Taxonomic Biomarkers of Gut Microbiota with Potential Clinical Utility in Mexican Adults with Obesity and Depressive and Anxiety Symptoms
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Laboratory Data Collection
2.3. Stool Sample Collection and DNA Extraction
2.4. Gut Microbiota Analysis
2.5. Bioinformatic and Statistical Analysis
2.6. Statistical Analysis
3. Results
3.1. Body Composition, Biochemical Parameters, and Energy and Macronutrient Intake per Group
3.2. Gut Microbiota Description
3.2.1. Alpha and Beta Diversity
3.2.2. Phylum, Class, and Genus Distribution
3.2.3. Taxonomic Biomarkers in the Analyzed Groups
3.2.4. Relationship Between the Abundance of ASVs of the Taxonomic Profile of Each Studied Group and the Measured Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stratified Groups | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | OCG (n = 79) | OwS (n = 25) | p | OD (n = 7) | OAx (n = 8) | ODAx (n = 12) | Total (n = 106) | p |
Serum Biochemistry | ||||||||
Ureic nitrogen (mg/dL) | 15.71 | 27.22 | 0.03 | 23.64 | 28.06 | 25.79 | 18.39 | 0.27 |
Mean (±SD) | (19.35) | (32.18) | (28.89) | (33.32) | (33.33) | (23.32) | ||
Creatinine (mg/dL) | 0.90 | 0.87 | 0.38 | 0.91 | 0.86 | 0.84 | 0.89 | 0.55 |
Mean (±SD) | (0.16) | (0.17) | (0.17) | (0.15) | (0.18) | (0.161) | ||
C-reactive protein (mg/dL) | 0.52 | 0.83 | 0.09 | 0.55 | 0.68 | 1.10 | 0.60 | 0.12 |
Mean (±SD) | (0.63) | (1.11) | (0.57) | (0.52) | (1.57) | (0.77) | ||
Uric acid (mg/dL) | 6.75 | 6.35 | 0.28 | 5.77 | 6.51 | 6.51 | 6.65 | 0.51 |
Mean (±SD) | (1.57) | (1.78) | (1.33) | (1.56) | (2.41) | (1.62) | ||
Insulin (Uu/mL) | 11.74 | 13.11 | 0.27 | 12.84 | 14.53 | 11.96 | 12.08 | 0.48 |
Mean (±SD) | (5.69) | (4.50) | (5.67) | (4.67) | (3.07) | (5.44) | ||
Cortisol (µg/dL) | 8.64 | 8.88 | 0.75 | 8.69 | 8.87 | 8.59 | 8.7 | 0.99 |
Mean (±SD) | (3.45) | (2.71) | (3.4) | (2.44) | (2.73) | (3.28) | ||
Thyroid-stimulating hormone | 2.58 | 4.26 | 0.01 | 4.50 | 2.64 | 4.50 | 2.91 | 0.07 |
(TSH) (uUI/mL) | (1.63) | (3.58) | (2.10) | (1.57) | (5) | (2.22) | ||
Iatrogenic index | 5.24 | 5.12 | 0.71 | 4.83 | 5.20 | 5.09 | 5.21 | 0.89 |
Mean (±SD) | (1.37) | (1.36) | (1.72) | (1.23) | (1.45) | (1.36) | ||
InBody analysis | ||||||||
Body fat mass (Kg) | 36.43 | 39.73 | 0.07 | 46.31 | 38.63 | 37.45 | 37.21 | 0.02 |
Mean (±SD) | (7.67) | (8.64) | (7.44) | (7.31) | (8.51) | (7.99) | ||
Free body fat mass (Kg) | 60.63 | 57.12 | 0.06 | 54.15 | 60.14 | 55.89 | 59.80 | 0.10 |
Mean (±SD) | (7.89) | (9.24) | (7.95) | (9.29) | (10.14) | (8.32) | ||
Muscle mass (Kg) | 32.33 | 30.80 | 0.21 | 32.50 | 30.90 | 28.91 | 31.97 | 0.19 |
Mean (±SD) | (5.21) | (5.91) | (5.78) | (6.23) | (5.59) | (5.39) | ||
Liver panel | ||||||||
Total bilirubin (mg/dL) | 1.11 | 0.78 | <0.001 | 0.78 | 0.85 | 0.83 | 1.04 | 0.014 |
Mean (±SD) | (0.39) | (0.21) | (0.17) | (0.25) | (0.34) | (0.39) | ||
Direct bilirubin (mg/dL) | 0.130 | 0.104 | 0.212 | 0.08 | 0.12 | 0.09 | 0.124 | 0.33 |
Mean (±SD) | (0.09) | (.06) | (0.04) | (0.09) | (0.03) | (0.08) | ||
Indirect bilirubin (mg/dL) | 0.985 | 0.683 | <0.001 | 0.70 | 0.73 | 0.74 | 0.91 | 0.011 |
Mean (±SD) | (0.34) | (0.18) | (0.14) | (0.18) | (0.35) | (0.34) | ||
AST (UI/L) | 37.59 | 30.88 | 0.31 | 22.33 | 36.78 | 30.55 | 36.04 | 0.55 |
Mean (±SD) | (30.68) | (17.59) | (5.20) | (24.36) | (13.92) | (28.27) | ||
ALT (UI/L) | 58.65 | 42.79 | 0.20 | 22 | 61.44 | 40.91 | 54.99 | 0.31 |
Mean (±SD) | (55.97) | (41.87) | (6.22) | (61.55) | (28.29) | (53.28) | ||
Total proteins (g/dL) | 7.31 | 7.26 | 0.58 | 7.17 | 7.36 | 7.25 | 7.30 | 0.80 |
Mean (±SD) | (0.34) | (0.53) | (0.74) | (0.40) | (0.49) | (0.39) | ||
Albumin (g/dL) | 4.33 | 4.16 | 0.006 | 3.95 | 4.23 | 4.21 | 4.29 | 0.003 |
Mean (±SD) | (0.23) | (0.32) | (0.41) a | (0.25) | (0.27) | (0.27) | ||
Globulins (mg/dL) | 3 | 3.13 | 0.13 | 3.22 | 3.12 | 3.11 | 3.03 | 0.30 |
Mean (±SD) | (0.36) | (0.334) | (0.37) | (0.32) | (0.32) | (0.35) | ||
Alb/Globulin | 1.47 | 1.35 | 0.007 | 1.23 | 1.37 | 1.37 | 1.44 | 0.008 |
Mean (±SD) | (0.21) | (0.17) | (0.09) a | (0.166) | (0.19) | (0.21) | ||
GGT (UI/L) | 45.66 | 38.25 | 0.40 | 27 | 44.78 | 36.45 | 43.95 | 0.60 |
Mean (±SD) | (41.27) | (24.29) | (18.34) | (16.47) | (30.12) | (18.05) | ||
AP (UI/L) | 64.40 | 68.46 | 0.57 | 73.67 | 68.56 | 66.36 | 66.88 | 0.70 |
Mean (±SD) | (16.45) | (11.61) | (12.09) | (13.19) | (9.5) | (15.44) |
Appendix B
Variable | OCG (n = 79) | OD (n = 7) | OAx (n = 8) | ODAx (n = 12) | Total (n = 106) | p |
---|---|---|---|---|---|---|
Phylum | ||||||
F/B | 0.79 (0.71) | 0.44 (0.62) | 1.0 (0.80) | 0.79 (0.71) | 0.79 (0.72) | 0.48 |
Bacteroidota | 48.50 (23.10) | 58.82 (31.81) | 38.84 (20.11) | 41.46 (22.55) | 47.66 (23.53) | 0.30 |
Firmicutes | 35.15 (19.81) | 21.81 (18.75) | 38.59 (21.61) | 37.75 (20.09) | 34.75 (19.95) | 0.33 |
Proteobacteria | 3.39 (6.76) b | 4.03 (4.33) | 8.80 (14.61) | 3.00 (3.54) | 3.8 (7.26) | 0.24 |
Verrucomicrobiota | 0.25 (0.82) c | 0.03 (0.040) d | 0.12 (0.165) | 0.83 (1.35) | 0.29 (0.85) | 0.11 |
Actinobacteriota | 0.63 (1.22) | 0.56 (1.00) | 0.49 (0.49) | 0.29 (0.24) | 0.58 (1.10) | 0.83 |
Desulfobacterota | 0.43 (0.53) | 0.51 (0.71) | 0.18 (0.23) | 0.47 (0.58) | 0.42 (0.53) | 0.66 |
Cyanobacteria | 0.27 (0.92) | 0.008 (0.014) | 0.28 (0.79) | 0.18 (0.36) | 0.24 (0.83) | 0.86 |
Spirochaetota | 0.003 (0.014) | 0.000 (0.000) | 0.001 (0.005) | 0.009 (0.025) | 0.003 (0.01) | 0.58 |
Otras | 0.05(0.089) | 0.009 (0.024) | 0.05 (0.091) | 0.07 (0.18) | 0.04 (0.099) | 0.60 |
Fusobacteriota | 0.01 (0.05) b | 0.078 (0.14) | 0.18 (0.36) e | 0.003 (0.008) | 0.03 (0.11) | 0.001 |
Class | ||||||
Bacteroidia | 48.50 (23.10) | 58.82 (31.81) | 38.84 (20.11) | 41.46 (22.55) | 47.66 (23.53) | 0.30 |
Clostridia | 30.90 (18.62) | 17.64 (15.60) | 33.90 (19.92) | 32.73 (18.70) | 30.45 (18.63) | 0.29 |
Gammaproteobacteria | 3.29 (6.77) b | 4.03 (4.33) | 8.80 (14.61) | 2.93 (3.50) | 3.72 (7.27) | 0.04 |
Negativicutes | 3.10 (3.42) | 3.76 (4.30) | 3.30 (2.7) | 3.33 (4.02) | 3.19 (3.46) | 0.97 |
Bacilli | 1.12 (1.17) | 0.39 (0.47) | 1.37 (1.12) | 1.00 (1.39) | 1.08 (1.16) | 0.38 |
Desulfovibrionia | 0.38 (0.52) | 0.43 (0.67) | 0.16 (0.22) | 0.39 (0.55) | 0.37 (0.51) | 0.7 |
Coriobacteriia | 0.34 (0.65) | 0.19 (0.31) | 0.34 (0.43) | 0.19 (0.21) | 0.32 (0.58) | 0.78 |
Vampirivibrionia | 0.27 (0.92) | 0.008 (0.014) | 0.28 (0.79) | 0.18 (0.36) | 0.24 (0.83) | 0.863 |
Verrucomicrobiae | 0.20 (0.80) c | 0.02 (0.04) e | 0.04 (0.06) | 0.79 (1.32) | 0.25 (0.84) | 0.02 |
Actinobacteria | 0.21 (0.57) | 0.28 (0.63) | 0.089 (0.079) | 0.054 (0.072) | 0.19 (0.51) | 0.67 |
No asignado | 0.15 (0.05) | 0 | 0.003 (0.010) | 0.02 (0.07) | 0.01 (0.05) | 0.71 |
Otros | 0.10 (0.14) | 0.01 (0.02) | 0.13 (0.17) | 0.12 (0.20) | 0.010 (0.14) | 0.37 |
Alphaproteobacteria | 0.096 (0.33) | 0.001 (0.002) | 0 | 0.069 (0.21) | 0.07 (0.29) | 0.72 |
Fusobacteriia | 0.019 (0.054) b | 0.07 (0.14) | 0.18 (0.36) | 0.003 (0.008) e | 0.03 (0.11) | <0.001 |
Spirochaetia | 0.003 (0.14) | 0 | 0.001 (0.005) | 0.008 (0.024) | 0.003 (0.014) | 0.64 |
Genera | ||||||
Prevotella | 23.82 (22.14) | 26.83 (33.00) | 14.16 (14.37) | 21.49 (20.16) | 23.03 (22.15) | 0.65 |
Bacteroides | 13.39 (16.15) | 21.22 (24.14) | 13.81 (11.52) | 9.06 (8.54) | 13.45 (15.8) | 0.46 |
Faecalibaterium | 5.44 (5.20) | 4.16 (5.17) | 5.36 (3.98) | 5.66 (4.26) | 5.38 (4.97) | 0.92 |
UCG 002 | 3.94 (4.07) a | 0.87 (0.92) | 5.37 (3.65) | 4.63 (3.87) d,f | 3.92 (3.96) | 0.13 |
Eubacterium coprostalinogenes | 2.69 (2.93) | 1.93 (1.80) | 2.95 (2.47) | 1.83 (2.43) | 2.57 (2.78) | 0.68 |
Alistipes | 2.42 (3.47) | 0.75 (0.86) | 3.37 (3.74) | 1.49 (2.35) | 2.28 (3.29) | 0.37 |
Otros | 2.35 (3.51) | 2.04 (4.66) | 2.32 (1.88) | 1.69 (1.68) | 2.25 (3.31) | 0.93 |
Roseburia | 2.14 (2.78) | 2.03 (4.56) | 1.85 (1.79) | 2.18 (2.10) | 2.12 (2.76) | 0.99 |
Ruminococcus | 2.07 (2.04) | 0.66 (0.58) | 1.28 (1.19) | 2.28 (2.26) | 1.94 (1.97) | 0.21 |
Succinivibrio | 1.73 (6.03) | 1.18 (0.96) | 0.35 (0.96) | 0.28 (0.52) | 1.42 (5.24) | 0.76 |
Escherichia-Shigella | 1.55 (2.30) b | 2.54 (2.90) | 8.47 (14.20) | 3.18 (3.81) e,f | 2.32 (4.78) | <0.001 |
Lachnospiraceae NK4A136 | 1.52 (2.03) | 2.87 (5.79) | 1.28 (0.84) | 2.64 (3.93) | 1.72 (2.62) | 0.32 |
Parabacteroides | 1.60 (1.55) | 1.21 (0.80) | 1.06 (0.63) | 1.51 (1.38) | 1.52 (1.44) | 0.73 |
Muribaculaceae | 1.40 (2.79) | 1.46 (3.59) | 1.36 (2.35) | 1.52 (2.53) | 1.41 (2.75) | 0.99 |
Alloprevotella | 1.30 (1.89) | 1.09 (1.73) | 2.15 (3.25) | 1.18 (1.90) | 1.34 (1.99) | 0.68 |
Coprococcus | 1.30 (1.48) a | 0.22 (0.33) | 0.91 (1.02) | 0.87 (0.95) | 1.15 (1.37) | 0.19 |
Eubacterium siraeum | 1.26 (1.86) | 0.95 (1.23) | 1.04 (1.45) | 1.03 (1.09) | 1.20 (1.71) | 0.93 |
Dialister | 1.00 (2.76) | 0.86 (1.67) | 1.67 (2.23) | 0.89 (2.05) | 1.03 (2.57) | 0.92 |
Subdoligranulum | 0.90 (1.65) | 1.00 (2.59) | 1.17 (1.08) | 0.84 (1.08) | 0.92 (1.61) | 0.97 |
Uncultured | 0.88 (1.73) | 0.25 (0.44) | 0.25 (0.36) | 0.63 (1.55) | 0.76 (1.55) | 0.60 |
Ruminococcus torques | 0.81 (1.44) | 0.80 (0.64) | 1.06 (0.56) | 1.11 (1.83) | 0.86 (1.39) | 0.90 |
Barnesiella | 0.73 (1.81) | 1.74 (3.21) | 1.86 (3.99) | 1.66 (5.42) | 0.99 (2.71) | 0.43 |
Dorea | 0.69 (1.56) c | 0.06 (0.14) | 0.75 (0.65) | 2.02 (4.11) d | 0.80 (1.93) | 0.16 |
Clostridia UCG014 | 0.61 (0.67) b,f | 0.45 (0.35) | 1.71(1.82) | 0.73 (1.07) e | 0.7 (0.87) | 0.01 |
UCG003 | 0.64 (0.65) | 0.95 (1.20) | 0.62 (0.30) | 0.68 (0.43) | 0.66 (0.65) | 0.75 |
Rikenellaceae RC9gut group | 0.73 (1.80) | 0.20 (0.28) | 0.10 (0.15) | 0.42 (0.65) | 0.62 (1.59) | 0.65 |
UCG005 | 0.61 (0.61) | 0.19 (0.22) | 0.54 (0.35) | 0.64 (0.47) | 0.58 (0.56) | 0.37 |
NK4A214 group | 0.54 (0.64) | 0.46 (0.54) | 0.78 (0.50) | 0.52 (0.44) | 0.55 (0.60) | 0.77 |
Paraprevotella | 0.53 (0.70) | 0.42 (0.59) | 0.46 (0.41) | 0.85 (1.89) | 0.55 (0.79) | 0.63 |
Phascolarctobacterium | 0.49 (0.56) | 0.26 (0.19) | 0.73 (0.88) | 0.97 (1.66) | 0.54 (0.77) | 0.2 |
Uncultured X | 0.55 (0.46) a | 0.033 (0.048) a | 0.59 (0.51) f | 0.56 (0.30) d | 0.52 (0.45) | 0.04 |
Blautia | 0.49 (0.97) | 0.003 (0.005) | 0.54 (0.53) | 0.66 (0.72) | 0.48 (0.89) | 0.59 |
Veillonella | 0.51 (1.18) | 0.13 (0.28) | 0.15 (0.17) | 0.35 (0.55) | 0.44 (1.05) | 0.70 |
Christensenellaceae R7 group | 0.40 (0.55) | 0.013(0.032) | 0.50 (0.70) | 0.80 (1.15) d | 0.42 (0.64) | 0.11 |
Uncultured A | 0.37 (0.74) c | 0.03 (0.071) | 0.38 (0.25) | 0.92 (1.15) d | 0.41 (0.76) | 0.10 |
Akkermansia | 0.37 (0.87) c | 0.09 (0.17) | 0.06 (0.12) | 0.98 (1.39) e | 0.40 (0.90) | 0.11 |
UCG010 | 0.39 (0.42) | 0.16 (0.27) | 0.55 (0.34) | 0.44 (0.33) | 0.39 (0.40) | 0.37 |
Gastranaerophilales | 0.41 (1.56) | 0 | 0.32 (0.84) | 0.23 (0.41) | 0.35 (1.37) | 0.89 |
Haemophilus | 0.40 (0.83) | 0.17 (0.15) | 0.22 (0.33) | 0.09 (0.093) | 0.34 (0.73) | 0.53 |
Streptococcus | 0.35 (0.45) | 0.147 (0.146) | 0.20 (0.23) | 0.39 (0.83) | 0.33 (0.47) | 0.65 |
Unassigned | 0.33 (0.33) | 0.15 (0.094) | 0.41 (0.35) | 0.26 (0.23) | 0.32 (0.31) | 0.42 |
Catenibacterium | 0.30 (0.38) b | 0.053 (0.064) f | 0.77 (0.78) b | 0.25 (0.32) e | 0.31 (0.42) | 0.01 |
Desulfovibrio | 0.33 (0.50) | 0.14 (0.22) | 0.10 (0.17) | 0.30 (0.33) | 0.30 (0.45) | 0.48 |
Butyrivibrio | 0.29 (0.70) | 0.26 (0.42) | 0.31 (0.56) | 0.38 (1.14) | 0.30 (0.73) | 0.98 |
Sutterella | 0.29 (0.36) | 0.32 (0.41) | 0.39 (0.50) | 0.25 (0.18) | 0.29 (0.35) | 0.87 |
Monoglobus | 0.21 (0.38) a | 0.96 (1.99) | 0.55 (0.53) | 0.24 (0.21) d | 0.29 (0.72) | 0.02 |
Clostridium sensustricto 1 | 0.32 (0.76) | 0.37 (0.69) | 0.07 (0.053) | 0.14 (0.25) | 0.28 (0.69) | 0.70 |
Collinsella | 0.25 (0.67) | 0.74 (1.81) | 0.20 (0.21) | 0.18 (0.19) | 0.27 (0.73) | 0.45 |
Odoribacter | 0.24 (0.22) | 0.073 (0.069) | 0.30 (0.35) | 0.31 (0.52) | 0.24 (0.27) | 0.34 |
Butyricimonas | 0.20 (0.30) a | 0.70 (1.37) d | 0.35 (0.25) | 0.18 (0.20) | 0.24 (0.44) | 0.05 |
Bifidobacterium | 0.26 (0.67) | 0.11 (0.18) | 0.08 (0.084) | 0.07 (0.075) | 0.22 (0.58) | 0.67 |
Lachnospiraceae CG 004 | 0.22 (0.29) | 0.098 (0.14) | 0.20 (0.19) | 0.30 (0.32) | 0.22 (0.28) | 0.59 |
Eubacterium ruminantium group | 0.20 (0.36) | 0.32 (0.67) | 0.11 (0.14) | 0.23 (0.28) | 0.21 (0.36) | 0.77 |
Megasphaera | 0.20 (0.53) | 0.09 (0.11) | 0.19 (0.34) | 0.28 (0.87) | 0.20 (0.54) | 0.92 |
Eubacterium eligens group | 0.21 (0.37) | 0.009 (0.015) | 0.165 (0.162) | 0.16 (0.13) | 0.18 (0.33) | 0.56 |
Holdemanella | 0.18 (0.29) | 0.16 (0.20) | 0.18 (0.28) | 0.11 (0.16) | 0.17 (0.27) | 0.91 |
Eubacterium xylanophilum group | 0.16 (0.63) | 0.027 (0.067) | 0.10 (0.07) | 0.36 (0.72) | 0.18 (0.60) | 0.69 |
unculturedZ | 0.15 (0.71) | 0 | 0.49 (0.47) | 0.08 (0.17) | 0.16 (0.64) | 0.51 |
Lachnoclostridium | 0.15 (0.33) | 0.06 (0.10) | 0.24 (0.44) | 0.21 (0.31) | 0.15 (0.32) | 0.74 |
Lachnospiraceae CG001 | 0.19 (0.41) | 0.001 (0.002) | 0.11 (0.15) | 0.06 (0.07) | 0.15 (0.37) | 0.50 |
uncultured5 | 0.13 (0.18) | 0.11 (0.15) | 0.12 (0.10) | 0.24 (0.38) | 0.14 (0.20) | 0.45 |
RF39 | 0.15 (0.19) | 0.05(0.055) | 0.22 (0.29) | 0.082 (0.10) | 0.14 (0.19) | 0.29 |
Acidaminococcus | 0.14 (0.27) | 0.076 (0.07) | 0.080 (0.16) | 0.060 (0.12) | 0.12 (0.25) | 0.67 |
Romboutsia | 0.10 (0.13) a | 0.32 (0.58) d | 0.12 (0.11) | 0.082 (0.12) | 0.12 (0.19) | 0.05 |
Comamonas | 0.09 (0.16) c | 0.014 (0.03) d | 0.002 (0.005) e | 0.45 (1.17) | 0.11 (0.41) | 0.04 |
Allisonella | 0.13 (0.22) | 0.0488 (0.05) | 0.044 (0.05) | 0.084 (0.06) | 0.11 (0.19) | 0.49 |
Citrobacter | 0.14 (0.36) | 0.036 (0.06) | 0.030 (0.07) | 0.020 (0.05) | 0.01 (0.31) | 0.53 |
Anaerostipes | 0.11 (0.17) | 0.041 (0.06) | 0.068 (0.08) | 0.12 (0.19) | 0.01 (0.16) | 0.62 |
Parasutterella | 0.12 (0.50) | 0.12 (0.31) | 0.035 (0.074) | 0.03 (0.08) | 0.11 (0.45) | 0.90 |
Lachnospira | 0.10 (0.16) | 0.09 (0.11) | 0.06 (0.10) | 0.12 (0.21) | 0.01 (0.15) | 0.87 |
Prevotellaceae NK3B31 group | 0.11 (0.23) | 0.03 (0.04) | 0.05 (0.11) | 0.01 (0.018) | 0.09 (0.21) | 0.33 |
Erysipelotrichaceae CG003 | 0.10 (0.28) | 0.02 (0.03) | 0.017 (0.015) | 0.06 (.09) | 0.08 (0.25) | 0.72 |
Bilophila | 0.07 (0.11) a | 0.02 (0.04) a | 0.262 (0.269) f | 0.03 (0.04) d | 0.09 (0.33) | 0.01 |
Eubacterium ventriosum group | 0.07 (0.11) | 0.02 (0.04) | 0.262 (0.269) b | 0.03 (0.04) e,f | 0.08 (0.13) | 0.001 |
Unassigned 5 | 0.09 (0.22) | 0.002 (0.005) | 0.044 (0.10) | 0.04 (0.08) | 0.07 (0.20) | 0.65 |
Unassigned 6 | 0.07 (0.23) | 0.06 (0.09) | 0.14 (0.21) | 0.01 (0.03) | 0.07 (0.21) | 0.68 |
Klebsiella | 0.08 (0.55) | 0 | 0.07 (0.12) | 0.06 (0.21) | 0.07 (0.48) | 0.98 |
Slackia | 0.07 (0.21) | 0.01 (0.03) | 0.020 (0.021) | 0.10 (0.28) | 0.07 (0.20) | 0.77 |
Oscillibacter | 0.07 (0.10) | 0.047 (0.064) | 0.071 (0.083) | 0.04 (0.05) | 0.69 (0.09) | 0.70 |
Mitsuokella | 0.04 (0.08) | 0.09 (0.10) | 0.03 (0.04) | 0.11 (0.20) | 0.05 (0.10) | 0.19 |
Weissella | 0.05 (0.15) | 0.03 (0.05) | 0.01 (0.02) | 0.10 (0.24) | 0.05 (0.15) | 0.71 |
Clostridia vaadin BB60 group | 0.05 (0.11) | 0.03 (0.07) | 0.06 (0.10) | 0.05 (0.09) | 0.05 (0.10) | 0.96 |
Prevotellaceae UCG003 | 0.02 (0.13) a | 0.26 (0.65) | 0 | 0.06 (0.19)f | 0.04 (0.20) | 0.05 |
Ruminococcus gnavus group | 0.03 (0.10) | 0.09 (0.15) | 0.13 (0.17) b | 0.006 (0.013) e | 0.04 (0.11) | 0.06 |
Unassigned 8 | 0.04 (0.15) | 0 | 0.02 (0.023) | 0.04 (0.07) | 0.04 (1.38) | 0.88 |
Family XIII UCG 001 | 0.03 (0.07) | 0.003 (0.008) | 0.03 (0.07) | 0.04 (0.07) | 0.04 (0.07) | 0.73 |
Unassigned 9 | 0.04 (0.16) | 0.01 (0.02) | 0.003 (0.008) | 0.002 (0.006) | 0.034 (0.14) | 0.78 |
Lachnospiraceae UCG003 | 0.03 (0.13) | 0 | 0 | 0.01 (0.03) | 0.03 (0.12) | 0.71 |
Fusobacterium | 0.01 (0.09) | 0 | 0.15 (0.37) b | 0.001 (0.004) e,f | 0.026 (0.13) | 0.05 |
Uncultured 1 | 0.01 (0.04) c | 0.009 (0.017) | 0.001 (0.002) | 0.07 (0.23) | 0.019 (0.08) | 0.18 |
Unassigned 10 | 0.02 (0.09) | 0 | 0.004 (0.010) | 0.007 (0.022) | 0.017 (0.08) | 0.84 |
Lactobacillus | 0.01 (0.06) | 0 | 0.001 (0.002) | 0.02 (0.08) | 0.015 (0.06) | 0.8 |
Anaerovibrio | 0.01 (0.05) | 0 | 0 | 0.006 (0.020) | 0.010 (0.04) | 0.81 |
Hungatella | 0.008 (0.037) | 0 | 0.03 (0.08) | 0.002 (0.009) | 0.009 (0.040) | 0.37 |
Raoultella | 0.004 (0.03) c | 0 | 0 | 0.03 (0.10) | 0.007 (0.043) | 0.23 |
Tyzzerella | 0.006 (0.019) | 0 | 0.002 (0.005) | 0.008 (0.022) | 0.005 (0.018) | 0.76 |
Megamonas | 0.002 (0.01) | 0.008 (0.020) | 0 | 0 | 0.002 (0.013) | 0.66 |
Treponema | 0.0008 (0.005) | 0 | 0 | 0.008 (0.03) c | 0.001 (0.09) | 0.12 |
Asteroleplasma | 0.0002 (0.001) | 0 | 0 | 0 | 0.001 (0. 001) | 0.88 |
Paeniclostridium | 0 | 0 | 0 | 0 | 0 | 0 |
Appendix C
References
- World Health Organization. Anxiety Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/anxiety-disorders (accessed on 22 May 2025).
- INEGI. Encuesta Nacional de Bienestar Autorreportado (ENBIARE) 2021. Available online: https://www.inegi.org.mx/programas/enbiare/2021/default.html#documentacion (accessed on 22 May 2025).
- Pan American Health Organization. World Health Organization Depression-PAHO/WHO|Pan American Health Organization. Available online: https://www.paho.org/en/topics/depression (accessed on 22 May 2025).
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic Syndrome in Psychiatric Patients: Overview, Mechanisms, and Implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S.; Décarie-Spain, L.; Fioramonti, X.; Guiard, B.; Nakajima, S. The Menace of Obesity to Depression and Anxiety Prevalence. Trends Endocrinol. Metab. 2022, 33, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Sochacka, K.; Kotowska, A.; Lachowicz-Wiśniewska, S. The Role of Gut Microbiota, Nutrition, and Physical Activity in Depression and Obesity-Interdependent Mechanisms/Co-Occurrence. Nutrients 2024, 16, 1039. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Ford, E.S.; Dhingra, S.; Li, C.; Strine, T.W.; Mokdad, A.H. Depression and Anxiety among US Adults: Associations with Body Mass Index. Int. J. Obes. 2009, 33, 257–266. [Google Scholar] [CrossRef]
- Schachter, J.; Martel, J.; Lin, C.S.; Chang, C.J.; Wu, T.R.; Lu, C.C.; Ko, Y.F.; Lai, H.C.; Ojcius, D.M.; Young, J.D. Effects of Obesity on Depression: A Role for Inflammation and the Gut Microbiota. Brain Behav. Immun. 2018, 69, 1–8. [Google Scholar] [CrossRef]
- World Health Organization. Obesity. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 22 May 2025).
- Campos-Nonato, I.; Galván-Valencia, O.; Hernández-Barrera, L.; Oviedo-Solís, C.; Barquera, S. Prevalence of Obesity and Associated Risk Factors in Mexican Adults: Results of the Ensanut 2022. Salud Publica Mex. 2023, 65, s238–s247. [Google Scholar] [CrossRef]
- Schneider, E.; O’Riordan, K.J.; Clarke, G.; Cryan, J.F. Feeding Gut Microbes to Nourish the Brain: Unravelling the Diet–Microbiota–Gut–Brain Axis. Nat. Metab. 2024, 6, 1454–1478. [Google Scholar] [CrossRef]
- Bruce-Keller, A.J.; Salbaum, J.M.; Luo, M.; Blanchard, E.; Taylor, C.M.; Welsh, D.A.; Berthoud, H.R. Obese-Type Gut Microbiota Induce Neurobehavioral Changes in the Absence of Obesity. Biol. Psychiatry 2015, 77, 607–615. [Google Scholar] [CrossRef]
- Chinna Meyyappan, A.; Forth, E.; Wallace, C.J.K.; Milev, R. Effect of Fecal Microbiota Transplant on Symptoms of Psychiatric Disorders: A Systematic Review. BMC Psychiatry 2020, 20, 299. [Google Scholar] [CrossRef]
- Averina, O.V.; Poluektova, E.U.; Zorkina, Y.A.; Kovtun, A.S.; Danilenko, V.N. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int. J. Mol. Sci. 2024, 25, 5782. [Google Scholar] [CrossRef]
- Chávez-Carbajal, A.; Nirmalkar, K.; Pérez-Lizaur, A.; Hernández-Quiroz, F.; Ramírez-Del-Alto, S.; García-Mena, J.; Hernández-Guerrero, C. Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity plus Metabolic Syndrome. Int. J. Mol. Sci. 2019, 20, 438. [Google Scholar] [CrossRef]
- Chávez-Carbajal, A.; Pizano-Zárate, M.L.; Hernández-Quiroz, F.; Ortiz-Luna, G.F.; Morales-Hernández, R.M.; De Sales-Millán, A.; Hernández-Trejo, M.; García-Vite, A.; Beltrán-Lagunes, L.; Hoyo-Vadillo, C.; et al. Characterization of the Gut Microbiota of Individuals at Different T2D Stages Reveals a Complex Relationship with the Host. Microorganisms 2020, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Ocampo-Ortega, R.; Portillo-Wong, A.N.; Ocampo-Ortega, R.; Portillo-Wong, A.N. Suicidal Ideation and Suicide Attempt in a Clinical Sample of Mexican Naval Military. Salud Ment. 2020, 43, 57–63. [Google Scholar] [CrossRef]
- Hernández-Avila, M.; Romieu, I.; Parra, S.; Hernández-Avila, J.; Madrigal, H.; Willett, W. Validity and Reproducibility of a Food Frequency Questionnaire to Assess Dietary Intake of Women Living in Mexico City. Salud Publica Mex. 1998, 40, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 2016, e2584. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2-Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B. Vegan: Community Ecology Package, Version 2.0–10—ScienceOpen. Available online: https://www.scienceopen.com/book?vid=bf1230d1-c04a-4ab5-b525-206c12d0c1dc (accessed on 22 May 2025).
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable Association Discovery in Population-Scale Meta-Omics Studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Dinan, T.G.; Cryan, J.F. Brain-Gut-Microbiota Axis and Mental Health. Psychosom. Med. 2017, 79, 920–926. [Google Scholar] [CrossRef]
- Xiong, R.G.; Li, J.; Cheng, J.; Zhou, D.D.; Wu, S.X.; Huang, S.Y.; Saimaiti, A.; Yang, Z.J.; Gan, R.Y.; Li, H. Bin The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients 2023, 15, 3258. [Google Scholar] [CrossRef] [PubMed]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between Body Mass Index and Firmicutes/Bacteroidetes Ratio in an Adult Ukrainian Population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human Gut Microbiota in Obesity and after Gastric Bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Ulloa-Martínez, M.; Martínez-Rojano, H.; Galván-Rodríguez, F.M.; Miranda-Brito, C.; Romano, M.C.; Piña-Escobedo, A.; Pizano-Zárate, M.L.; Hoyo-Vadillo, C.; García-Mena, J. Study of the Diversity and Short-Chain Fatty Acids Production by the Bacterial Community in Overweight and Obese Mexican Children. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1337–1346. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible Association of Firmicutes in the Gut Microbiota of Patients with Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef]
- Lin, P.; Ding, B.; Feng, C.; Yin, S.; Zhang, T.; Qi, X.; Lv, H.; Guo, X.; Dong, K.; Zhu, Y.; et al. Prevotella and Klebsiella Proportions in Fecal Microbial Communities Are Potential Characteristic Parameters for Patients with Major Depressive Disorder. J. Affect. Disord. 2017, 207, 300–304. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered Fecal Microbiota Composition in Patients with Major Depressive Disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Zhang, X.; Yu, Z.H.; Zhang, Z.; Deng, M.; Zhao, J.H.; Ruan, B. Altered Gut Microbiota Profile in Patients with Generalized Anxiety Disorder. J. Psychiatr. Res. 2018, 104, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Bai, J.; Wu, D.I.; Yu, S.F.; Qiang, X.L.; Bai, H.; Wang, H.N.; Peng, Z.W. Association between Fecal Microbiota and Generalized Anxiety Disorder: Severity and Early Treatment Response. J. Affect. Disord. 2019, 259, 56–66. [Google Scholar] [CrossRef]
- Mobeen, F.; Sharma, V.; Prakash, T. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation 2018, 14, 560–573. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, M.; Raes, J.; Pelletier, E.; Paslier, D.L.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Wu, M.-R.; Chou, T.-S.; Tzu, T.; Hospital, C.; Huang, C.-Y.; Hsiao, J.-K. A Potential Probiotic-Lachnospiraceae NK4A136 Group: Evidence from the Restoration of the Dietary Pattern from a High-Fat Diet. Res. Sq. 2020, 10. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The Neuroactive Potential of the Human Gut Microbiota in Quality of Life and Depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- Maya-Lucas, O.; Murugesan, S.; Nirmalkar, K.; Alcaraz, L.D.; Hoyo-Vadillo, C.; Pizano-Zárate, M.L.; García-Mena, J. The Gut Microbiome of Mexican Children Affected by Obesity. Anaerobe 2019, 55, 11–23. [Google Scholar] [CrossRef]
- Amador-Lara, F.; Andrade-Villanueva, J.F.; Vega-Magaña, N.; Peña-Rodríguez, M.; Alvarez-Zavala, M.; Sanchez-Reyes, K.; Toscano-Piña, M.; Peregrina-Lucano, A.A.; del Toro-Arreola, S.; González-Hernández, L.A.; et al. Gut Microbiota from Mexican Patients with Metabolic Syndrome and HIV Infection: An Inflammatory Profile. J. Appl. Microbiol. 2022, 132, 3839–3852. [Google Scholar] [CrossRef]
- León-Mimila, P.; Villamil-Ramírez, H.; López-Contreras, B.E.; Morán-Ramos, S.; Macias-Kauffer, L.R.; Acuña-Alonzo, V.; Del Río-Navarro, B.E.; Salmerón, J.; Velazquez-Cruz, R.; Villarreal-Molina, T.; et al. Low Salivary Amylase Gene (AMY1) Copy Number Is Associated with Obesity and Gut Prevotella Abundance in Mexican Children and Adults. Nutrients 2018, 10, 1607. [Google Scholar] [CrossRef]
- Companys, J.; Gosalbes, M.J.; Pla-Pagà, L.; Calderón-Pérez, L.; Llauradó, E.; Pedret, A.; Valls, R.M.; Jiménez-Hernández, N.; Sandoval-Ramirez, B.A.; Del Bas, J.M.; et al. Gut Microbiota Profile and Its Association with Clinical Variables and Dietary Intake in Overweight/Obese and Lean Subjects: A Cross-Sectional Study. Nutrients 2021, 13, 2032. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Brame, J.E.; Liddicoat, C.; Abbott, C.A.; Breed, M.F. The Potential of Outdoor Environments to Supply Beneficial Butyrate-Producing Bacteria to Humans. Sci. Total Environ. 2021, 777, 146063. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Zheng, M.; Hu, M.; Fang, X.; Geng, D.; Liu, S.; Wang, L.; Zhang, J.; Guan, L.; Zheng, P.; et al. Butyrate Ameliorates Quinolinic Acid–Induced Cognitive Decline in Obesity Models. J. Clin. Investig. 2023, 133, 4. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immunol. 2014, 121, 91–119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, M.; Chen, Q.; Li, X.; Chen, L.; Dong, Z.; Zhu, W.; Yang, Y.; Liu, Z.; Chen, Q. Programmable Probiotics Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment after Effective Oral Delivery. Nat. Commun. 2022, 13, 3432. [Google Scholar] [CrossRef]
- Tilg, H.; Kaser, A. Gut Microbiome, Obesity, and Metabolic Dysfunction. J. Clin. Investig. 2011, 121, 2126–2132. [Google Scholar] [CrossRef]
- Lee, W.J.; Hase, K. Gut Microbiota-Generated Metabolites in Animal Health and Disease. Nat. Chem. Biol. 2014, 10, 416–424. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut Microbiome Remodeling Induces Depressive-like Behaviors through a Pathway Mediated by the Host’s Metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Miri, S.; Yeo, J.D.; Abubaker, S.; Hammami, R. Neuromicrobiology, an Emerging Neurometabolic Facet of the Gut Microbiome? Front. Microbiol. 2023, 14, 1098412. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Q.; Hou, Y.; Zhang, X.; Yin, Z.; Cai, X.; Wei, W.; Wang, J.; He, D.; Wang, G.; et al. Bacteroides Species Differentially Modulate Depression-like Behavior via Gut-Brain Metabolic Signaling. Brain Behav. Immun. 2022, 102, 11–22. [Google Scholar] [CrossRef]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The Gut Microbiota in Anxiety and Depression—A Systematic Review. Clin. Psychol. Rev. 2021, 83, 101943. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H. Gut Bacteroides Species in Health and Disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef]
- Vajro, P.; Paolella, G.; Fasano, A. Microbiota and Gut-Liver Axis: Their Influences on Obesity and Obesity-Related Liver Disease. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Wall, R.; Cryan, J.F.; Paul Ross, R.; Fitzgerald, G.F.; Dinan, T.G.; Stanton, C. Bacterial Neuroactive Compounds Produced by Psychobiotics. Adv. Exp. Med. Biol. 2014, 817, 221–239. [Google Scholar] [CrossRef]
- Barczynska, R.; Kapusniak, J.; Litwin, M.; Slizewska, K.; Szalecki, M. Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity. Plant Foods Hum. Nutr. 2016, 71, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Ben Othman, R.; Ben Amor, N.; Mahjoub, F.; Berriche, O.; El Ghali, C.; Gamoudi, A.; Jamoussi, H. A Clinical Trial about Effects of Prebiotic and Probiotic Supplementation on Weight Loss, Psychological Profile and Metabolic Parameters in Obese Subjects. Endocrinol. Diabetes Metab. 2023, 6, e402. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.Y.; Zhao, C.N.; Xu, X.Y.; Tang, G.Y.; Corke, H.; Gan, R.Y.; Li, H. Bin Dietary Plants, Gut Microbiota, and Obesity: Effects and Mechanisms. Trends Food Sci. Technol. 2019, 92, 194–204. [Google Scholar] [CrossRef]
- Qiao, Y.; Sun, J.; Xie, Z.; Shi, Y.; Le, G. Propensity to High-Fat Diet-Induced Obesity in Mice Is Associated with the Indigenous Opportunistic Bacteria on the Interior of Peyer’s Patches. J. Clin. Biochem. Nutr. 2014, 55, 120–128. [Google Scholar] [CrossRef]
- Pekkala, S.; Munukka, E.; Kong, L.; Pöllänen, E.; Autio, R.; Roos, C.; Wiklund, P.; Fischer-Posovszky, P.; Wabitsch, M.; Alen, M.; et al. Toll-like Receptor 5 in Obesity: The Role of Gut Microbiota and Adipose Tissue Inflammation. Obesity 2015, 23, 581–590. [Google Scholar] [CrossRef]
- Hippe, B.; Remely, M.; Aumueller, E.; Pointner, A.; Magnet, U.; Haslberger, A.G. Faecalibacterium Prausnitzii Phylotypes in Type Two Diabetic, Obese, and Lean Control Subjects. Benef. Microbes 2016, 7, 511–518. [Google Scholar] [CrossRef]
- Tartaglia, D.; Coccolini, F.; Mazzoni, A.; Strambi, S.; Cicuttin, E.; Cremonini, C.; Taddei, G.; Puglisi, A.G.; Ugolini, C.; Di Stefano, I.; et al. Sarcina Ventriculi Infection: A Rare but Fearsome Event. A Systematic Review of the Literature. Int. J. Infect. Dis. 2022, 115, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Lin, F.; Yang, F.; Chen, J.; Cai, W.; Zou, T. Gut Microbiome Characteristics of Comorbid Generalized Anxiety Disorder and Functional Gastrointestinal Disease: Correlation with Alexithymia and Personality Traits. Front. Psychiatry 2022, 13, 946808. [Google Scholar] [CrossRef]
- Qi, Z.; Zhibo, Z.; Jing, Z.; Zhanbo, Q.; Shugao, H.; Weili, J.; Jiang, L.; Shuwen, H. Prediction Model of Poorly Differentiated Colorectal Cancer (CRC) Based on Gut Bacteria. BMC Microbiol. 2022, 22, 312. [Google Scholar] [CrossRef] [PubMed]
- Baske, M.M.; Timmerman, K.C.; Garmo, L.G.; Freitas, M.N.; McCollum, K.A.; Ren, T.Y. Fecal Microbiota Transplant on Escherichia-Shigella Gut Composition and Its Potential Role in the Treatment of Generalized Anxiety Disorder: A Systematic Review. J. Affect. Disord. 2024, 354, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; He, Y. The Variation Characteristics of Fecal Microbiota in Remission UC Patients with Anxiety and Depression. Front. Microbiol. 2023, 14, 1237256. [Google Scholar] [CrossRef]
- Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms Underlying the Resistance to Diet-Induced Obesity in Germ-Free Mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [Google Scholar] [CrossRef]
Variables | Total |
---|---|
Age | |
Years | 39.44 |
Mean (±SD) | (±7.32) |
Sex | |
Male (%) | 83 (78.3) |
Female (%) | 23 (21.7) |
Schooling | |
- Middle school (%) | 30 (28.6) |
- High school (%) | 25 (23.8) |
- Professional technician (%) | 15 (14.3) |
- Bachelor’s degree (%) | 25 (23.8) |
- Master’s degree (%) | 6 (5.7) |
- Specialty (%) | 2 (1.9) |
Marital Status | |
- Married (%) | 68 (64.8) |
- Single (%) | 22 (21) |
- Unmarried (%) | 11 (10.5) |
- Divorced (%) | 4 (3.8) |
Stratified Groups | ||||||||
---|---|---|---|---|---|---|---|---|
Variables | OCG (n = 79) | OwS (n = 27) | p | OD (n = 7) | OAx (n = 8) | ODAx (n = 12) | Total (n = 106) | p |
Sex | ||||||||
Male (%) | 67 (84.8) | 15 (60) | 0.01 | 3 (50%) | 7 (70) | 6 (54.5) | 83 (78.3) | 0.03 |
Female (%) | 12 (15.2) | 10 (40) | 3 (50%) | 3 (30) | 5 (45.5) | 23 (21.7) | ||
Age (years) | 39.96 | 37.41 | 0.20 | 41.83 | 36.80 | 36.82 | 39.44 | 0.29 |
Mean (±SD) | (7.61) | (6.15) | (7.94) | (6.18) | (3.73) | (7.32) | ||
Serum biochemistry | ||||||||
Glucose (mg/dL) | 95.02 | 89.71 | 0.26 | 94.20 | 87.72 | 90.18 | 93.8 | 0.71 |
Mean (±SD) | (21.94) | (14.45) | (15.80) | (17.05) | (10.82) | (20.51) | ||
HDL cholesterol (mg/dL) | 41.05 | 40.80 | 0.91 | 46.67 | 40.50 | 40.45 | 40.99 | 0.57 |
Mean (±SD) | (10.15) | (9.89) | (12.17) | (10.55) | (11.74) | (10.05) | ||
LDL cholesterol (mg/dL) | 128.45 | 132.36 | 0.62 | 142.67 | 138.90 | 118.27 | 129.38 | 0.43 |
Mean (±SD) | (34.70) | (35.41) | (52.12) | (21.95) | (33.25) | (34.74) | ||
Total cholesterol (mg/dL) | 207.45 | 203.88 | 0.70 | 220.17 | 206.70 | 192.91 | 206.60 | 0.59 |
Mean (±SD) | (40.87) | (41.94) | (59.48) | (31.66) | (36.66) | (40.95) | ||
TG (mg/dL) | 175.84 | 155.80 | 0.30 | 154.67 | 141.70 | 171 | 171.07 | 0.63 |
Mean (±SD) | (87.80) | (70.54) | (50.66) | (74.18) | (75.18) | (84.131) | ||
Body composition analysis | ||||||||
Weight (Kg) | 97.02 | 96.85 | 0.94 | 100.46 | 98.78 | 93.35 | 96.98 | 0.56 |
Mean (±SD) | (10.91) | (11.37) | (10.39) | (10.51) | (12.09) | (10.96) | ||
BMI (kg/m2) | 34.53 | 35.82 | 0.07 | 39.65 | 34.35 | 34.67 | 34.84 | 0.002 |
Mean (±SD) | (3.06) | (3.52) | (2.69) a,b,c | (2.38) | (0.98) | (3.2) | ||
Body fat (%) | 37.41 | 40.45 | 0.03 | 43.89 | 39.15 | 40.18 | 38.13 | 0.04 |
Mean (±SD) | (5.91) | (6.80) | (6.04) | (6.68) | (7.24) | (6.23) | ||
Free body fat mass % | 62.59 | 59.55 | 0.03 | 56.10 | 60.85 | 59.82 | 61.87 | 0.04 |
Mean (±SD) | (5.91) | (6.80) | (6.04) | (6.68) | (7.24) | (6.24) | ||
Energy and macronutrients intake | ||||||||
Energy (kcal/day) | 2711.68 | 2780.56 | 0.76 | 2947.67 | 2607 | 2704 | 2727.92 | 0.93 |
Mean (±SD) | (1009.45) | (971.70) | (970.65) | (892.207) | (1099.42) | (996.52) | ||
Protein percentage | 18.77 | 18.96 | 0.89 | 21.83 | 17.80 | 19 | 18.82 | 0.63 |
Mean (±SD) | (5.76) | (7.44) | (13.87) | (2.61) | (5.11) | (6.1) | ||
Lipid percentage | 30.34 | 30.83 | 0.81 | 31.80 | 28.40 | 33.64 | 30.46 | 0.56 |
Mean (±SD) | (9.09) | (8.67) | (7.05) | (9.75) | (9.77) | (8.96) | ||
Carbohydrate percentage | 50.76 | 50 | 0.77 | 46.67 | 53.70 | 46.82 | 50.58 | 0.43 |
Mean (±SD) | (11.42) | (11.58) | (13.21) | (10.39) | (12.28) | (11.41) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samudio-Cruz, M.A.; Cerqueda-García, D.; Cabrera-Ruiz, E.; Luna-Angulo, A.; Canizales-Quinteros, S.; Landa-Solis, C.; Martínez-Nava, G.A.; Carrillo-Mora, P.; Rangel-López, E.; Ríos-Martínez, J.; et al. Taxonomic Biomarkers of Gut Microbiota with Potential Clinical Utility in Mexican Adults with Obesity and Depressive and Anxiety Symptoms. Microorganisms 2025, 13, 1828. https://doi.org/10.3390/microorganisms13081828
Samudio-Cruz MA, Cerqueda-García D, Cabrera-Ruiz E, Luna-Angulo A, Canizales-Quinteros S, Landa-Solis C, Martínez-Nava GA, Carrillo-Mora P, Rangel-López E, Ríos-Martínez J, et al. Taxonomic Biomarkers of Gut Microbiota with Potential Clinical Utility in Mexican Adults with Obesity and Depressive and Anxiety Symptoms. Microorganisms. 2025; 13(8):1828. https://doi.org/10.3390/microorganisms13081828
Chicago/Turabian StyleSamudio-Cruz, María Alejandra, Daniel Cerqueda-García, Elizabeth Cabrera-Ruiz, Alexandra Luna-Angulo, Samuel Canizales-Quinteros, Carlos Landa-Solis, Gabriela Angélica Martínez-Nava, Paul Carrillo-Mora, Edgar Rangel-López, Juan Ríos-Martínez, and et al. 2025. "Taxonomic Biomarkers of Gut Microbiota with Potential Clinical Utility in Mexican Adults with Obesity and Depressive and Anxiety Symptoms" Microorganisms 13, no. 8: 1828. https://doi.org/10.3390/microorganisms13081828
APA StyleSamudio-Cruz, M. A., Cerqueda-García, D., Cabrera-Ruiz, E., Luna-Angulo, A., Canizales-Quinteros, S., Landa-Solis, C., Martínez-Nava, G. A., Carrillo-Mora, P., Rangel-López, E., Ríos-Martínez, J., López-Contreras, B., Valencia-León, J. F., & Sánchez-Chapul, L. (2025). Taxonomic Biomarkers of Gut Microbiota with Potential Clinical Utility in Mexican Adults with Obesity and Depressive and Anxiety Symptoms. Microorganisms, 13(8), 1828. https://doi.org/10.3390/microorganisms13081828