nitrate reduction | - | Proline | + | D-trehalose | + |
Starch hydrolysis | + | Ammonium nitrate | + | Xylan | - |
Gelatin liquefaction | + | Methionine | + | D-fibrodisaccharide | + |
Voges-proskauer | + | Cysteine | - | Sodium acetate | - |
MR | - | Ammonium acetate | - | D-fructose | - |
Indole | - | Ammonium molybdate | - | D-sorbitol | - |
Hydrogen sulfide production | - | Ammonium phosphate dibasic | + | Lactose | + |
Cellulose hydrolysis | - | Phenylalanine | - | Mannitol | + |
Proteolysis | + | Histidine | + | Arabinose | + |
Hydrolysis of tween-20 | + | Arginine | - | Sucrose | + |
Hydrolysis of tween-80 | + | Ammonium dihydrogen phosphate | - | Maltose | + |
Urea hydrolysis | + | Glycine | + | Glucose | + |
Tyrosine | + | Inositol | + | ||
Glutamic acid | - | β-cyclodextrin | + |
Characteristic | Type Strain | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
NaCl (w/v, %) | 0–6 | 2–5 | 0–12 | 0–7 | 2–5 |
pH (Optimum) | 5–7 | ND | 7.0 | 7–8 | ND |
Diphosphatidylglycerol | + | ND | + | + | ND |
Phosphatidylethanolamine | + | ND | + | + | ND |
Phosphatidylglycerol | + | ND | + | - | ND |
Phosphatidylcholine | - | ND | - | + | ND |
Phosphatidylinositol | - | ND | - | + | ND |
Phosphatidylinositol mannoside | - | ND | - | + | ND |
Glucose | + | + | - | ND | + |
Xylan | - | - | - | - | + |
Inositol | + | - | ND | ND | + |
Mannitol | + | + | - | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, D.; Zhou, X.; Qian, H.; Jiao, Y.; Wang, Y. Streptomyces flavusporus sp. nov., a Novel Actinomycete Isolated from Naidong, Xizang (Tibet), China. Microorganisms 2025, 13, 1001. https://doi.org/10.3390/microorganisms13051001
Tang D, Zhou X, Qian H, Jiao Y, Wang Y. Streptomyces flavusporus sp. nov., a Novel Actinomycete Isolated from Naidong, Xizang (Tibet), China. Microorganisms. 2025; 13(5):1001. https://doi.org/10.3390/microorganisms13051001
Chicago/Turabian StyleTang, Dan, Xiaoxia Zhou, Haolin Qian, Yu Jiao, and Yonggang Wang. 2025. "Streptomyces flavusporus sp. nov., a Novel Actinomycete Isolated from Naidong, Xizang (Tibet), China" Microorganisms 13, no. 5: 1001. https://doi.org/10.3390/microorganisms13051001
APA StyleTang, D., Zhou, X., Qian, H., Jiao, Y., & Wang, Y. (2025). Streptomyces flavusporus sp. nov., a Novel Actinomycete Isolated from Naidong, Xizang (Tibet), China. Microorganisms, 13(5), 1001. https://doi.org/10.3390/microorganisms13051001