A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Coring and Subsampling Procedures
2.3. Use of Fluorescent Markers to Track Contamination During Coring
Sedimentary DNA Extraction
2.4. Illumina MiSeq Amplicon Sequencing of Sedimentary 18SV9
2.5. Bioinformatics and Biostatistics
3. Results
3.1. General Overview of the Downcore Distribution of DNA Content and Sequence Data
3.2. Temporal Changes in the Paleofungal Community Composition
3.3. Significant Differences in Fungal Communities Between Paleodepositional Units and Primary Core Lithologies
3.4. Similarity Percentage (SIMPER) Associations of Fungal Taxa with the Depositional Units and Lithologies of Lake Towuti
3.5. Strength of the Spearman Correlations Between Fungal Taxa and Geochemical Parameters
3.6. Strength of Spearman Correlations Between Fungal Taxa and Paleo-Vegetation Assemblages
4. Discussion
4.1. Origins and Predicted Functions of the Identified Paleofungal Taxa in the Pre-Lake U2 Deposits
4.2. Origins and Predicted Functions of the Identified Paleofungal Taxa in the Lacustrine Diatom Ooze Deposits
4.3. Origins and Predicted Functions of the Identified Paleofungal Taxa in the Lacustrine Clay Deposits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amir, H.; Jourand, P.; Cavaloc, Y.; Ducousso, M. Role of Mycorrhizal Fungi in the Alleviation of Heavy Metal Toxicity in Plants. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration; Solaiman, Z., Abbott, L., Varma, A., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 41. [Google Scholar] [CrossRef]
- Dighton, J. Fungi in Ecosystem Processes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Finlay, R.D. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 2008, 59, 1115–1126. [Google Scholar] [CrossRef]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. Camb. Philos. Soc. 2019, 94, 2101–2137. [Google Scholar] [CrossRef] [PubMed]
- Geml, J.; Morgado, L.N.; Semenova, T.A.; Welker, J.M.; Walker, M.D.; Smets, E. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol. Ecol. 2015, 91, fiv095. [Google Scholar] [CrossRef]
- Mundra, S.; Bahram, M.; Eidesen, P.B. Alpine bistort Bistorta vivipara in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: A comparative study of three contrasting soil environments in Svalbard. Mycorrhiza 2016, 26, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Nottingham, A.; Scott, J.J.; Saltonstall, K.; Broders, K.; Montero-Sanchez, M.; Püspök, J.; Bååth, E.; Meir, P. Microbial diversity decline and community response are decoupled from increased respiration in warmed tropical forest soil. Nat. Microbiol. 2022, 7, 1650–1660. [Google Scholar] [CrossRef]
- Anshari, G.; Kershaw, P.; van der Kaars, S.; Jacobsen, G. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. J. Quat. Sci. 2004, 19, 637–655. [Google Scholar] [CrossRef]
- Hamilton, R.; Stevenson, J.; Li, B.; Bijaksana, S. A 16,000-year record of climate, vegetation and fire from Wallacean lowland tropical forests. Quat. Sci. Rev. 2019, 224, 105929. [Google Scholar] [CrossRef]
- Hope, G. Environmental change in the Late Pleistocene and later Holocene at Wanda site, Soroako, South Sulawesi, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 171, 129–145. [Google Scholar] [CrossRef]
- Stevenson, J. Vegetation and climate of the Last Glacial Maximum in Sulawesi. In The Archaeology of Sulawesi. Current Research on the Pleistocene to the Historic Period; Orcid, S.O., Orcid, D.B., Meyer, J., Eds.; ANU Press: Canberra, ACT, Australia, 2018; pp. 17–29. [Google Scholar] [CrossRef]
- van Geel, B. Non-Pollen Palynomorphs. In Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research; Smol, J.P., Birks, H.J.B., Last, W.M., Bradley, R.S., Alverson, K., Eds.; Springer: Dordrecht, The Netherlands, 2002; Volume 3, pp. 99–119. ISBN 978-0-306-47668-6. [Google Scholar]
- Loughlin, N.; Gosling, W.; Montoya, E. Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador. Quat. Res. 2017, 89, 119–133. [Google Scholar] [CrossRef]
- Quamar, M.F.; Stivrins, N. Modern pollen and non-pollen palynomorphs along an altitudinal transect in Jammu and Kashmir Western Himalaya, India. Palynology 2021, 45, 669–684. [Google Scholar] [CrossRef]
- Capo, E.; Giguet-Covex, C.; Rouillard, A.; Nota, K.; Heintzman, P.D.; Vuillemin, A.; Ariztegui, D.; Arnaud, F.; Belle, S.; Bertilsson, S.; et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quaternary 2021, 4, 6. [Google Scholar] [CrossRef]
- Coolen, M.J.L. 7000 years of Emiliania huxleyi viruses in the Black Sea. Science 2011, 333, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Gielly, L.; Miquel, C.; Valentini, A.; Vermat, T.; Corthier, G.; Brochmann, C.; Willerslev, E. Power and limitations of the chloroplast trnL UAA intron for plant DNA barcoding. Nucleic Acids Res. 2007, 35, e14. [Google Scholar] [CrossRef]
- Alsos, I.G.; Sjögren, P.; Edwards, M.E.; Landvik, J.Y.; Gielly, L.; Forwick, M.; Coissac, E.; Brown, A.G.; Jakobsen, L.V.; Føreid, M.K.; et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: Assessing the resilience of arctic flora to Holocene climate change. Holocene 2016, 26, 627–642. [Google Scholar] [CrossRef]
- Courtin, J.; Andreev, A.A.; Raschke, E.; Bala, S.; Biskaborn, B.K.; Liu, S.S.; Zimmermann, H.; Diekmann, B.; Stoof-Leichsenring, K.R.; Pestryakova, L.A.; et al. Vegetation changes in Southeastern Siberia during the Late Pleistocene and the Holocene. Front. Ecol. Evol. 2021, 9, 625096. [Google Scholar] [CrossRef]
- Epp, L.S.; Gussarova, C.; Boessenkool, S.; Olsen, J.; Haile, J.; Schroder-Nielsen, A.; Ludikova, A.; Hassel, K.; Stenoien, H.K.; Funder, S.; et al. Lake sediment multi-taxon DNA from North Greenland records early postglacial appearance of vascular plants and accurately tracks environmental changes. Quat. Sci. Rev. 2015, 117, 152–163. [Google Scholar] [CrossRef]
- Li, K.; Stoof-Leichsenring, K.R.; Liu, S.S.; Jia, W.H.; Liao, M.N.; Liu, X.Q.; Ni, J.; Herzschuh, U. Plant sedimentary DNA as a proxy for vegetation reconstruction in eastern and northern Asia. Ecol. Indic. 2021, 132, 108303. [Google Scholar] [CrossRef]
- Niemeyer, B.; Epp, L.S.; Stoof-Leichsenring, K.R.; Pestryakova, L.A.; Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 2017, 17, 46–62. [Google Scholar] [CrossRef]
- Parducci, L.; Matetovici, I.; Fontana, S.L.; Bennett, K.D.; Suyama, Y.; Haile, J.; Kjaer, K.H.; Larsen, N.K.; Drouzas, A.D.; Willerslev, E. Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Mol. Ecol. 2013, 22, 3511–3524. [Google Scholar] [CrossRef]
- Parducci, L.; Valiranta, M.; Salonen, J.S.; Ronkainen, T.; Matetovici, I.; Fontana, S.L.; Eskola, T.; Sarala, P.; Suyama, Y. Proxy comparison in ancient peat sediments: Pollen, macrofossil, and plant DNA. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2015, 370, 20130382. [Google Scholar] [CrossRef]
- Pedersen, M.W.; Ginolhac, A.; Orlando, L.; Olsen, J.; Andersen, K.; Holm, J.; Funder, S.; Willerslev, E.; Kjaeer, K.H. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat. Sci. Rev. 2013, 75, 161–168. [Google Scholar] [CrossRef]
- Zimmermann, H.H.; Raschke, E.; Epp, L.S.; Stoof-Leichsenring, K.R.; Schwamborn, G.; Schirrmeister, L.; Overduin, P.P.; Herzschuh, U. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula northeastern Siberia. Biogeosciences 2017, 14, 575–596. [Google Scholar] [CrossRef]
- Bellemain, E.; Davey, M.L.; Kauserud, H.; Epp, L.S.; Boessenkool, S.; Coissac, E.; Geml, J.; Edwards, M.; Willerslev, E.; Gussarova, G.; et al. Fungal palaeodiversity revealed using high throughput metabarcoding of ancient DNA from arctic permafrost. Env. Microbiol. 2013, 15, 1176–1189. [Google Scholar] [CrossRef]
- Von Hippel, V.B.; Stoof-Leichsenring, K.R.; Schulte, L.; Seeber, P.; Epp, L.S.; Biskaborn, B.K.; Diekmann, B.; Melles, M.; Pestryakova, L.; Herzschuh, U. Long-term fungus–plant covariation from multi-site sedimentary ancient DNA metabarcoding. Quat. Sci. Rev. 2022, 295, 107758. [Google Scholar] [CrossRef]
- Kisand, V.; Talas, L.; Kisand, A.; Stivrins, N.; Reitalu, T.; Alliksaar, T.; Vassiljev, J.; Liiv, M.; Heinsalu, A.; Seppä, H.; et al. From microbial eukaryotes to metazoan vertebrates: Wide spectrum paleo-diversity in sedimentary ancient DNA over the last ∼14,500 years. Geobiology 2018, 16, 628–639. [Google Scholar] [CrossRef]
- Lee, C.M.; van Geel, B.; and Gosling, W.D. On the Use of Spores of Coprophilous Fungi Preserved in Sediments to Indicate Past Herbivore Presence. Quaternary 2022, 5, 30. [Google Scholar] [CrossRef]
- Seeber, P.A.; von Hippel, B.; Kauserud, H.; Löber, U.; Stoof-Leichsenring, K.R.; Herzschuh, U.; Epp, L.S. Evaluation of lake sedimentary ancient DNA metabarcoding to assess fungal biodiversity in Arctic paleoecosystems. Environ. DNA 2022, 4, 1150–1163. [Google Scholar] [CrossRef]
- Talas, L.; Stivrins, N.; Veski, S.; Tedersoo, L.; Kisand, V. Sedimentary ancient DNA sedaDNA reveals fungal diversity and environmental drivers of community changes throughout the Holocene in the present Boreal Lake Lielais Svētiņu Eastern Latvia. Microorganisms 2021, 9, 719. [Google Scholar] [CrossRef]
- Coolen, M.J.L.; Muyzer, G.; Rijpstra, W.I.C.; Schouten, S.; Volkman, J.K.; Damste, J.S.S. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 2004, 223, 225–239. [Google Scholar] [CrossRef]
- Demaneche, S.; Jocteur-Monrozier, L.; Quiquampoix, H.; Simonet, P. Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl. Environ. Microbiol. 2001, 67, 293–299. [Google Scholar] [CrossRef]
- Pietramellara, G.; Ascher, J.; Borgogni, F.; Ceccherini, M.T.; Guerri, G.; Nannipieri, P. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 2009, 45, 219–235. [Google Scholar] [CrossRef]
- Ekram, M.A.; Campbell, M.; Kose, S.H.; Plet, C.; Hamilton, R.; Bijaksana, S.; Grice, K.; Russell, J.; Stevenson, J.; Vogel, H.; et al. A 1 Ma sedimentary ancient DNA (sed aDNA) record of catchment vegetation changes and the developmental history of tropical Lake Towuti (Sulawesi, Indonesia). Geobiology 2024, 22, e12599. [Google Scholar] [CrossRef] [PubMed]
- Boessenkool, S.; Mcglynn, G.; Epp, L.S.; Taylor, D.; Pimentel, M.; Gizaw, A.; Nemomissa, S.; Brochmann, C.; Popp, M. Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conserv. Biol. 2014, 28, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Bremond, L.; Favier, C.; Ficetola, G.F.; Tossou, M.G.; Akouégninou, A.; Gielly, L.; Giguet-Covex, C.; Oslisly, R.; Salzmann, U. Five thousand years of tropical lake sediment DNA records from Benin. Quat. Sci. Rev. 2017, 170, 203–211. [Google Scholar] [CrossRef]
- Dommain, R.; Andama, M.; McDonough, M.M.; Prado, N.A.; Goldhammer, T.; Potts, R.; Maldonado, J.E.; Nkurunungi, J.B.; Campana, M.G. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: A 2200-year-long metagenomic record from Bwindi impenetrable forest, Uganda. Front. Ecol. Evol. 2020, 8, 218. [Google Scholar] [CrossRef]
- Russell, J.M.; Vogel, H.; Bijaksana, S.; Melles, M.; Deino, A.; Hafidz, A.; Haffner, D.; Hasberg, A.K.M.; Morlock, M.; von Rintelen, T.; et al. The late quaternary tectonic, biogeochemical, and environmental evolution of ferruginous Lake Towuti, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 556, 109905. [Google Scholar] [CrossRef]
- Amaral-Zettler, L.A.; McCliment, E.A.; Ducklow, H.W.; Huse, S.M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 2009, 4, e6372. [Google Scholar] [CrossRef]
- Cannon, C.H.; Morley, R.J.; Bush, A.B. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. USA 2009, 106, 11188–11193. [Google Scholar] [CrossRef]
- Russell, J.M.; Bijaksana, S.; Vogel, H.; Melles, M.; Kallmeyer, J.; Ariztegui, D.; Crowe, S.; Fajar, S.; Hafidz, A.; Haffner, D.; et al. The Towuti drilling project: Paleoenvironments, biological evolution, and geomicrobiology of a tropical Pacific lake. Sci. Drill. 2016, 21, 29–40. [Google Scholar] [CrossRef]
- Morlock, M.A.; Vogel, H.; Russell, J.M.; Anselmetti, F.S.; Bijaksana, S. Quaternary environmental changes in tropical Lake Towuti, Indonesia, inferred from endmember modelling of X-ray fluorescence core-scanning data. J. Quat. Sci. 2021, 36, 1040–1051. [Google Scholar] [CrossRef]
- Russell, J.M.; Vogel, H.; Konecky, B.L.; Bijaksana, S.; Huang, Y.S.; Melles, M.; Wattrus, N.; Costa, K.; King, J.W. Glacial forcing of central Indonesian hydroclimate since 60,000 y BP. Proc. Natl. Acad. Sci. USA 2014, 111, 5100–5105. [Google Scholar] [CrossRef] [PubMed]
- Friese, A.; Kallmeyer, J.; Kitte, J.A.; Martínez, I.M.; Bijaksana, S.; Wagner, D.; the ICDP Lake Chalco Drilling Science Team and the ICDP Towuti Drilling Science Team. A simple and inexpensive technique for assessing contamination during drilling operations. Limnol. Oceanogr. Methods 2017, 15, 200–211. [Google Scholar] [CrossRef]
- Orsi, W.D.; Coolen, M.J.L.; Wuchter, C.; He, L.J.; More, K.D.; Irigoien, X.; Chust, G.; Johnson, C.; Hemingway, J.D.; Lee, M.; et al. Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci. Rep. 2017, 7, 6040. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 68, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER v7: User Manual/Tutorial. PRIMER-E Ltd; PRIMER-E: Plymouth, UK, 2015. [Google Scholar]
- Morlock, M.A.; Vogel, H.; Nigg, V.; Ordonez, L.; Hasberg, A.K.M.; Melles, M.; Russell, J.M.; Bijaksana, S.; Team, T.D.P.S. Climatic and tectonic controls on source-to-sink processes in the tropical, ultramafic catchment of Lake Towuti, Indonesia. J. Paleolimnol. 2019, 61, 279–295. [Google Scholar] [CrossRef]
- Sheppard, R.Y.; Milliken, R.E.; Russell, J.M.; Sklute, E.C.; Dyar, M.D.; Vogel, H.; Melles, M.; Bijaksana, S.; Hasberg, A.K.M.; Morlock, M.A. Iron Mineralogy and Sediment Colour in a 100 m Drill Core from Lake Towuti, Indonesia Reflect Catchment and Diagenetic Conditions. Geochem. Geophys. Geosystems 2021, 22, e2020GC009582. [Google Scholar] [CrossRef]
- Wickham, H.; Vaughan, D.; Girlich, M. Tidyr: Tidy Messy Data. R Package Version 1.3.1. Available online: https://github.com/tidyverse/tidyr (accessed on 23 May 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D.D. Dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. Available online: https://github.com/tidyverse/dplyr (accessed on 24 May 2024).
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.0.12. 2018. Available online: https://github.com/raivokolde/pheatmap (accessed on 25 May 2024).
- Poll, C.; Pagel, H.; Devers-Lamrani, M.; Martin-Laurent, F.; Ingwersen, J.; Streck, T.; Kandeler, E. Regulation of bacterial and fungal MCPA degradation at the soil–litter interface. Soil Biol. Biochem. 2010, 42, 1879–1887. [Google Scholar] [CrossRef]
- Higgins, S.A.; Welsh, A.; Orellana, L.H.; Konstantinidis, K.T.; Chee-Sanford, J.C.; Sanford, R.A.; Schadt, C.W.; Löffler, F.E. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils. Appl. Environ. Microbiol. 2016, 82, 2919–2928. [Google Scholar] [CrossRef]
- Hollister, E.B.; Christopher, W.; Schadt, A.V.; Palumbo, R.; James, A.; Boutton, T.W. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biol. Biochem. 2010, 42, 1816–1824. [Google Scholar] [CrossRef]
- Braun, U.; Crous, P.W.; Nakashima, C. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). IMA Fungus 2014, 5, 203–390. [Google Scholar] [CrossRef] [PubMed]
- Markesteijn, L.; Poorter, L.; Bongers, F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. Am. J. Bot. 2007, 94, 515–525. [Google Scholar] [CrossRef]
- Caiafa, M.V.; Nelson, A.R.; Borch, T.; Roth, H.K.; Fegel, T.S.; Rhoades, C.C.; Wilkins, M.J.; Glassman, S.I. Distinct fungal and bacterial responses to fire severity and soil depth across a ten-year wildfire chronosequence in beetle-killed lodgepole pine forests. For. Ecol. Manag. 2023, 544, 121160. [Google Scholar] [CrossRef]
- Perotto, S.; Perotto, R.; Faccio, A.; Schubert, A.; Varma, A.; Bonfante, P. Ericoid mycorrhizal fungi: Cellular and molecular bases of their interactions with the host plant. Can. J. Bot. 1995, 73, S557–S568. [Google Scholar] [CrossRef]
- Mikheev, V.S.; Struchkova, I.V.; Churkina, L.M.; Brilkina, A.A.; Berezina, E.V. Several characteristics of Oidiodendron maius G.L. Barron important for heather plants’ controlled mycorrhization. J. Fungi 2023, 97, 728. [Google Scholar] [CrossRef]
- Kwaśna, H.; Szewczyk, W.; Baranowska, M.; Gallas, E.; Wiśniewska, M.; Behnke-Borowczyk, J. Mycobiota associated with the vascular wilt of Poplar. Plants 2021, 10, 892. [Google Scholar] [CrossRef]
- Chaturvedi, V.; DeFiglio, H.; Chaturvedi, S. Phenotype profiling of white-nose syndrome pathogen Pseudogymnoascus destructans and closely related Pseudogymnoascus pannorum reveals metabolic differences underlying fungal lifestyles. F1000 Res. 2018, 7, 665. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, R.J.; Stevens, R.J. Evidence for fungal dominance of denitrification and co-denitrification in a grassland soil. Biogeochemistry 2002, 66, 1540–1548. [Google Scholar]
- Shoun, H.; Kim, D.H.; Uchiyama, H.; Sugiyama, J. Denitrification by fungi. FEMS Microbiol. Lett. 1992, 94, 277–281. [Google Scholar] [CrossRef]
- Friese, A.; Bauer, K.; Glombitza, C.; Ordoñez, L.; Ariztegui, D.; Heuer, V.B.; Vuillemin, A.; Henny, C.; Nomosatryo, S.; Simister, R. Organic matter mineralization in modern and ancient ferruginous sediments. Nat. Commun. 2021, 12, 2216. [Google Scholar] [CrossRef]
- Vuillemin, A.; Friese, A.; Alawi, M.; Henny, C.; Nomosatryo, S.; Wagner, D.; Crowe, S.A.; Kallmeyer, J. Geomicrobiological Features of Ferruginous Sediments from Lake Towuti, Indonesia. Front. Microbiol. 2016, 7, 1007. [Google Scholar] [CrossRef] [PubMed]
- Adarsh, C.K.; Kumar, V.; Vidyasagaran, K.; Ganesh, P. N Decomposition of Wood by Polypore Fungi in Tropics -Biological, Ecological and Environmental Factors-A Case Study. Res. J. Agric. For. Sci. 2015, 3, 6063. [Google Scholar]
- Hogan, J.A.; Jusino, M.A.; Smith, M.E.; Corrales, A.; Song, X.; Yang, J.; Cao, M.; Valverde-Barrantes, O.J.; Baraloto, C. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. New Phytol. 2023, 238, 1849–1864. [Google Scholar] [CrossRef]
- Bergmann, J.; Weigelt, A.; van der Plas, F.; Laughlin, D.C.; Kuyper, T.W.; Guerrero-Ramirez, N.; Valverde-Barrantes, O.J.; Bruelheide, H.; Freschet, G.T.; Iversen, C.M.; et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 2020, 6, eaba3756. [Google Scholar] [CrossRef]
- Kirk, P.; Cannon, P.; Minter, D.; Stalpers, J. Ainsworth Bisby’s Dictionary of the Fungi, 10th ed.; CABI: Wallingford, UK, 2008; ISBN 978–1-84593-728-7. [Google Scholar]
- Osono, T. Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecol. Res. 2019, 35, 30–43. [Google Scholar] [CrossRef]
- Rustler, S.; Chmura, A.; Sheldon, R.A.; Stolz, A. Characterization of the substrate specificity of the nitrile hydrolyzing system of the acid-tolerant black yeast Exophiala oligosperma R1. Stud. Mycol. 2008, 61, 165–174. [Google Scholar] [CrossRef]
- Prenafeta-Boldú, F.X.; Summerbell, R.; Sybren de Hoog, G. Fungi growing on aromatic hydrocarbons: Biotechnology’s unexpected encounter with biohazard? FEMS Microbiol. Rev. 2006, 30, 109–130. [Google Scholar] [CrossRef] [PubMed]
- El-Elimat, T.; Raja, H.A.; Figueroa, M.; Falkinham III, J.O.; Oberlies, N.H. Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by Paraphoma radicina, a fungus isolated from a freshwater habitat. Phytochemistry 2014, 104, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Bi, B.; Xiao, Y.; Xu, X.; Chen, Q.; Li, H.; Zhao, Z.; Li, T. Diversity and functional roles of root-associated endophytic fungi in two dominant pioneer tees reclaimed from a metal mine slag heap in Southwest China. Microorganisms 2024, 15, 1210–2067. [Google Scholar]
- Morrissey, J.; Guerinot, M.L. Iron uptake and transport in plants: The good, the bad, and the ionome. Chem. Rev. 2009, 109, 4553–4567. [Google Scholar] [CrossRef]
- Blanchette, R.A.; Held, B.W.; Hellmann, L.; Millman, L.; Büntgen, U. Arctic driftwood reveals unexpectedly rich fungal diversity. Fungal Ecol. 2016, 23, 58–65. [Google Scholar] [CrossRef]
- Braga, R.M.; Padilla, G.; Araújo, W.L. The biotechnological potential of Epicoccum spp.: Diversity of secondary metabolites. Crit. Rev. Microbiol. 2018, 44, 759–778. [Google Scholar] [CrossRef]
- Chen, Q.; Hou, L.W.; Duan, W.J.; Crous, P.W.; Cai, L. Didymellaceae revisited. Stud. Mycol. 2017, 1, 105–159. [Google Scholar] [CrossRef]
- Jogaiah, S.; Kumar, T.; Niranjana, S.; Shetty, S. First report of gummy stem blight caused by Didymella bryoniae on muskmelon Cucumis melo in India. Plant Pathol. 2004, 53, 364–369. [Google Scholar]
- Biagioni, S.; Wundsch, M.; Haberzettl, T.; Behling, H. Assessing resilience/sensitivity of tropical mountain rainforests towards climate variability of the last 1500 years: The long-term perspective at Lake Kalimpaa (Sulawesi, Indonesia). Rev. Palaeobot. Palynol. 2015, 213, 42–53. [Google Scholar] [CrossRef]
- Culmsee, H.; Leuschner, C.; Moser, G.; Pitopang, R. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J. Biogeogr. 2010, 37, 960–974. [Google Scholar] [CrossRef]
- Han, Y.W.; Cheeke, P.R.; Anderson, A.W.; Lekprayoon, C. Growth of Aureobasidium pullulans on straw hydrolysate. Appl. Environ. Microbiol. 1976, 32, 799–802. [Google Scholar] [CrossRef] [PubMed]
- Calabon, M.S.; Jones, E.B.G.; Promputtha, I.; Hyde, K.D. Fungal biodiversity in salt marsh ecosystems. J. Fungi 2021, 7, 648. [Google Scholar] [CrossRef] [PubMed]
Class | Order | Family | ASV# | Closely Related Genera/Species vs. Env. Clones/Isolates from NCBI’s nr/nt Database (98–100% Sequence Similarity) | Possible Niche(s) & Lifestyle(s) | |
---|---|---|---|---|---|---|
Ascomycota | Dothideomycetes | Capnodiales | Mycosphaerellaceae | 1 | Ramularia | Nectrotrophic parasites (leaf spot in diverse range of host plants) |
2 | Diverse genera | |||||
Dothideales | Saccotheciaceae | 3 | Aureobasidium, Kabatiella & Pseudosydowia | Black yeast-like saprobes (polyextremotolerant/adapted to oligotrophic soils); soil borne endophytes (PGP by facilitating iron uptake through siderophore production) | ||
Pleosporales | Diverse | 4–7 | Atrocalyx, Corynespora, Neocucurbitaria, Preussia & Teichospora | Saprobes (soil & wood); epi-endophytes; nectrotrophic parasites (leaves and stems) | ||
Didymellaceae | 8 | Didymella, Leptosphaerulina, Notophoma & Phoma | Saprobes (soils); nectrotrophic parasites (stem blight in herbs); endophytes (PGP by hyperaccumulators of heavy metals/antimycobacterial) | |||
9 | Didymella, Boeremia, Neodidymelliopsis & Scleretophoma | |||||
10 | Didymella | Saprobes (soils); nectrotrophic parasites (leaves & stems of herbacous plants) | ||||
11, 12 | Epicoccum | Saprophytic moulds (on senescent & dead plant material); nectrotrophic parasites (leaves) | ||||
Didymosphaeriaceae | 13 | Paraphaeosphaera, Paraconiothyrium & Pseudopithomyces | Saprobes (on woody & herbarceous plants) | |||
Phaeosphaeriaceae | 14, 15 | Paraphoma & Setamelanomma | Mostly soil-borne foiliar parasites of a wide range of herbacous plants | |||
16, 17 | Ophiosphaerella, Phaeosphaeria & Woinowiciellla | |||||
Pyrenochaetopsidaceae | 18 | Pyrenochaetopsis & soil clone Boden_a_29 (EF628771; 100%) | Saprobes (soils) | |||
Eurotiomycetes | Chaetothyriales | Herpotrichiellaceae | 19–24 | Exophiala, Cladophialophora, Cyphellophora & Rhinocladiella | Saprobes (often associated w decaying wood & TOC-rich soils); dark septate endophytes (antimycobial against root rot fungi in C4 grasses especially at high heavy metal contaminated sites) | |
Eurotiales/Onygenales | Diverse | 25, 26 | Blastomyces, Ramsonia & Talaromyces | Saprobes (soils and wood) | ||
27 | Paracoccoides & Talaromyces | |||||
Eurotiales | Aspergilliaceae | 28–30 | Aspergillus | |||
31–35 | Penicillium | |||||
Trichocommaceae | 36 | Talaromyces | ||||
Incertae sedis | Incertae sedis | 37 | Calyptrozyma arxii & Malaysian soil clone GL37478_201_S201 (KY687808; 100%) | Saprobic black yeasts inhabiting stressful oligotrophic niches often enriched in aromatic compounds including charcoal; avoiding competition | ||
Onygenales | Myxotrichiaceae | 38–47 | Oidiodendron & clone LTSP EUKAP5G11 (FJ554061; 99.7%) | Ectomycorrhiza (PGP with high stress tolerance to phytotoxic Cr & Ni) | ||
Leotio-mycetes | Heliotales | Ploettnerulaceae | 48 | Cadophora, Graphium | Dark septate endophytes (PGP by facilitating iron uptake through siderophore production & inhibiting phytoparasites; recovered from soils, rhizopheres, freshwater lakes & mummified/submerged drift wood) | |
Theloboales | Pseudeurotiaceae | 49 | Soil isolate nussu_30 (KT714156; 100%) | Carries the gene p450nor: putative denitriying soil saprobes | ||
Saccharo-mycetes | Saccharomycetales | Debaromycetaceae/Metschikowaciaceae/Saccharomycetaceae | 50 | Debaromyces, Metschnikowia, Meyerozyma, Thermomyces & Compost fungus clone NK014a 074 (FM177690; 100%) | Saprobic yeasts (eg isolated from soils capable of anaerobic fermentation) | |
Saccharomycetaceae | 51 | Candida-Lodderomcyes clade | ||||
Sordario-mycetes | Xylariales | Microdochiaceae/Xylariaceae | 52 | Microdochium & Nemania | Saprobes (lignocellulolytic soft rot fungi on decaying hardwood, common in the tropics) | |
Basidiomycota | Agaricomycetes | 53 | clone 4S1_H09 (EU490016; 95.52%) | Unknown function (clone isolated from soils below C4 short grasses eastern Great Plains, CO, USA; No closesly related cultivated species | ||
Agaricales/Cantharellales | Diverse | 54 | Ceratobasidium, Leucopaxillus, Panaeolus & Clone LTSP EukA P6L20 (FJ554403; 100%) | Saprobes (soils & wood; produce basidiocarps on dead stems & fallen litter); facultative plant parasites | ||
Agaricales | Cyphellaceae | 55 | Chondrostereum purpureum & isolate Otu1908 (MH884272; 99.5%) | Saprobes on fallen wood | ||
Psathyrellaceae | 56 | Psathyrella casca voucher AM1814 | Saprobes on dead wood; saprotrophs in grassland soils; heavy metals accumulators | |||
Hymenochaetales | Hymenochaetaceae | 57–60 | Phellinus & Inonotus | Saprobic and/or parasitic white rot fungi on hardwood trees | ||
Agaricomycetes Incertae sedis | Polyporales | Hyphodermataceae/Podoscyphaceae | 61 | Abortiporus, Ceroporiopsis & Hyphoderma | ||
Meripilaceae/Polyporaceae | 62 | Rigidoporus & Perenniporia | ||||
Phanerochaetaceae | 63, 64 | Bjerkandera, Chaetosphaeridium, Phanerodontia & Porostereum |
Groups | Pseudo-F, Pseudo-t | p | Sign. Level | Unique Permutations | |
---|---|---|---|---|---|
Stages | U2, U1 | 1.546 | 0.010 | * | 998 |
Developmental units | Global | 2.093 | 0.002 | ** | 999 |
U1a, U1b | 1.1062 | 0.252 | NS | 998 | |
U1a, U1c | 1.6843 | 0.003 | ** | 998 | |
U1a, U2 | 1.7424 | 0.008 | ** | 999 | |
U1b, U1c | 1.3463 | 0.037 | * | 999 | |
U1b, U2 | 1.5089 | 0.018 | * | 998 | |
U1c, U2 | 1.4291 | 0.032 | * | 998 | |
Main lithologies | Global | 1.6755 | 0.004 | ** | 999 |
RC, GC | 0.95546 | 0.534 | NS | 999 | |
RC, DO | 1.5241 | 0.020 | * | 998 | |
RC, Silt | 1.1949 | 0.176 | NS | 999 | |
RC, Peat | 1.5558 | 0.023 | * | 998 | |
GC, DO | 1.2963 | 0.030 | * | 997 | |
GC, Silt | 1.0737 | 0.270 | NS | 999 | |
GC, Peat | 1.5419 | 0.004 | ** | 995 | |
DO, Silt | 1.3979 | 0.008 | ** | 933 | |
DO, Peat | 1.4739 | 0.049 | * | 418 | |
Silt, Peat | 1.227 | 0.145 | NS | 840 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekram, M.A.-E.; Wuchter, C.; Bijaksana, S.; Grice, K.; Russell, J.; Stevenson, J.; Vogel, H.; Coolen, M.J.L. A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia). Microorganisms 2025, 13, 1005. https://doi.org/10.3390/microorganisms13051005
Ekram MA-E, Wuchter C, Bijaksana S, Grice K, Russell J, Stevenson J, Vogel H, Coolen MJL. A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia). Microorganisms. 2025; 13(5):1005. https://doi.org/10.3390/microorganisms13051005
Chicago/Turabian StyleEkram, Md Akhtar-E, Cornelia Wuchter, Satria Bijaksana, Kliti Grice, James Russell, Janelle Stevenson, Hendrik Vogel, and Marco J. L. Coolen. 2025. "A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)" Microorganisms 13, no. 5: 1005. https://doi.org/10.3390/microorganisms13051005
APA StyleEkram, M. A.-E., Wuchter, C., Bijaksana, S., Grice, K., Russell, J., Stevenson, J., Vogel, H., & Coolen, M. J. L. (2025). A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia). Microorganisms, 13(5), 1005. https://doi.org/10.3390/microorganisms13051005