Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review
Abstract
:1. Introduction
1.1. Biofilm-Associated Bone and Joint Infections
1.2. Intravenous Fosfomycin
2. Materials and Methods
3. Preclinical and Clinical Data
3.1. Preclinical Data
3.1.1. In Vitro Data
Staphylococcus spp.
Enterococcus spp.
Escherichia coli
Klebsiella pneumoniae
Pseudomonas aeruginosa
Acinetobacter baumannii
3.1.2. Animal Models
Staphylococcus spp.
Enterococcus spp.
Escherichia coli
Klebsiella pneumoniae
Pseudomonas aeruginosa
3.2. Clinical Data
3.3. Studies in Adults
3.4. Studies in Pediatric Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADR | Adverse drug reaction. |
ALT | Alanine transaminase. |
AST | Antimicrobial susceptibility testing. |
AUC | Area under the curve. |
BJI | Bone and joint infection. |
BL/BLI | Beta-lactam/beta-lactamase inhibitor. |
CI | Confidence interval. |
CLSI | Clinical and Laboratory Standards Institute. |
Cmax | Maximum serum concentration. |
CoNS | Coagulase-negative staphylococci. |
COVID-19 | Coronavirus disease 2019. |
CP | Carbapenemase-producing. |
CR | Carbapenem-resistant. |
CTX-M | Cefotaximase-Munich. |
EPS | Extracellular polymeric substances. |
ESBL | Extended-spectrum beta-lactamase. |
EUCAST | European Committee on Antimicrobial Susceptibility Testing. |
FOS | Fosfomycin disodium. |
FRI | Fracture-related infection. |
GI | Gastrointestinal. |
GN | Gram-negative. |
GP | Gram-positive. |
HR | Hazard ratio. |
ICU | Intensive care unit. |
IM | Intramuscular. |
IV | Intravenous. |
KPC | K. pneumoniae carbapenemase. |
MBIC | Minimal biofilm inhibitory concentration. |
MDR | Multidrug-resistant. |
MIC | Minimal inhibitory concentration |
MRSA | Methicillin-resistant Staphylococcus aureus. |
MRSE | Methicillin-resistant Staphylococcus epidermidis. |
MSSA | Methicillin-susceptible Staphylococcus aureus. |
NA | Not applicable. |
NDM | New Delhi metallo-beta-lactamase. |
OXA | Oxacillinase. |
PK/PD | Pharmacokinetic/pharmacodynamic. |
PJI | Prosthetic joint infection. |
SAB | Staphylococcus aureus bacteremia. |
SCV | Small colony forming variant. |
(T)ECOFF | (Tentative) Epidemiological cut-off. |
T > MIC | Time above MIC. |
VRE | Vancomycin-resistant enterococci. |
VREm | Vancomycin-resistant Enterococcus faecium. |
VREs | Vancomycin-resistant Enterococcus faecalis. |
WT | Wild type. |
XDR | Extensively drug-resistant. |
References
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Ciofu, O.; Molin, S.; Givskov, M.; Høiby, N. Applying insights from biofilm biology to drug development—Can a new approach be developed? Nat. Rev. Drug Discov. 2013, 12, 791–808. [Google Scholar] [CrossRef]
- Fulaz, S.; Vitale, S.; Quinn, L.; Casey, E. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends Microbiol. 2019, 27, 915–926. [Google Scholar] [CrossRef]
- Zimmerli, W.; Sendi, P. Orthopaedic biofilm infections. Apmis 2017, 125, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Vivas, J.; Chapartegui-González, I.; Fernández-Martínez, M.; González-Rico, C.; Fortún, J.; Escudero, R.; Marco, F.; Linares, L.; Montejo, M.; Aranzamendi, M.; et al. Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep. 2019, 9, 8928. [Google Scholar] [CrossRef]
- Silva, V.; Almeida, L.; Gaio, V.; Cerca, N.; Manageiro, V.; Caniça, M.; Capelo, J.L.; Igrejas, G.; Poeta, P. Biofilm Formation of Multidrug-Resistant MRSA Strains Isolated from Different Types of Human Infections. Pathogens 2021, 10, 970. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef]
- Grabein, B.; Graninger, W.; Rodríguez Baño, J.; Dinh, A.; Liesenfeld, D.B. Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature. Clin. Microbiol. Infect. 2017, 23, 363–372. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Fosfomycin Article-31 Referral—Annex III; European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/referral/fosfomycin-article-31-referral-assessment-report_en.pdf (accessed on 3 March 2025).
- Zhanel, G.G.; Zhanel, M.A.; Karlowsky, J.A. Intravenous Fosfomycin: An Assessment of Its Potential for Use in the Treatment of Systemic Infections in Canada. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 8912039. [Google Scholar] [CrossRef] [PubMed]
- Kowalska-Krochmal, B.; Mączyńska, B.; Rurańska-Smutnicka, D.; Secewicz, A.; Krochmal, G.; Bartelak, M.; Górzyńska, A.; Laufer, K.; Woronowicz, K.; Łubniewska, J.; et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens 2022, 11, 1441. [Google Scholar] [CrossRef]
- Russo, A.; Gullì, S.P.; D’Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multi-centre clinical experience. Int. J. Antimicrob. Agents 2024, 64, 107190. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents 2023, 62, 106825. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2020, 10, 187–200. [Google Scholar] [CrossRef]
- Oliva, A.; Curtolo, A.; Falletta, A.; Sacco, F.; Lancellotti, F.; Carnevalini, M.; Ceccarelli, G.; Roma, G.; Bufi, M.; Magni, G.; et al. Efficacy of Fosfomycin-Containing Regimens in Treating Severe Infections Caused by KPC-Producing Klebsiella pneumoniae and Carbapenem-Resistant Acinetobacter baumannii in Critically Ill Patients. Int. J. Antimicrob. Agents 2024, 64, 107365. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
- Guastalegname, M.; Trecarichi, E.M.; Russo, A. Intravenous fosfomycin: The underdog player in the treatment of carbapenem-resistant Acinetobacter baumannii infections. Clin. Infect. Dis. 2023, 77, 1736–1737. [Google Scholar] [CrossRef]
- Flamm, R.K.; Rhomberg, P.R.; Watters, A.A.; Sweeney, K.; Ellis-Grosse, E.J.; Shortridge, D. Activity of fosfomycin when tested against US contemporary bacterial isolates. Diagn. Microbiol. Infect. Dis. 2019, 93, 143–146. [Google Scholar] [CrossRef]
- Widerström, R.; Aarris, M.; Jacobsson, S.; Stegger, M.; Söderquist, B.; Månsson, E. Probing fosfomycin’s potential: A study on susceptibility testing and resistance in Staphylococcus epidermidis from prosthetic joint infections. J. Antimicrob. Chemother. 2024, 79, 2948–2953. [Google Scholar] [CrossRef]
- Croughs, P.D.; Konijnendijk-de Regt, M.; Yusuf, E. Fosfomycin Susceptibility Testing Using Commercial Agar Dilution Test. Microbiol. Spectr. 2022, 10, e0250421. [Google Scholar] [CrossRef]
- Parisio, E.M.; Camarlinghi, G.; Coppi, M.; Niccolai, C.; Antonelli, A.; Nardone, M.; Vettori, C.; Giani, T.; Mattei, R.; Rossolini, G.M. Evaluation of the commercial AD fosfomycin test for susceptibility testing of multidrug-resistant Enterobacterales and Pseudomonas aeruginosa. Clin. Microbiol. Infect. 2020, 27, 788.e5–788.e9. [Google Scholar] [CrossRef]
- Campanile, F.; Wootton, M.; Davies, L.; Aprile, A.; Mirabile, A.; Pomponio, S.; Demetrio, F.; Bongiorno, D.; Walsh, T.R.; Stefani, S.; et al. Gold standard susceptibility testing of fosfomycin in Staphylococcus aureus and Enterobacterales using a new agar dilution panel®. J. Glob. Antimicrob. Resist. 2020, 23, 334–337. [Google Scholar] [CrossRef]
- Goer, A.; Blanchard, L.S.; Van Belkum, A.; Loftus, K.J.; Armstrong, T.P.; Gatermann, S.G.; Shortridge, D.; Olson, B.J.; Meece, J.K.; Fritsche, T.R.; et al. Multicenter Evaluation of the Novel ETEST Fosfomycin for Antimicrobial Susceptibility Testing of Enterobacterales, Enterococcus faecalis, and Staphylococcus Species. J. Clin. Microbiol. 2022, 60, e0002122. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters (Version 15.0; Valid from 2025-01-01). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf (accessed on 3 March 2025).
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC and Zone Diameter Distributions and ECOFFs. Available online: https://mic.eucast.org/search/ (accessed on 3 March 2025).
- Renz, N.; Trebse, R.; Akgün, D.; Perka, C.; Trampuz, A. Enterococcal periprosthetic joint infection: Clinical and microbiological findings from an 8-year retrospective cohort study. BMC Infect. Dis. 2019, 19, 1083. [Google Scholar] [CrossRef]
- Gómez-Garcés, J.L.; Gil-Romero, Y.; Sanz-Rodríguez, N.; Muñoz-Paraíso, C.; Regodón-Domínguez, M. [In vitro activity of fosfomycin, alone or in combination, against clinical isolates of carbapenem resistant Pseudomonas aeruginosa]. Enferm. Infecc. Microbiol. Clin. 2016, 34, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Stanowisko Zespołu Roboczego ds. Oznaczania Lekowrażliwości Zgodnie z Zaleceniami EUCAST w Sprawie Najczęściej Zgłaszanych Pytań Dotyczących Stosowania Rekomendacji EUCAST (Version 7.0, March 2024). Available online: https://korld.nil.gov.pl/wp-content/uploads/2024/05/Stanowisko-Zespolu-7-2024.pdf (accessed on 3 March 2025).
- Comité de l’Antibiogramme de la Société Française de Microbiologie (CA-SFM). Recommandations 2024. V.1.0 Juin. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2024/06/CASFM2024_V1.0.pdf (accessed on 3 March 2025).
- Antonello, R.M.; Principe, L.; Maraolo, A.E.; Viaggi, V.; Pol, R.; Fabbiani, M.; Montagnani, F.; Lovecchio, A.; Luzzati, R.; Di Bella, S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics 2020, 9, 500. [Google Scholar] [CrossRef]
- Trautmann, M.; Meincke, C.; Vogt, K.; Ruhnke, M.; Lajous-Petter, A.M. Intracellular bactericidal activity of fosfomycin against staphylococci: A comparison with other antibiotics. Infection 1992, 20, 350–354. [Google Scholar] [CrossRef]
- Valour, F.; Trouillet-Assant, S.; Riffard, N.; Tasse, J.; Flammier, S.; Rasigade, J.P.; Chidiac, C.; Vandenesch, F.; Ferry, T.; Laurent, F. Antimicrobial activity against intraosteoblastic Staphylococcus aureus. Antimicrob. Agents Chemother. 2015, 59, 2029–2036. [Google Scholar] [CrossRef]
- Docobo-Pérez, F.; Drusano, G.L.; Johnson, A.; Goodwin, J.; Whalley, S.; Ramos-Martín, V.; Ballestero-Tellez, M.; Rodriguez-Martinez, J.M.; Conejo, M.C.; van Guilder, M.; et al. Pharmacodynamics of fosfomycin: Insights into clinical use for antimicrobial resistance. Antimicrob. Agents Chemother. 2015, 59, 5602–5610. [Google Scholar] [CrossRef]
- Grillo, S.; Pujol, M.; Miró, J.M.; López-Contreras, J.; Euba, G.; Gasch, O.; Boix-Palop, L.; Garcia-País, M.J.; Pérez-Rodríguez, M.T.; Gomez-Zorrilla, S.; et al. Cloxacillin plus fosfomycin versus cloxacillin alone for methicillin-susceptible Staphylococcus aureus bacteremia: A randomized trial. Nat. Med. 2023, 29, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Pujol, M.; Miró, J.M.; Shaw, E.; Aguado, J.M.; San-Juan, R.; Puig-Asensio, M.; Pigrau, C.; Calbo, E.; Montejo, M.; Rodriguez-Álvarez, R.; et al. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin. Infect. Dis. 2021, 72, 1517–1525. [Google Scholar] [CrossRef]
- Putensen, C.; Ellger, B.; Sakka, S.G.; Weyland, A.; Schmidt, K.; Zoller, M.; Weiler, N.; Kindgen-Milles, D.; Jaschinski, U.; Weile, J.; et al. Current clinical use of intravenous fosfomycin in ICU patients in two European countries. Infection 2019, 47, 827–836. [Google Scholar] [CrossRef]
- Anastasia, A.; Bonura, S.; Rubino, R.; Giammanco, G.M.; Miccichè, I.; Di Pace, M.R.; Colomba, C.; Cascio, A. The Use of Intravenous Fosfomycin in Clinical Practice: A 5-Year Retrospective Study in a Tertiary Hospital in Italy. Antibiotics 2023, 12, 971. [Google Scholar] [CrossRef] [PubMed]
- Sojo-Dorado, J.; López-Hernández, I.; Rosso-Fernandez, C.; Morales, I.M.; Palacios-Baena, Z.R.; Hernández-Torres, A.; Merino de Lucas, E.; Escolà-Vergé, L.; Bereciartua, E.; García-Vázquez, E.; et al. Effectiveness of Fosfomycin for the Treatment of Multidrug-Resistant Escherichia coli Bacteremic Urinary Tract Infections: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2137277. [Google Scholar] [CrossRef]
- Kaye, K.S.; Rice, L.B.; Dane, A.; Stus, V.; Sagan, O.; Fedosiuk, E.; Das, A.; Skarinsky, D.; Eckburg, P.B.; Ellis-Grosse, E.J. Fosfomycin for injection (ZTI-01) vs Piperacillin-Tazobactam (PIP-TAZ) for the Treatment of Complicated Urinary Tract Infection (cUTI) Including Acute Pyelonephritis (AP): ZEUS, A Phase 2/3 Randomized Trial. Clin. Infect. Dis. 2019, 69, 2045–2056. [Google Scholar] [CrossRef]
- Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The Combination of Fosfomycin plus Meropenem Is Synergistic for Pseudomonas aeruginosa PAO1 in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2018, 62, e01682-18. [Google Scholar] [CrossRef]
- Darlow, C.A.; Farrington, N.; Johnson, A.; McEntee, L.; Unsworth, J.; Jimenez-Valverde, A.; Kolamunnage-Dona, R.; Da Costa, R.M.A.; Ellis, S.; Franceschi, F.; et al. Flomoxef and fosfomycin in combination for the treatment of neonatal sepsis in the setting of highly prevalent antimicrobial resistance. J. Antimicrob. Chemother. 2022, 77, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Darlow, C.A.; Docobo-Perez, F.; Farrington, N.; Johnson, A.; McEntee, L.; Unsworth, J.; Jimenez-Valverde, A.; Gastine, S.; Dona, R.K.; de Costa, R.M.A.; et al. Amikacin Combined with Fosfomycin for Treatment of Neonatal Sepsis in the Setting of Highly Prevalent Antimicrobial Resistance. Antimicrob. Agents Chemother. 2021, 65, 10–1128. [Google Scholar] [CrossRef]
- Garcia, E.; Diep, J.K.; Sharma, R.; Hanafin, P.O.; Abboud, C.S.; Kaye, K.S.; Li, J.; Velkov, T.; Rao, G.G. Evaluation Strategies for Triple-Drug Combinations against Carbapenemase-Producing Klebsiella pneumoniae in an In Vitro Hollow-fiber Infection Model. Clin. Pharmacol. Ther. 2021, 109, 1074–1080. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Mao, J.; Peng, Y.; Yan, Y.; Li, Y.; Zhang, N.; Jiang, L.; Liu, Y.; Li, J.; et al. Pharmacodynamics of Linezolid Plus Fosfomycin Against Vancomycin-Resistant Enterococcus faecium in a Hollow Fiber Infection Model. Front. Microbiol. 2021, 12, 779885. [Google Scholar] [CrossRef]
- Mei, Q.; Ye, Y.; Zhu, Y.L.; Cheng, J.; Chang, X.; Liu, Y.Y.; Li, H.R.; Li, J.B. Testing the mutant selection window hypothesis in vitro and in vivo with Staphylococcus aureus exposed to fosfomycin. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 737–744. [Google Scholar] [CrossRef]
- Alós, J.I.; García-Peña, P.; Tamayo, J. Biological cost associated with fosfomycin resistance in Escherichia coli isolates from urinary tract infections. Rev. Esp. Quim. 2007, 20, 211–215. [Google Scholar]
- Shen, F.; Tang, X.; Cheng, W.; Wang, Y.; Wang, C.; Shi, X.; An, Y.; Zhang, Q.; Liu, M.; Liu, B.; et al. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species. Sci. Rep. 2016, 6, 19262. [Google Scholar] [CrossRef] [PubMed]
- Dijkmans, A.C.; Zacarias, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics 2017, 6, 24. [Google Scholar] [CrossRef]
- Schintler, M.V.; Traunmuller, F.; Metzler, J.; Kreuzwirt, G.; Spendel, S.; Mauric, O.; Popovic, M.; Scharnagl, E.; Joukhadar, C. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J. Antimicrob. Chemother. 2009, 64, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Legat, F.J.; Maier, A.; Dittrich, P.; Zenahlik, P.; Kern, T.; Nuhsbaumer, S.; Frossard, M.; Salmhofer, W.; Kerl, H.; Müller, M. Penetration of Fosfomycin into Inflammatory Lesions in Patients with Cellulitis or Diabetic Foot Syndrome. Antimicrob. Agents Chemother. 2003, 47, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Asuphon, O.; Montakantikul, P.; Houngsaitong, J.; Kiratisin, P.; Sonthisombat, P. Optimizing intravenous fosfomycin dosing in combination with carbapenems for treatment of Pseudomonas aeruginosa infections in critically ill patients based on pharmacokinetic/pharmacodynamic (PK/PD) simulation. Int. J. Infect. Dis. 2016, 50, 23–29. [Google Scholar] [CrossRef]
- Joukhadar, C.; Klein, N.; Dittrich, P.; Zeitlinger, M.; Geppert, A.; Skhirtladze, K.; Frossard, M.; Heinz, G.; Muller, M. Target site penetration of fosfomycin in critically ill patients. J. Antimicrob. Chemother. 2003, 51, 1247–1252. [Google Scholar] [CrossRef]
- Lepak, A.J.; Zhao, M.; VanScoy, B.; Taylor, D.S.; Ellis-Grosse, E.; Ambrose, P.G.; Andes, D.R. In Vivo Pharmacokinetics and Pharmacodynamics of ZTI-01 (Fosfomycin for Injection) in the Neutropenic Murine Thigh Infection Model against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e00476-17. [Google Scholar] [CrossRef]
- Noel, A.; Attwood, M.; Bowker, K.; MacGowan, A. The pharmacodynamics of fosfomycin against Staphylococcus aureus studied in an in vitro model of infection. Int. J. Antimicrob. Agents 2020, 56, 105985. [Google Scholar] [CrossRef]
- Fransen, F.; Hermans, K.; Melchers, M.J.B.; Lagarde, C.C.M.; Meletiadis, J.; Mouton, J.W. Pharmacodynamics of fosfomycin against ESBL- and/or carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 3374–3381. [Google Scholar] [CrossRef]
- MacGowan, A.P.; Griffin, P.; Attwood, M.L.G.; Daum, A.M.; Avison, M.B.; Noel, A.R. The pharmacodynamics of fosfomycin in combination with meropenem against Klebsiella pneumoniae studied in an in vitro model of infection. J. Antimicrob. Chemother. 2025, 80, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Florent, A.; Chichmanian, R.M.; Cua, E.; Pulcini, C. Adverse events associated with intravenous fosfomycin. Int. J. Antimicrob. Agents 2011, 37, 82–83. [Google Scholar] [CrossRef] [PubMed]
- Al-Aloul, M.; Nazareth, D.; Walshaw, M. The renoprotective effect of concomitant fosfomycin in the treatment of pulmonary exacerbations in cystic fibrosis. Clin. Kidney J. 2019, 12, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Díez-Aguilar, M.; Cantón, R. New microbiological aspects of fosfomycin. Rev. Esp. Quim. 2019, 32 (Suppl. S1), 8–18. [Google Scholar]
- Roussos, N.; Karageorgopoulos, D.E.; Samonis, G.; Falagas, M.E. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of fosfomycin for the treatment of patients with systemic infections. Int. J. Antimicrob. Agents 2009, 34, 506–515. [Google Scholar] [CrossRef]
- Veganzones, J.; Montero, A.; Maseda, E. New evidence on the use of fosfomycin for bacteremia and infectious endocarditis. Rev. Esp. Quim. 2019, 32 (Suppl. S1), 25–29. [Google Scholar]
- Hirakawa, H.; Kurabayashi, K.; Tanimoto, K.; Tomita, H. Oxygen Limitation Enhances the Antimicrobial Activity of Fosfomycin in Pseudomonas aeruginosa Following Overexpression of glpT Which Encodes Glycerol-3-Phosphate/Fosfomycin Symporter. Front. Microbiol. 2018, 9, 1950. [Google Scholar] [CrossRef]
- Cara, A.; Ferry, T.; Laurent, F.; Josse, J. Prophylactic Antibiofilm Activity of Antibiotic-Loaded Bone Cements against Gram-Negative Bacteria. Antibiotics 2022, 11, 137. [Google Scholar] [CrossRef]
- Kluin, O.S.; Busscher, H.J.; Neut, D.; van der Mei, H.C. Poly(trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapy-recalcitrant staphylococcal biofilms. J. Orthop. Res. 2016, 34, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Gulcu, A.; Akman, A.; Demirkan, A.F.; Yorukoglu, A.C.; Kaleli, I.; Bir, F. Fosfomycin Addition to Poly(D,L-Lactide) Coating Does Not Affect Prophylaxis Efficacy in Rat Implant-Related Infection Model, But That of Gentamicin Does. PLoS ONE 2016, 11, e0165544. [Google Scholar] [CrossRef] [PubMed]
- Levack, A.E.; Turajane, K.; Yang, X.; Miller, A.O.; Carli, A.V.; Bostrom, M.P.; Wellman, D.S. Thermal Stability and in Vitro Elution Kinetics of Alternative Antibiotics in Polymethylmethacrylate (PMMA) Bone Cement. J. Bone Jt. Surg. Am. 2021, 103, 1694–1704. [Google Scholar] [CrossRef]
- Eick, S.; Hofpeter, K.; Sculean, A.; Ender, C.; Klimas, S.; Vogt, S.; Nietzsche, S. Activity of Fosfomycin- and Daptomycin-Containing Bone Cement on Selected Bacterial Species Being Associated with Orthopedic Infections. Biomed. Res. Int. 2017, 2017, 2318174. [Google Scholar] [CrossRef]
- Alt, V.; Kirchhof, K.; Seim, F.; Hrubesch, I.; Lips, K.S.; Mannel, H.; Domann, E.; Schnettler, R. Rifampicin-fosfomycin coating for cementless endoprostheses: Antimicrobial effects against methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA). Acta Biomater. 2014, 10, 4518–4524. [Google Scholar] [CrossRef]
- Jiamton, C.; Apivatgaroon, A.; Aunaramwat, S.; Chawalitrujiwong, B.; Chuaychoosakoon, C.; Suwannaphisit, S.; Jirawison, C.; Iamsumang, C.; Kongmalai, P.; Sukvanich, P.; et al. Efficacy and Safety of Antibiotic Impregnated Microporous Nanohydroxyapatite Beads for Chronic Osteomyelitis Treatment: A Multicenter, Open-Label, Prospective Cohort Study. Antibiotics 2023, 12, 1049. [Google Scholar] [CrossRef] [PubMed]
- Yuenyongviwat, V.; Ingviya, N.; Pathaburee, P.; Tangtrakulwanich, B. Inhibitory effects of vancomycin and fosfomycin on methicillin-resistant Staphylococcus aureus from antibiotic-impregnated articulating cement spacers. Bone Jt. Res. 2017, 6, 132–136. [Google Scholar] [CrossRef]
- Roth, K.E.; Krause, B.; Siegel, E.; Maier, G.; Schoellner, C.; Rommens, P.M. Liquid dextran does not increase the elution rate of different antibiotics from bone cement. Eur. J. Orthop. Surg. Traumatol. 2015, 25, 83–89. [Google Scholar] [CrossRef]
- Hackemann, V.C.J.; Hagel, S.; Jandt, K.D.; Rödel, J.; Löffler, B.; Tuchscherr, L. The Controversial Effect of Antibiotics on Methicillin-Sensitive S. aureus: A Comparative In Vitro Study. Int. J. Mol. Sci. 2023, 24, 16308. [Google Scholar] [CrossRef]
- Tasse, J.; Croisier, D.; Badel-Berchoux, S.; Chavanet, P.; Bernardi, T.; Provot, C.; Laurent, F. Preliminary results of a new antibiotic susceptibility test against biofilm installation in device-associated infections: The Antibiofilmogram®. Pathog. Dis. 2016, 74, ftw057. [Google Scholar] [CrossRef]
- Coraça-Hubér, D.C.; Fille, M.; Hausdorfer, J.; Pfaller, K.; Nogler, M. Evaluation of MBEC™-HTP biofilm model for studies of implant associated infections. J. Orthop. Res. 2012, 30, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Marquès, C.; Tasse, J.; Pracros, A.; Collin, V.; Franceschi, C.; Laurent, F.; Chatellier, S.; Forestier, C. Effects of antibiotics on biofilm and unattached cells of a clinical Staphylococcus aureus isolate from bone and joint infection. J. Med. Microbiol. 2015, 64, 1021–1026. [Google Scholar] [CrossRef]
- Tang, H.J.; Chen, C.C.; Cheng, K.C.; Toh, H.S.; Su, B.A.; Chiang, S.R.; Ko, W.C.; Chuang, Y.C. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J. Antimicrob. Chemother. 2012, 67, 944–950. [Google Scholar] [CrossRef]
- Molina-Manso, D.; del Prado, G.; Ortiz-Pérez, A.; Manrubia-Cobo, M.; Gómez-Barrena, E.; Cordero-Ampuero, J.; Esteban, J. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int. J. Antimicrob. Agents 2013, 41, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Chai, D.; Liu, X.; Wang, R.; Bai, Y.; Cai, Y. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. Biomed. Res. Int. 2016, 2016, 6413982. [Google Scholar] [CrossRef]
- Tang, H.J.; Chen, C.C.; Ko, W.C.; Yu, W.L.; Chiang, S.R.; Chuang, Y.C. In vitro efficacy of antimicrobial agents against high-inoculum or biofilm-embedded meticillin-resistant Staphylococcus aureus with vancomycin minimal inhibitory concentrations equal to 2 μg/mL (VA2-MRSA). Int. J. Antimicrob. Agents 2011, 38, 46–51. [Google Scholar] [CrossRef]
- Tang, H.J.; Chen, C.C.; Cheng, K.C.; Wu, K.Y.; Lin, Y.C.; Zhang, C.C.; Weng, T.C.; Yu, W.L.; Chiu, Y.H.; Toh, H.S.; et al. In vitro efficacies and resistance profiles of rifampin-based combination regimens for biofilm-embedded methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 5717–5720. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhang, J.; Tong, J.; Zhang, L.; Zhan, Y.; Huang, Y.; Qiu, Y. In Vitro Antimicrobial Activity of Fosfomycin, Vancomycin and Daptomycin Alone, and in Combination, Against Linezolid-Resistant Enterococcus faecalis. Infect. Dis. Ther. 2020, 9, 927–934. [Google Scholar] [CrossRef]
- Tong, J.; Jiang, Y.; Xu, H.; Jin, X.; Zhang, L.; Ying, S.; Yu, W.; Qiu, Y. In vitro Antimicrobial Activity of Fosfomycin, Rifampin, Vancomycin, Daptomycin Alone and in Combination Against Vancomycin-Resistant Enterococci. Drug Des. Devel Ther. 2021, 15, 3049–3055. [Google Scholar] [CrossRef]
- Barber, K.E.; Shammout, Z.; Smith, J.R.; Kebriaei, R.; Morrisette, T.; Rybak, M.J. Biofilm Time-Kill Curves to Assess the Bactericidal Activity of Daptomycin Combinations against Biofilm-Producing Vancomycin-Resistant Enterococcus faecium and faecalis. Antibiotics 2021, 10, 897. [Google Scholar] [CrossRef]
- Zheng, J.X.; Sun, X.; Lin, Z.W.; Qi, G.B.; Tu, H.P.; Wu, Y.; Jiang, S.B.; Chen, Z.; Deng, Q.W.; Qu, D.; et al. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J. Med. Microbiol. 2019, 68, 493–502. [Google Scholar] [CrossRef]
- Chi, J.; Li, Y.; Zhang, N.; Liu, H.; Chen, Z.; Li, J.; Huang, X. Fosfomycin Enhances the Inhibition Ability of Linezolid Against Biofilms of Vancomycin-Resistant Enterococcus faecium in vitro. Infect. Drug Resist. 2023, 16, 7707–7719. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Chen, C.C.; Zhang, C.C.; Su, B.A.; Li, C.M.; Weng, T.C.; Chiang, S.R.; Ko, W.C.; Chuang, Y.C. In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn. Microbiol. Infect. Dis. 2013, 77, 254–257. [Google Scholar] [CrossRef]
- Oliva, A.; Furustrand Tafin, U.; Maiolo, E.M.; Jeddari, S.; Bétrisey, B.; Trampuz, A. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 2014, 58, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Dzib-Baak, H.E.; Uc-Cachón, A.H.; Dzul-Beh, A.J.; Rosado-Manzano, R.F.; Gracida-Osorno, C.; Molina-Salinas, G.M. Efficacy of Fosfomycin against Planktonic and Biofilm-Associated MDR Uropathogenic Escherichia coli Clinical Isolates. Trop. Med. Infect. Dis. 2022, 7, 235. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Di Luca, M.; Tkhilaishvili, T.; Trampuz, A.; Gonzalez Moreno, M. Synergistic Activity of Fosfomycin, Ciprofloxacin, and Gentamicin Against Escherichia coli and Pseudomonas aeruginosa Biofilms. Front. Microbiol. 2019, 10, 2522. [Google Scholar] [CrossRef]
- Sugathan, S.; Mandal, J. An in vitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. J. Med. Microbiol. 2019, 68, 1699–1706. [Google Scholar] [CrossRef]
- Boncompagni, S.R.; Micieli, M.; Di Maggio, T.; Aiezza, N.; Antonelli, A.; Giani, T.; Padoani, G.; Vailati, S.; Pallecchi, L.; Rossolini, G.M. Activity of fosfomycin/colistin combinations against planktonic and biofilm Gram-negative pathogens. J. Antimicrob. Chemother. 2022, 77, 2199–2208. [Google Scholar] [CrossRef]
- Farooq, A.; Martens, M.; Kroemer, N.; Pfaffendorf, C.; Decousser, J.W.; Nordmann, P.; Wicha, S.G. Pharmacokinetic/pharmacodynamic analysis of meropenem and fosfomycin combinations in in vitro time-kill and hollow-fibre infection models against multidrug-resistant and carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2024, 80, 701–712. [Google Scholar] [CrossRef]
- Tüzemen, N.; Önal, U.; Merdan, O.; Akca, B.; Ener, B.; Özakın, C.; Akalın, H. Synergistic antibacterial activity of ceftazidime-avibactam in combination with colistin, gentamicin, amikacin, and fosfomycin against carbapenem-resistant Klebsiella pneumoniae. Sci. Rep. 2024, 14, 17567. [Google Scholar] [CrossRef]
- Ribeiro, A.; Chikhani, Y.; Valiatti, T.B.; Valêncio, A.; Kurihara, M.N.L.; Santos, F.F.; Minarini, L.; Gales, A.C. In Vitro and In Vivo Synergism of Fosfomycin in Combination with Meropenem or Polymyxin B against KPC-2-Producing Klebsiella pneumoniae Clinical Isolates. Antibiotics 2023, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Sanjuan, E.; Amaro, C.; Gordon, M.; Villarreal, E.; Castellanos-Ortega, Á.; Ramirez, P. In vitro study of antimicrobial activity on Klebsiella Pneumoniae biofilms in endotracheal tubes. J. Chemother. 2019, 31, 202–208. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Weng, C.X.; Wang, R.; Cai, Y. Low-Frequency Ultrasound Enhances Bactericidal Activity of Antimicrobial Agents against Klebsiella pneumoniae Biofilm. Biomed. Res. Int. 2020, 2020, 5916260. [Google Scholar] [CrossRef]
- Papalini, C.; Sabbatini, S.; Monari, C.; Mencacci, A.; Francisci, D.; Perito, S.; Pasticci, M.B. In vitro antibacterial activity of ceftazidime/avibactam in combination against planktonic and biofilm carbapenemase-producing Klebsiella pneumoniae isolated from blood. J. Glob. Antimicrob. Resist. 2020, 23, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Adibkia, K.; Farajnia, S.; Samadi Kafil, H.; Khalili, Y.; Azargun, R.; Ghotaslou, R. In-vitro Effect of Imipenem, Fosfomycin, Colistin, and Gentamicin Combination against Carbapenem-resistant and Biofilm-forming Pseudomonas aeruginosa Isolated from Burn Patients. Iran. J. Pharm. Res. 2021, 20, 286–296. [Google Scholar] [CrossRef]
- Slade-Vitković, M.; Batarilo, I.; Bielen, L.; Maravić-Vlahoviček, G.; Bedenić, B. In Vitro Antibiofilm Activity of Fosfomycin Alone and in Combination with Other Antibiotics against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa. Pharmaceuticals 2024, 17, 769. [Google Scholar] [CrossRef] [PubMed]
- Díez-Aguilar, M.; Morosini, M.I.; Köksal, E.; Oliver, A.; Ekkelenkamp, M.; Cantón, R. Use of Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef]
- McCaughey, G.; McKevitt, M.; Elborn, J.S.; Tunney, M.M. Antimicrobial activity of fosfomycin and tobramycin in combination against cystic fibrosis pathogens under aerobic and anaerobic conditions. J. Cyst. Fibros. 2012, 11, 163–172. [Google Scholar] [CrossRef]
- Kumon, H.; Ono, N.; Iida, M.; Nickel, J.C. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob. Agents Chemother. 1995, 39, 1038–1044. [Google Scholar] [CrossRef]
- Mikuniya, T.; Kato, Y.; Kariyama, R.; Monden, K.; Hikida, M.; Kumon, H. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm. Acta Med. Okayama 2005, 59, 209–216. [Google Scholar] [CrossRef]
- Butler, D.A.; Patel, N.; O´Donnell, J.N.; Lodise, T.P. Combination therapy with IV fosfomycin for adult patients with serious Gram-negative infections: A review of the literature. J. Antimicrob. Chemother. 2024, 79, 2421–2459. [Google Scholar] [CrossRef] [PubMed]
- Leelasupasri, S.; Santimaleeworagun, W.; Jitwasinkul, T. Antimicrobial Susceptibility among Colistin, Sulbactam, and Fosfomycin and a Synergism Study of Colistin in Combination with Sulbactam or Fosfomycin against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. J. Pathog. 2018, 2018, 3893492. [Google Scholar] [CrossRef]
- Saini, M.; Gaurav, A.; Hussain, A.; Pathania, R. Small Molecule IITR08367 Potentiates Antibacterial Efficacy of Fosfomycin against Acinetobacter baumannii by Efflux Pump Inhibition. ACS Infect. Dis. 2024, 10, 1711–1724. [Google Scholar] [CrossRef] [PubMed]
- Poeppl, W.; Lingscheid, T.; Bernitzky, D.; Schwarze, U.Y.; Donath, O.; Perkmann, T.; Kozakowski, N.; Plasenzotti, R.; Reznicek, G.; Burgmann, H. Efficacy of fosfomycin compared to vancomycin in treatment of implant-associated chronic methicillin-resistant Staphylococcus aureus osteomyelitis in rats. Antimicrob. Agents Chemother. 2014, 58, 5111–5116. [Google Scholar] [CrossRef]
- Shi, J.; Mao, N.F.; Wang, L.; Zhang, H.B.; Chen, Q.; Liu, H.; Tang, X.; Jin, T.; Zhu, C.T.; Li, F.B.; et al. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PLoS ONE 2014, 9, e113133. [Google Scholar] [CrossRef]
- Poeppl, W.; Tobudic, S.; Lingscheid, T.; Plasenzotti, R.; Kozakowski, N.; Lagler, H.; Georgopoulos, A.; Burgmann, H. Daptomycin, fosfomycin, or both for treatment of methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model. Antimicrob. Agents Chemother. 2011, 55, 4999–5003. [Google Scholar] [CrossRef]
- Lingscheid, T.; Poeppl, W.; Bernitzky, D.; Veletzky, L.; Kussmann, M.; Plasenzotti, R.; Burgmann, H. Daptomycin plus fosfomycin, a synergistic combination in experimental implant-associated osteomyelitis due to methicillin-resistant Staphylococcus aureus in rats. Antimicrob. Agents Chemother. 2015, 59, 859–863. [Google Scholar] [CrossRef]
- Mihailescu, R.; Furustrand Tafin, U.; Corvec, S.; Oliva, A.; Betrisey, B.; Borens, O.; Trampuz, A. High activity of Fosfomycin and Rifampin against methicillin-resistant staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob. Agents Chemother. 2014, 58, 2547–2553. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, K.; Nonaka, M.; Yoshikawa, Y.; Torii, I. Synergistic effect of fosfomycin and arbekacin on a methicillin-resistant Staphylococcus aureus-induced biofilm in a rat model. Int. J. Antimicrob. Agents 2005, 25, 44–50. [Google Scholar] [CrossRef]
- Johansen, M.I.; Petersen, M.E.; Faddy, E.; Seefeldt, A.M.; Mitkin, A.A.; Østergaard, L.; Meyer, R.L.; Jørgensen, N.P. Efficacy of rifampicin combination therapy against MRSA prosthetic vascular graft infections in a rat model. Biofilm 2024, 7, 100189. [Google Scholar] [CrossRef]
- Corvec, S.; Furustrand Tafin, U.; Betrisey, B.; Borens, O.; Trampuz, A. Activities of fosfomycin, tigecycline, colistin, and gentamicin against extended-spectrum-β-lactamase-producing Escherichia coli in a foreign-body infection model. Antimicrob. Agents Chemother. 2013, 57, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Davido, B.; Crémieux, A.C.; Vaugier, I.; De Truchis, P.; Hamami, K.; Laurent, F.; Saleh-Mghir, A. Efficacy of ceftazidime/avibactam in various combinations for the treatment of experimental osteomyelitis in rabbits caused by OXA-48-/ESBL-producing Escherichia coli. J. Antimicrob. Chemother. 2023, 78, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Davido, B.; Crémieux, A.C.; Nich, C.; De Truchis, P.; Vaugier, I.; Gatin, L.; Tattevin, P.; Saleh-Mghir, A. Effect of achieving bone sterilisation on bone architecture and bone marrow, in an experimental rabbit model of osteomyelitis caused by carbapenemase-producing Enterobacterales. Int. J. Antimicrob. Agents 2023, 62, 107003. [Google Scholar] [CrossRef]
- Wang, L.; Tkhilaishvili, T.; Bernal Andres, B.; Trampuz, A.; Gonzalez Moreno, M. Bacteriophage-antibiotic combinations against ciprofloxacin/ceftriaxone-resistant Escherichia coli in vitro and in an experimental Galleria mellonella model. Int. J. Antimicrob. Agents 2020, 56, 106200. [Google Scholar] [CrossRef]
- Davido, B.; Crémieux, A.C.; Vaugier, I.; Gatin, L.; Noussair, L.; Massias, L.; Laurent, F.; Saleh-Mghir, A. Efficacy of ceftazidime-avibactam in various combinations for the treatment of experimental osteomyelitis due to Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2023, 61, 106702. [Google Scholar] [CrossRef] [PubMed]
- Crémieux, A.C.; Dinh, A.; Nordmann, P.; Mouton, W.; Tattevin, P.; Ghout, I.; Jayol, A.; Aimer, O.; Gatin, L.; Verdier, M.C.; et al. Efficacy of colistin alone and in various combinations for the treatment of experimental osteomyelitis due to carbapenemase-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2019, 74, 2666–2675. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, Y.; Wang, R.; An, M.M.; Liang, B.B. Synergistic effects of aminoglycosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model. J. Antimicrob. Chemother. 2009, 64, 563–566. [Google Scholar] [CrossRef]
- Mikuniya, T.; Kato, Y.; Ida, T.; Maebashi, K.; Monden, K.; Kariyama, R.; Kumon, H. Treatment of Pseudomonas aeruginosa biofilms with a combination of fluoroquinolones and fosfomycin in a rat urinary tract infection model. J. Infect. Chemother. 2007, 13, 285–290. [Google Scholar] [CrossRef]
- Tsegka, K.G.; Voulgaris, G.L.; Kyriakidou, M.; Kapaskelis, A.; Falagas, M.E. Intravenous fosfomycin for the treatment of patients with bone and joint infections: A review. Expert. Rev. Anti Infect. Ther. 2021, 20, 33–43. [Google Scholar] [CrossRef]
- Yoh, K.; Hatanaka, I.; Nakano, K. Clinical experience with fosfomycin-sodium in purulent osteomyelitis (author’s transl). Jpn. J. Antibiot. 1981, 34, 1387–1394. [Google Scholar]
- Baron, D.; Desjars, P.; Touze, M.; Tasseau, F.; Potel, G. Clinical study on combined therapy with fosfomycin for staphylococcal infections. In Proceedings of the International Symposium on Fosfomycin, Madrid, Spain, 10–11 July 1986; p. 172e187. [Google Scholar]
- Watanabe, K.; Takase, T.; Kinoshita, A.; Ishino, T.; Kawabe, H.; Yamazumi, T.; Kono, S.; Hayashi, T.; Yamaguchi, K.; Hara, K. A case report of sepsis and multiple lung abscess associated with purulent arthritis of knee joint due to methicillin resistant Staphylococcus aureus. Kansenshogaku Zasshi 1988, 62, 266–272. [Google Scholar] [CrossRef]
- Meissner, A.; Haag, R.; Rahmanzadeh, R. Adjuvant fosfomycin medication in chronic osteomyelitis. Infection 1989, 17, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Lucht, R.F.; Fresard, A.; Berthelot, P.; Farizon, F.; Aubert, G.; Dorche, G.; Bousquet, G. Prolonged treatment of chronic Pseudomonas aeruginosa osteomyelitis with a combination of two effective antibiotics. Infection 1994, 22, 276–280. [Google Scholar] [CrossRef]
- Bureau-Chalot, F.; Piednoir, E.; Bazin, A.; Brasme, L.; Bajolet, O. Postoperative spondylodiskitis due to Stomatococcus mucilaginosus in an immunocompetent patient. Scand. J. Infect. Dis. 2003, 35, 146–147. [Google Scholar] [CrossRef] [PubMed]
- Stengel, D.; Gorzer, E.; Schintler, M.; Legat, F.J.; Amann, W.; Pieber, T.; Ekkernkamp, A.; Graninger, W. Second-line treatment of limb-threatening diabetic foot infections with intravenous fosfomycin. J. Chemother. 2005, 17, 527–535. [Google Scholar] [CrossRef]
- Gillard, J.; Boutoille, D.; Varin, S.; Asseray, N.; Berthelot, J.M.; Maugars, Y. Suspected disk space infection with negative microbiological tests-report of eight cases and comparison with documented pyogenic discitis. Jt. Bone Spine 2005, 72, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Takuma, T.; Okada, T.; Yokota, E.; Nishiyama, M. Case of multiple vertebral osteomyelitis due to Streptococcus pneumoniae. Kansenshogaku Zasshi 2008, 82, 90–93. [Google Scholar] [CrossRef]
- Dinh, A.; Salomon, J.; Bru, J.P.; Bernard, L. Fosfomycin: Efficacy against infections caused by multidrug-resistant bacteria. Scand. J. Infect. Dis. 2012, 44, 182–189. [Google Scholar] [CrossRef]
- Lee, W.S.; Chen, Y.C.; Chen, H.P.; Chen, T.H.; Cheng, C.Y. Vertebral osteomyelitis caused by vancomycin-tolerant methicillin-resistant Staphylococcus aureus bacteremia: Experience with teicoplanin plus fosfomycin combination therapy. J. Microbiol. Immunol. Infect. 2016, 49, 600–603. [Google Scholar] [CrossRef]
- Luengo, G.; Lora-Tamayo, J.; Paredes, D.; Muñoz-Gallego, I.; Díaz, A.; Delgado, E. Daptomycin Plus Fosfomycin as Salvage Therapy in a Difficult-to-Treat Total Femoral Replacement Infection. J. Bone Jt. Infect. 2018, 3, 207–211. [Google Scholar] [CrossRef]
- Baron, S.A.; Cassir, N.; Mékidèche, T.; Mlaga, K.D.; Brouqui, P.; Rolain, J.M. Successful treatment and digestive decolonisation of a patient with osteitis caused by a carbapenemase-producing Klebsiella pneumoniae isolate harbouring both NDM-1 and OXA-48 enzymes. J. Glob. Antimicrob. Resist. 2019, 18, 225–229. [Google Scholar] [CrossRef]
- Rieg, S.; Ernst, A.; Peyerl-Hoffmann, G.; Joost, I.; Camp, J.; Hellmich, M.; Kern, W.V.; Kaasch, A.J.; Seifert, H. Combination therapy with rifampicin or fosfomycin in patients with Staphylococcus aureus bloodstream infection at high risk for complications or relapse: Results of a large prospective observational cohort. J. Antimicrob. Chemother. 2020, 75, 2282–2290. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, S.; Nation, R.L.; Mahony, A.A.; Grayson, M.L.; Kwong, J.C.; Sherry, N.L.; Khumra, S.; Ellis, A.G.; Frauman, A.G.; Holmes, N.E. Cure of Limb-Threatening XDR Pseudomonas aeruginosa Infection: Combining Genome Sequencing, Therapeutic Drug Level Monitoring, and Surgical Debridement. Open Forum Infect. Dis. 2020, 8, ofaa572. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, I.; Yamaguchi, T.; Aoki, K.; Miura, Y.; Sato, S.; Fujita, H.; Watanabe, H. Imipenem plus fosfomycin as salvage therapy for vertebral osteomyelitis. Antimicrob. Agents Chemother. 2020, 65, 10–1128. [Google Scholar] [CrossRef]
- Kehila, M.; Majdoub, M.; Zegha, D.; Ben Khedher, S.; Cheour, E.; Mahjoub, S. Pubic symphysite of postpartum: A difficult diagnosis. Pan Afr. Med. J. 2013, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Wong, D.; Malhotra, S. Intravenous fosfomycin as salvage therapy for osteomyelitis caused by multidrug-resistant Pseudomonas aeruginosa. Am. J. Health Syst. Pharm. 2021, 78, 2209–2215. [Google Scholar] [CrossRef]
- Karbysheva, S.; Morovic, P.; Margaryan, L.; Johannsen, A.; Trampuz, A. Efficacy and safety of intravenous fosfomycin in patients with PJI: Preliminary results from the PROOF study: A prospective multi-centre study. In Proceedings of the 32nd ECCMID, Lisbon, Portugal, 23–26 April 2022. Oral presentation O0071. [Google Scholar]
- Pignatti, M.; Dolci, G.; Zamagni, E.; Pascale, R.; Piccin, O.; Ammar, A.; Zeneli, F.; Miralles, M.E.L.; Mancuso, K.; Cipriani, R.; et al. Multidisciplinary Management of Sternal Osteomyelitis Due to Klebsiella aerogenes after Open Heart Surgery in a Patient with Multiple Myeloma: A Case Report and Discussion of the Literature. Microorganisms 2023, 11, 2699. [Google Scholar] [CrossRef]
- Meschiari, M.; Faltoni, M.; Kaleci, S.; Tassoni, G.; Orlando, G.; Franceschini, E.; Burastero, G.; Bedini, A.; Serio, L.; Biagioni, E.; et al. Intravenous fosfomycin in combination regimens as a treatment option for difficult-to-treat infections due to multi-drug-resistant Gram-negative organisms: A real-life experience. Int. J. Antimicrob. Agents 2024, 63, 107134. [Google Scholar] [CrossRef]
- Bodmann, K.F.; Hagel, S.; Oliva, A.; Kluge, S.; Mularoni, A.; Galfo, V.; Falcone, M.; Pletz, M.W.; Lindau, S.; Käding, N.; et al. Real-World Use, Effectiveness, and Safety of Intravenous Fosfomycin: The FORTRESS Study. Infect. Dis. Ther. 2025, 14, 765–791. [Google Scholar] [CrossRef]
- Gouyon, J.B.; Duez, J.M.; Portier, H.; Brichon, P.; Kohli, E.; Alison, M. Fosfomycin-cefotaxime combination in severe staphylococcal infections in newborn infants. Presse Med. 1985, 14, 2135–2138. [Google Scholar]
- Badelon, O.; Bingen, E.; Sauzeau, C.; Lambert-Zechovsky, N.; de Ribier, A.; Bensahel, H. Choice of first-line antibiotic therapy in the treatment of bone and joint infections in children. Pathol. Biol. 1988, 36, 746–749. [Google Scholar] [PubMed]
- Guggenbichler, J.P.; Bonatti, H.; Rottensteiner, F. Resistance of staphylococci to intracellular killing by macrophages—a new pathophysiologic concept of acute hematogenous osteomyelitis in childhood and its therapeutic consequences. Padiatr. Padol. 1989, 24, 21–32. [Google Scholar]
- Stricker, T.; Fröhlich, S.; Nadal, D. Osteomyelitis and septic arthritis due to Citrobacter freundii and Haemophilus influenzae type b. J. Paediatr. Child. Health 1998, 34, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Briard, D.; Bétrémieux, P.; Gandemer, V.; Lucas, M.M.; Chapuis, M.; Tréguier, C.; Pladys, P. Severe streptococcal group A infection complicating varicella. Arch. Pediatr. 1998, 5, 754–757. [Google Scholar] [CrossRef]
- Reinehr, T.; Bürk, G.; Michel, E.; Andler, W. Chronic osteomyelitis in childhood: Is surgery always indicated? Infection 2000, 28, 282–286. [Google Scholar] [CrossRef]
- Corti, N.; Sennhauser, F.H.; Stauffer, U.G.; Nadal, D. Fosfomycin for the initial treatment of acute haematogenous osteomyelitis. Arch. Dis. Child. 2003, 88, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Fitoussi, F.; Litzelmann, E.; Ilharreborde, B.; Morel, E.; Mazda, K.; Penneçot, G.F. Hematogenous osteomyelitis of the wrist in children. J. Pediatr. Orthop. 2007, 27, 810–813. [Google Scholar] [CrossRef] [PubMed]
- Allagui, M.; Bellaaj, Z.; Zrig, M.; Abid, A.; Koubaa, M. Acute osteomyelitis of the clavicle in the newborn infant: A case report. Arch. Pediatr. 2014, 21, 211–213. [Google Scholar] [CrossRef]
- Roversi, M.; Musolino, A.; Di Giuseppe, M.; Tripiciano, C.; Cursi, L.; Lancella, L.; Krzysztofiak, A. Back to the Future: Intravenous Fosfomycin Is Safe and Effective for the Treatment of Complicated Infections in Children. Pediatr. Infect. Dis. J. 2024, 43, 426–429. [Google Scholar] [CrossRef]
- Fernandez-Valencia, J.E.; Saban, T.; Cañedo, T.; Olay, T. Fosfomycin in Osteomyelitis. Chemotherapy 1976, 22, 121–134. [Google Scholar] [CrossRef]
- Hernández Casado, V. Fosfomycin in a traumatological department. Chemotherapy 1977, 23 (Suppl. S1), 403–410. [Google Scholar] [CrossRef]
- Portier, H.; Tremeaux, J.C.; Chavanet, P.; Gouyon, J.B.; Duez, J.M.; Kazmierczak, A. Treatment of severe staphylococcal infections with cefotaxime and fosfomycin in combination. J. Antimicrob. Chemother. 1984, 14 (Suppl. SB), 277–284. [Google Scholar] [CrossRef] [PubMed]
- Portier, H.; Kazmierczak, A.; Lucht, F.; Tremeaux, J.C.; Chavanet, P.; Duez, J.M. Cefotaxime in combination with other antibiotics for the treatment of severe methicillin-resistant staphylococcal infections. Infection 1985, 13 (Suppl. S1), S123–S128. [Google Scholar] [CrossRef] [PubMed]
- Stöckl, B.; Schmutzhard, E. Antimikrobielle Therapie der Spondylodiszitis—Überlegungen zur Optimierung. Chemother. J. 2005, 14, 11–15. [Google Scholar]
- Meschiari, M.; Asquier-Khati, A.; Tiseo, G.; Luque-Paz, D.; Murri, R.; Boutoille, D.; Falcone, M.; Mussini, C.; Tattevin, P. Treatment of infections caused by multidrug-resistant Gram-negative bacilli: A practical approach by the Italian (SIMIT) and French (SPILF) Societies of Infectious Diseases. Int. J. Antimicrob. Agents 2024, 64, 107186. [Google Scholar] [CrossRef]
- Tsilika, M.; Ntziora, F.; Giannitsioti, E. Antimicrobial Treatment Options for Multidrug Resistant Gram-Negative Pathogens in Bone and Joint Infections. Pathogens 2025, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pastor, J.C.; Muñoz-Mahamud, E.; Vilchez, F.; García-Ramiro, S.; Bori, G.; Sierra, J.; Martínez, J.A.; Font, L.; Mensa, J.; Soriano, A. Outcome of acute prosthetic joint infections due to gram-negative bacilli treated with open debridement and retention of the prosthesis. Antimicrob. Agents Chemother. 2009, 53, 4772–4777. [Google Scholar] [CrossRef]
- Rodríguez-Pardo, D.; Pigrau, C.; Lora-Tamayo, J.; Soriano, A.; del Toro, M.D.; Cobo, J.; Palomino, J.; Euba, G.; Riera, M.; Sánchez-Somolinos, M.; et al. Gram-negative prosthetic joint infection: Outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin. Microbiol. Infect. 2014, 20, O911–O919. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef]
- Lew, D.P.; Waldvogel, F.A. Osteomyelitis. Lancet 2004, 364, 369–379. [Google Scholar] [CrossRef]
- Depypere, M.; Morgenstern, M.; Kuehl, R.; Senneville, E.; Moriarty, T.F.; Obremskey, W.T.; Zimmerli, W.; Trampuz, A.; Lagrou, K.; Metsemakers, W.J. Pathogenesis and management of fracture-related infection. Clin. Microbiol. Infect. 2020, 26, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, N.J.; Rivera, C.G.; Stevens, R.W.; Oravec, C.P.; Mara, K.C.; Suh, G.A.; Osmon, D.R.; Beam, E.N.; Abdel, M.P.; Virk, A. Safety and Tolerability of Fluoroquinolones in Patients with Staphylococcal Periprosthetic Joint Infections. Clin. Infect. Dis. 2021, 73, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Valour, F.; Karsenty, J.; Bouaziz, A.; Ader, F.; Tod, M.; Lustig, S.; Laurent, F.; Ecochard, R.; Chidiac, C.; Ferry, T. Antimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus. Antimicrob. Agents Chemother. 2014, 58, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Tonnelier, M.; Bouras, A.; Joseph, C.; Samad, Y.E.; Brunschweiler, B.; Schmit, J.L.; Mabille, C.; Lanoix, J.P. Impact of rifampicin dose in bone and joint prosthetic device infections due to Staphylococcus spp: A retrospective single-center study in France. BMC Infect. Dis. 2021, 21, 174. [Google Scholar] [CrossRef]
- Nguyen, S.; Robineau, O.; Titecat, M.; Blondiaux, N.; Valette, M.; Loiez, C.; Beltrand, E.; Migaud, H.; Senneville, E. Influence of daily dosage and frequency of administration of rifampicin-levofloxacin therapy on tolerance and effectiveness in 154 patients treated for prosthetic joint infections. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1675–1682. [Google Scholar] [CrossRef]
- Wilson, B.E.; Booth, C.M. Real-world data: Bridging the gap between clinical trials and practice. eClinicalMedicine 2024, 78, 102915. [Google Scholar] [CrossRef]
- Mancuso, A.; Pipitò, L.; Rubino, R.; Distefano, S.A.; Mangione, D.; Cascio, A. Ceftazidime-Avibactam as Osteomyelitis Therapy: A Miniseries and Review of the Literature. Antibiotics 2023, 12, 1328. [Google Scholar] [CrossRef]
- Rinaldi, M.; Cojutti, P.G.; Zamparini, E.; Tedeschi, S.; Rossi, N.; Conti, M.; Giannella, M.; Pea, F.; Viale, P. Population pharmacokinetics and Monte Carlo simulation for dosage optimization of fosfomycin in the treatment of osteoarticular infections in patients without renal dysfunction. Antimicrob. Agents Chemother. 2023, 65, 10–1128. [Google Scholar] [CrossRef]
First Author | Study Type | Patients [N] (Age) * | Type of Infection | Causative Agents | FOS Daily Dose | Combination Partner(s) | FOS Treatment Duration | Outcome | Safety ** |
---|---|---|---|---|---|---|---|---|---|
Adult patients | |||||||||
Yoh [125] | Case series | 8 (range: 17–53 y) | Osteomyelitis | Miscellaneous | 8 g | FOS monotherapy | 7 d (mean) | 4/8 “Good” (50%) 4/8 “Fair” (50%) | No ADRs |
Baron [126] | Retrospective study | 20 (mean: 39 y in total population (N = 105)) | Acute osteomyelitis (N = 12), arthritis (N = 8) | Staphylococcus spp. | 200 mg/kg | Oxacillin (N = 17), pefloxacin (N = 2), aminoglycoside (N = 1) | NA | 10/20 cured (50%), 9/20 improved (45%), 1/20 failure (5%) | Hypokalemia (N = 10), hypokalemia plus hypernatremia (N = 6), rash (N = 3) |
Watanabe [127] | Case report | 1 (82 y) | Purulent arthritis (knee joint) | MRSA | 8 g | Minocycline and cloxacillin | NA | Cured | NA |
Meissner [128] | Prospective study | 60 (mean: 37.4 y) | Chronic post-traumatic osteomyelitis | S. aureus (N = 34), CoNS (N = 15), P. aeruginosa, streptococci (N = 10), GN aerobes (N = 19, including P. aeruginosa and Enterobacterales), anaerobic bacteria (N = 1) | 15 g | FOS monotherapy | 5–28 d (range) | 39/60 favorable outcome (i.e., “very good”, “good”, or “satisfactory”; 73.6%), 14/60 relapse (26.4%); 7/60 unevaluable (i.e., lost to follow-up; 11.7%) | Exanthema (N = 2), GI disorders (mild) (N = 4), phlebitis (N = 7) |
Lucht [129] | Open-label prospective study | 2 (21 y and 26 y) | Chronic osteomyelitis | P. aeruginosa | 12 g | Cefsulodine (N = 1), amoxicillin plus ciprofloxacin (N = 1) | 5.5 m | 2/2 cured (100%) | No ADRs observed during FOS therapy |
Bureau-Chalot [130] | Case report | 1 (43 y) | Post-operative pyogenic spondylodiscitis | Stomatococcus mucilaginosus | 12 g | Cefotaxime | 2 w | Cured | NA |
Stengel [131] | Prospective study | 52 (mean: 62.9 y) | Limb-threatening diabetic foot osteomyelitis | S. aureus (N = 24), Streptococcus spp. (N = 14), Enterococcus spp. (N = 7), GN bacteria (N = 27) | 8–24 g | Meropenem (N = 14), amoxicillin + BLI (N = 12), clindamycin (N = 10), ciprofloxacin (N = 10), ceftriaxone (N = 4), imipenem (N = 2), others (N = 5) | 14.4 d (mean; range: 3–40 d) | 13/52 clinical cure (25%); 31/52 marked improvement (59.6%); 8/52 treatment failure (15.4%) | Nausea and rash (mild) (N = 4) |
Gillard [132] | Case series | 3 (range: 53–67 y) | Pyogenic discitis | Culture-negative | NA | Fluoroquinolone (N = 2), cephalosporin (N = 1) | 18.3 days (mean) | 3/3 cured (100%) | NA |
Izumi [133] | Case report | 1 (73 y) | Vertebral osteomyelitis | Streptococcus pneumoniae | 4 g | Panipenem/betamipron | 2 w | Cured | NA |
Dinh [134] | Prospective cohort study | 32 (NA) | BJI | CoNS (N = 10), Klebsiella spp. (N = 7), E. coli (N = 6), P. aeruginosa (N = 5), MRSA (N = 4), Streptococcus spp., MSSA (N = 3), Aeorococcus viridans (N = 1), Citrobacter spp. (N = 1) | 12–16 g | Glycopeptide (N = 10), cephalosporin (N = 9), carbapenem (N = 8), fluoroquinolone (N = 4), methicillin (N = 2), rifampicin (N = 3), metronidazole (N = 1), cefepime (N = 1), colistin (N = 1) | 54 d (mean) | 19/32 favorable (59.4%), 4/32 unfavorable (12.5%), 1/32 early death (3.1%), 8/32 insufficient follow-up (25%) | Hypovolemia (N = 3), neutropenia (N = 1) |
Lee [135] | Case report | 1 (85 y) | Vertebral osteomyelitis | MRSA | 16 g | Teicoplanin | 5 w | Cured | NA |
Luengo [136] | Case report | 1 (79 y) | Total femoral replacement infection | MDR S. epidermidis | 8 g | Daptomycin | 42 d | Cured | No ADRs |
Baron [137] | Case report | 1 (43 y) | FRI | OXA-48/NDM-producing K. pneumoniae | 12 g | Colistin and doxycycline | 3 m | Cured | No ADRs |
Putensen [38] | Prospective, non-interventional multicenter study | 21 (mean: 59.1 y in total population (N = 209)) | BJI | NA | 13.7 g (mean; in total population (N = 209)) | NA | 20 d (mean) | 18/21 clinical success (85.7%) | NA |
Renz [28] | Retrospective cohort study | 25 (median: 76 y in total population (N = 75)) | PJI | Enterococcus spp. (most patients in the total population (N = 75) had E. faecalis PJI (85%); 50.7% of PJIs were polymicrobial) | 15 g | Penicillin G, ampicillin, vancomycin, daptomycin, gentamicin | 14 d (median; range: 3–90 d) | 95% treatment success at 3-year follow-up in patients treated with FOS-containing regimens | NA |
Rieg [138] | Prospective observational cohort study (post hoc analysis) | 37 (median: 67 y in patients treated with combination therapy (N = 313)) | Bacteremic osteoarticular infections | S. aureus | 15 g | NA | 14 d (median; in all patients treated with FOS (N = 58)) | 27% mortality (in 165 patients with bacteremic osteoarticular infections treated with combination therapy); FOS combination therapy vs. monotherapy in this subgroup: 90-day mortality (HR 0.68, 95% CI [0.24–1.91], p = 0.460]; death or SAB-related complications (HR 0.71, 95% CI [0.27–1.88], p = 0.496) | NA |
Narayanasamy [139] | Case report | 1 (75 y) | FRI | XDR P. aeruginosa | 16 g | Colistin | 12 w | Cured | No ADRs |
Nakamura [140] | Case report | 1 (84 y) | Vertebral osteomyelitis (plus bilateral psoas abscess) | MRSA | 4 g | Imipenem/cilastatin | 4 w | Clinical improvement | NA |
Kehila [141] | Case report | 1 (34 y) | Post-partum pubic symphysite | Group B Streptococcus | NA | 3rd-generation cephalosporin | 8 w | Cured | NA |
Wong [142] | Case report | 1 (84 y) | Osteomyelitis | MDR P. aeruginosa | 18 g | Ceftolozane/tazobactam and meropenem | 2 w | Cured | Hypokalemia |
Karbysheva [143] | Prospective, interventional, investigator-initiated multicenter study | 168 (median: 74 y; range: 18–88 y) | PJI | MSSA (N = 28), CoNS (N = 58), Enterococcus spp. (N = 15), Streptococcus spp. (N = 13), GN rods (N = 14), other (N = 14), culture-negative (N = 40) | 15 g | NA | NA | 85% (infection-free rate after 2 years) | Hypokalemia (N = 49), nausea (N = 56), diarrhea (N = 10), hypernatremia (N = 13) |
Pignatti [144] | Case report | 1 (49 y) | Sternal osteomyelitis | Klebsiella aerogenes | NA | Ertapenem | 3 w | Cured | NA |
Anastasia [39] | Retrospective observational study | 37 (mean: 68 y in total population (N = 343)) | Osteomyelitis | NA | 16–24 g | NA | NA | 31/37 recovery (83.8%), 2/37 relapse (5.4%), 2/37 death (5.4%) | NA |
Meschiari [145] | Retrospective observational study | 12 (median: 69 y in total population (N = 70)) | Osteomyelitis, PJI | MDR GN bacteria | 16–24 g | NA | NA | 9/12 clinical cure (75%), 10/12 microbiological cure (83.33%), 0/12 30-day all-cause mortality | NA |
Bodmann [146] | Prospective, non-interventional multicenter study | 124 (mean: 62.8 y in total population (N = 716)) | BJI | NA | 15 g (median; in total population (N = 716) | NA | NA | 90/124 clinical response (79.8%), 101/124 microbiological cure (81.5%) | NA |
Pediatric patients | |||||||||
Gouyon [147] | Case series | 2 (24 d) | Osteomyelitis | S. aureus | 50 mg/kg | Cefotaxime | 14 d | 2/2 cured (100%) | Hypernatremia (N = 2) |
Badelon [148] | Prospective study | 20 (mean: 3.5 y in total population (N = 23)) | Osteomyelitis (N = 8) and arthritis (N = 12) | S. aureus, Haemophilus influenzae | 105 mg/kg | Cefotaxime | 15 d | 20/20 cured (100%) | No ADRs |
Guggenbichler [149] | Prospective study | 36 (NA) | Acute hematogenous osteomyelitis | S. aureus (N = 16), other bacteria (N = 4), culture-negative (N = 15) | 250 mg/kg | Cefamandol or oxacillin | 10.5 d (mean; range: 10–14 d) | 34/36 successful outcome (94.4%) | Neutropenia (n = 1) |
Stricker [150] | Case report | 1 (5 y) | Osteomyelitis and septic arthritis | H. influenzae and C. freundii | 200 mg/kg | FOS monotherapy | 4 w | Cured | NA |
Briard [151] | Case report | 1 (2 y) | Acute osteomyelitis (plus necrotizing fasciitis) | Streptococcus spp. (beta-hemolytic group A) | 100 mg/kg | Cefotaxim | 30 d | Cured | NA |
Reinehr [152] | Case series | 10 (range: 8–16 y) | Chronic osteomyelitis | NA | 200 mg/kg | Penicillin G | 21 d (mean) | 9/10 recovery (90%), 1/10 relapse (10%) | NA |
Corti [153] | Retrospective study | 70 (Group 1: mean age 6.0 y; group 2: mean age 7.0 y) | Acute hematogenous osteomyelitis | S. aureus (N = 15), CoNS (N = 6), Streptococcus pyogenes (N = 2), S. pneumoniae (N = 1) | 200 mg/kg | Group 1: FOS alone (N = 23), Group 2: FOS in combination (N = 47; including flucloxacillin (N = 38), clindamycin (N = 2), amoxicillin (N = 2), amoxicillin/clavulanic acid (N = 4), gentamicin (N = 1)) | Group 1: 2.5 w (mean), Group 2: 3.1 w (mean) | 70/70 recovery (100%) | Diarrhea (N = 2), exanthema (N = 10), leucopenia (N = 1) |
Fitoussi [154] | Case series | 18 (mean: 6.5 y; range: 9 m–14 y) | Hematogenous wrist osteomyelitis | MSSA (N = 7), MRSA (N = 1) | NA | Cefotaxime | 7 d IV therapy, 6 w total antibiotic therapy | 15/18 cured (83.3%) | NA |
Allagui [155] | Case report | 1 (30 d) | Acute osteomyelitis | H. influenzae | NA | Cefotaxime | 3 w | Cured | NA |
Roversi [156] | Case series | 13 (mean: 10.2 y in total population (N = 20)) | osteomyelitis (N = 10), arthritis (N = 3) | Fusobacterium necrophorum (N = 1), Prevotella oris (N = 1), MSSA (N = 1), E. coli (N = 1), Streptococcus oralis (N = 1), MRSA (N = 1), Staphylococcus cohnii (N = 1), culture-negative (N = 6) | 12 g (>40 kg), 400 mg/kg (10–40 kg), 200 mg/kg (ges-tational age < 40 w) | Meropenem (N = 4), ciprofloxacin (N = 1), ceftriaxone (N = 5), linezolid (N = 2), teicoplanin (N = 2), rifampicin (N = 1), vancomycin (N = 1) | 18.4 d (mean) | 13/13 recovery (100%) | Fatigue (N = 1), anorexia (N = 1), phlebitis (N = 2), tachycardia (N = 1), nausea/vomiting (1), hyper-transaminasemia (N = 3) |
Miscellaneous | |||||||||
Fernandez-Valencia [157] | Case series | 37 (range: 4–75 y) | Osteomyelitis | S. aureus | 4–8 g | FOS monotherapy (oral route (N = 5), intramuscular (IM) route (N = 13), oral plus IM route (N = 19) | 3 w (mean) | 29/37 cured after 3–4 years of follow-up (78.4%), 35/37 initial success (94.6%) | No ADRs were observed during IV FOS therapy (2 patients switched from IM to IV route) |
Hernandez-Casado [158] | Case series | 3 (range: 7–74 y in total population (N = 99)) | Osteomyelitis | S. aureus | 8–16 g | FOS monotherapy | 2–4 d (range) | 3/3 cured (100%) | NA |
Portier [159] | Prospective study | 10 (range: 2.5 m–71 y) | BJI | S. aureus (including 2 cases with MRSA involvement) | 150 mg/kg | Cefotaxime | 16.5 d (mean) | 10/10 cured (100%) | Cerebral edema (N = 1) |
Portier [160] | Prospective study | 6 (range: 4–69 y) | BJI | MRSA (N = 6), Alcaligenes faecalis (N = 1), group D Streptococcus | 150–200 mg/kg | Cefotaxime | 11–21 d (range) | 6/6 (100%) | No ADRs |
Stöckl [161] | Retrospective observational study | 40 (median: 60 y; range: 14–80 y) | Spondylodiscitis | S. aureus (N = 21), Streptococcus spp. (N = 3), E. coli (N = 3), S. epidermidis (N = 2), Enterococcus spp. (N = 1), Salmonella spp. (N = 1), culture-negative (N = 11) | 8–24 g | Cephalosporin (N = 22), other beta-lactams (N = 5), clindamycin (N = 7), rifampicin (N = 6), vancomycin (N = 3), metronidazole (N = 1) | 24 d (median; range: 3–89 d) | 35/40 clinical success (87.5%; 30/40 cured, 5/40 improved), 5/40 failure (12.5%) | Flushing and taste disturbance (N = 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedeschi, S.; Giannitsioti, E.; Mayer, C. Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review. Microorganisms 2025, 13, 963. https://doi.org/10.3390/microorganisms13050963
Tedeschi S, Giannitsioti E, Mayer C. Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review. Microorganisms. 2025; 13(5):963. https://doi.org/10.3390/microorganisms13050963
Chicago/Turabian StyleTedeschi, Sara, Efthymia Giannitsioti, and Christian Mayer. 2025. "Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review" Microorganisms 13, no. 5: 963. https://doi.org/10.3390/microorganisms13050963
APA StyleTedeschi, S., Giannitsioti, E., & Mayer, C. (2025). Emerging Concepts for the Treatment of Biofilm-Associated Bone and Joint Infections with IV Fosfomycin: A Literature Review. Microorganisms, 13(5), 963. https://doi.org/10.3390/microorganisms13050963