Next Article in Journal
Correction: Fernández Blanco et al. A Photonic Immunosensor Detection Method for Viable and Non-Viable E. coli in Water Samples. Microorganisms 2024, 12, 1328
Previous Article in Journal
Cyanobacterial Bloom in Urban Rivers: Resource Use Efficiency Perspectives for Water Ecological Management
Previous Article in Special Issue
Synthesis of Silver Nanoparticles from Bitter Melon (Momordica charantia) Extracts and Their Antibacterial Effect
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options

by
Theodoros Karampatakis
1,*,
Katerina Tsergouli
1 and
Payam Behzadi
2,*
1
Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland
2
Department of Microbiology, ShQ.C., Islamic Azad University, Shahr-e Qods 37541-374, Iran
*
Authors to whom correspondence should be addressed.
Microorganisms 2025, 13(9), 1983; https://doi.org/10.3390/microorganisms13091983
Submission received: 28 June 2025 / Revised: 12 August 2025 / Accepted: 21 August 2025 / Published: 26 August 2025

Abstract

Acinetobacter baumannii is a Gram-negative, non-motile pathogen commonly associated with healthcare settings. It is capable of causing severe infections, particularly in immunocompromised and critically ill individuals, and is linked to poor clinical outcomes. Infections caused by carbapenem-resistant A. baumannii (CRAB) represent a major public health concern due to limited treatment options and high resistance rates. Several virulence determinants contribute to CRAB’s pathogenicity, including capsular exopolysaccharide (CPS), lipopolysaccharide (LPS), lipooligosaccharide (LOS), efflux pumps, outer membrane proteins (OMPs), pili, metal acquisition systems, two-component regulatory systems (TCSs), and secretion systems (SSs). The dominant resistance mechanism in CRAB involves the production of carbapenemases, most notably oxacillinase-23 (OXA-23) and metallo-β-lactamases (MBLs) such as Verona integron-encoded MBL (VIM) and New Delhi MBL (NDM). Accurate identification of these resistance mechanisms is crucial for guiding effective antimicrobial therapy. Potential treatment options include older agents like polymyxins, ampicillin–sulbactam, high-dose carbapenems, tigecycline, and minocycline, along with newer antimicrobials such as eravacycline, cefiderocol, and aztreonam–avibactam. This review aims to explore the virulence mechanisms and molecular pathogenesis of CRAB, while also presenting recent developments in its epidemiology and available antimicrobial therapies.

1. Introduction

Acinetobacter baumannii is a Gram-negative, non-motile pathogen frequently encountered in healthcare environments, where it is responsible for severe infections, particularly in critically ill or immunocompromised patients [1]. Its presence in intensive care units (ICUs) is of particular concern, as carbapenem-resistant A. baumannii (CRAB) has been linked to higher rates of mortality and morbidity, as well as substantial healthcare costs [1,2,3]. CRAB emergence is primarily driven by cross-transmission, often resulting from lapses in infection control measures—such as poor hand hygiene—and extensive use of antimicrobials, which fosters selective pressure for resistant strains [4,5]. The 2024 World Health Organization (WHO) Bacterial Priority Pathogens List (BPPL) designates CRAB, third-generation cephalosporin-resistant Enterobacterales, carbapenem-resistant Enterobacterales (CRE), and rifampicin-resistant Mycobacterium tuberculosis as pathogens of critical priority [6]. The burden of CRAB is especially severe in endemic areas [7], with Greece reporting the highest prevalence among EU countries, reaching a resistance rate of 95.3% in 2023 [8]. CRAB isolates are commonly categorized into three resistance levels: multidrug-resistant (MDR), defined as non-susceptibility to at least one agent in three antimicrobial classes; extensively drug-resistant (XDR), defined as non-susceptibility to at least one agent in all but two classes; and pandrug-resistant (PDR), characterized by non-susceptibility to all agents across all tested categories [9,10,11,12,13]. Recent studies show that most CRAB isolates remain susceptible to only one or two available antibiotics, placing them in the XDR category. In some cases, these strains further progress to PDR status, leaving no viable treatment options. The persistence and spread of XDR/PDR A. baumannii within healthcare environments are linked to elevated mortality rates and substantial infection control challenges, highlighting the urgent need for innovative and effective antimicrobial approaches [14,15,16,17]. Thus, a comprehensive understanding of both the resistance mechanisms at the molecular level and the epidemiological trends of CRAB is critical for developing and selecting effective treatment strategies [18]. Accordingly, this review aims to highlight the virulence traits of CRAB and provide updated insights into its molecular epidemiology and current therapeutic options.

2. Genomic Pool, Virulence Factors, and Molecular Pathogenesis

The genome of A. baumannii consists of a core (persistent) component, present in 95–99% of strains, which encodes essential functions such as cell division, metabolism, and energy production [19,20,21]. In contrast, the accessory (shell) genome, found in 15–35% of isolates, contains genes related to virulence and antimicrobial resistance, often acquired via mobile genetic elements (MGEs) like plasmids, transposons (Tns), and integrons (Ints) [20,21,22,23,24]. CRAB exhibits an open pan-genome, enriched with insertion sequences (ISs), Ints, and Tns embedded in genomic islands (GIs), facilitating the acquisition of new genes [25,26]. Antimicrobial Resistance Genes (ARGs) are distributed across both the core and shell genome, frequently mobilized by ISs and other elements through integrase and transposase activity [11,12,21,24,27,28].
Notably, ISAba-type ISs, approximately 1 kb in size, play a central role in activating and disseminating carbapenemase genes, significantly contributing to the genomic plasticity and multidrug resistance seen in CRAB strains [21,24,26,29,30].
The development of antimicrobial resistance in A. baumannii and CRAB strains is largely driven by horizontal gene transfer (HGT), alongside notable contributions from mutations and the MGEs, particularly those of the ISAba family. Such genomic changes can influence the expression of constitutive genes involved in enzyme synthesis, efflux pump function, and outer membrane protein (OMP) modification, thereby equipping the bacteria with resistance to a wide spectrum of antimicrobial agents [21,24,31].
The GI AbaR1 plays a pivotal role in acquiring a wide array of resistance determinants through its multiple class 1 Ints in A. baumannii and CRAB strains. These Ints carry gene arrays capable of expressing a diversity of effective enzymes, e.g., β-lactamases, aminoglycoside-modifying enzymes, and efflux systems. Expression of these enzymes results in the appearance of resistance in CRAB superbugs to not only numerous antimicrobial agents (such as sulfonamides, chloramphenicol, trimethoprim, etc.) but also a variety of heavy metals and some other chemicals. In addition to AbaR1, the proliferation of ARGs in A. baumannii and CRAB strains is further facilitated by plasmid-mediated HGT [24,31,32].
Plasmids serve as major mediators of HGT, playing a central role in the dissemination of carbapenem-resistant genes (CRGs), particularly within CRAB populations. It is known that the blaOXA-58 gene is frequently plasmid-borne, and studies have reported instances where blaNDM-1 and blaOXA-58 coexist on the same large plasmid [31,33,34]. Although uncommon in A. baumannii, metallo-β-lactamase (MBL) genes—such as blaNDM, blaVIM, and blaIMP—as well as Class A β-lactamase genes—such as blaKPC and blaGES—have been identified on plasmids. These plasmid-borne genes have been reported in A. baumannii, e.g., CRAB strains [35]. In a study, Ramoul et al. documented the co-existence of blaNDM-1 alongside blaOXA-23 or blaOXA-58 in clinical A. baumannii isolates obtained from northeastern Algeria [31,36].
In a comparative analysis, Wang et al. [37] investigated the MGEs of two strains comprising 2023-AB023 and 2023-AB033. Strain 2023-AB023 harbored six plasmids, while strain 2023-AB033 carried a subset of four of these. At the chromosomal level, both strains shared five common MGEs, e.g., ISAba8, ISAlw1, ISAba21, ISAba26, and ISAba14.
They [37] also found that the ARGs of blaOXA-23 and blaNDM-1 were located on separate plasmids in each strain, while all other ARGs were situated on the chromosome. In addition, the blaNDM-1-carrying plasmid was linked to the ISAba125, which encodes the IS3 family transposase ISAba45.
CRAB expresses a wide array of virulence factors, categorized into nine major types: capsular polysaccharide (CPS), lipopolysaccharide (LPS), lipooligosaccharide (LOS), efflux systems, OMPs, pili, metal ion acquisition systems, two-component regulatory systems (TCSs), and secretion systems (SSs) [12,21,38]. Most of the genes responsible for these virulence traits are disseminated via MGEs—such as ISs, Tns, and Ints—frequently carried on plasmids [39,40].

2.1. Capsular Exopolysaccharide (CPS)

The high-molecular-weight polysaccharide capsule is essential for immune evasion and environmental persistence. It supports growth in ascitic fluid, resists complement killing, and is critical for virulence in pulmonary infection models. A. baumannii exhibits phase variation between highly capsulated (virulent) and low-capsulated (avirulent) forms. This switch is regulated by TetR-family transcription factors, affecting susceptibility to antimicrobials, lysozyme, disinfectants, and oxidative stress. Genes like wzc and small RNAs such as SrvS influence this phenotypic shift [41,42,43,44].
The capsular type (K-type) is a key determinant of A. baumannii and CRAB virulence, as the capsule provides vital defense against environmental challenges, nutrient limitation, and host immune responses. Driven by its crucial protective role and intense selective pressures, the capsule exhibits remarkable structural diversity, with over 200 distinct K loci identified to date [45,46,47,48]. Unlike KL2, the most prevalent K-type worldwide, many other K-types display regional distribution patterns. For instance, KL2 and KL7 have been reported in CRAB strains from Portugal, KL7 and KL28 in China, and KL9 in Canada. In Taiwan, a wider diversity has been observed, including KL2, KL10, KL14, KL22, and KL52 [46,48,49,50,51].

2.2. Lipopolysaccharide (LPS)

LPS is a key outer membrane component of Gram-negative bacteria, consisting of lipid A, a core oligosaccharide, and the O-antigen. In A. baumannii, LPS contributes to immune evasion and triggers host inflammatory responses [52,53,54,55,56,57]. Lipid A, the toxic portion, anchors the LPS and modulates membrane permeability and antibiotic resistance via enzymatic modifications during biosynthesis. Its hepta-acylated form is predominant in A. baumannii, supporting membrane integrity through divalent cation bridges and negative charge interactions. Specific sugar compositions and structural variations, such as mutations in lipid A biosynthesis genes (e.g., lpxABCD), have been linked to resistance against polymyxins [38,55,58].

2.3. Lipooligosaccharide (LOS)

A. baumannii expresses various surface structures—including adhesins, capsular polysaccharides, glycoproteins, and LOS—that contribute to its virulence. Unlike many Gram-negative bacteria, A. baumannii lacks O-antigen and instead produces LOS with a hepta-acylated lipid A linked to an oligosaccharide core. This structure triggers innate immune responses via Toll-like receptor 4 (TLR4) and enhances resistance to antimicrobial peptides and desiccation. Under cold stress, the bacterium modifies lipid A using the LpxS enzyme to maintain membrane fluidity [41,59,60,61].
Wang et al. [37] found that all CRAB strains they examined possessed a core set of nine virulence genes, which are crucial for adherence (ompA), drug efflux (AdeFGH), and iron sequestration (barA). A notable exception was a group of six strains involving 2019-AB015, 2019-AB016, 2019-AB019, 2019-AB055, 2023-AB023, and 2019-AB023, which were missing the biofilm gene bap and the quorum-sensing genes abaI/R. [37]. The isolates showed significant genetic diversity, with 12 different KL types and three lipooligosaccharide outer core (OCL) types. The most common combinations were KL2-OCL1, KL9-OCL1, and KL3-OCL1. Interestingly, the KL30 locus was present only in the isolates collected in 2023.

2.4. Efflux Pumps

A. baumannii employs broad-spectrum resistance–nodulation–division (RND) efflux pumps to expel diverse antimicrobials. The main characterized systems—AdeABC, AdeFGH, and AdeIJK—consist of an inner membrane transporter, a membrane fusion protein, and an outer membrane channel. The AdeABC pump, regulated by the adeRS two-component system, is strongly associated with carbapenem resistance, especially when adeA, adeB, and adeC are overexpressed. Notably, carbapenem resistance can occur even in the absence of regulatory mutations, suggesting multifactorial gene interactions. Synergism between AdeABC overexpression and carbapenemase (e.g., OXA enzymes) further amplifies resistance [62,63,64,65,66,67,68].

2.5. Outer Membrane Proteins (OMPs)

OMPs are crucial for A. baumannii pathogenicity and antibiotic resistance. Among them, OmpA is the most dominant, aiding in drug resistance, adherence to epithelial cells, and biofilm formation. It interacts with host fibronectin to facilitate cell attachment and invasion, while also contributing to immune evasion, serum resistance, apoptosis induction, and outer membrane vesicle (OMV) production. OmpA’s role in modulating host immune responses, particularly by promoting Th1 differentiation via dendritic cell activation, further enhances the bacterium’s persistence and virulence [69,70,71,72,73,74,75,76].
Indeed, OMVs play multifaceted roles in bacterial physiology, with a significant contribution to cellular detoxification. By facilitating the removal of toxic periplasmic substances, OMVs alleviate envelope stress and support bacterial fitness. This detoxification capability has been observed, for example, in non-native bacterial hosts expressing Class B β-lactamases such as VIM-2 and SPM-1 [77,78].

2.6. Pili

A. baumannii’s persistence in healthcare settings is largely due to its strong adhesion capacity. Adhesion to host or abiotic surfaces is a crucial first step in infection. This process is facilitated by surface structures like pili and fimbriae, which enable firm attachment and biofilm formation. Fimbrial adhesins promote motility and surface colonization, while non-fimbrial adhesins bind host extracellular matrix components like fibronectin and collagen. These structures also aid in plasmid transfer, contributing to the spread of antibiotic resistance [79,80,81,82,83,84,85,86,87].
Adhesins are key virulence factors that help bacteria resist mechanical stress from bodily fluids. In A. baumannii, they include pili proteins, autotransporters, and other surface enzymes, each with distinct receptor affinities. Their interactions with host molecules—such as integrins, selectins, and TLRs—trigger immune responses and enable bacterial survival, inflammation, and biofilm stability. Targeting these adhesins could support new infection-control strategies [79,88,89,90,91,92,93]. All in all, A. baumannii possesses various types of pili, including chaperone-usher (CUP), curli, type IV, type V, and conjugative type IV secretion pili. Among them, CUP pili are the most common and play a key role in surface attachment during infection [10,87,94,95,96].

2.7. Metal Ion Uptake Systems

A. baumannii uses siderophores like acinetobactin to acquire iron under host-imposed limitations. Transporters BauA and BauE import iron–siderophore complexes, with Oxa binding iron directly and Isox aiding under stress. Genes like bauB and bauC drive siderophore synthesis, while the Fur regulator suppresses this process in iron-rich conditions to maintain homeostasis [97,98,99,100].
Calprotectin, released by neutrophils, restricts zinc and manganese during infection, indirectly exacerbating A. baumannii’s iron limitation. Alongside host iron-binding proteins like transferrin and lactoferrin, this creates a nutrient-starved environment. In response, A. baumannii enhances siderophore production and activates metal transporters and enzymes like ZrlA to sustain survival under metal stress [97,101,102,103]. Moreover, zinc is vital for A. baumannii, particularly for activating enzymes like MBLs. Overexpression of znuABC enhances zinc uptake from the environment, supporting bacterial survival and resistance [104].

2.8. Two-Component Systems (TCSs)

TCSs consist of a membrane-bound sensor and a cytoplasmic response regulator. They enable bacteria to adapt to changing environmental conditions. Acinetobacter baumannii possesses up to 20 distinct TCSs, which play key roles in its resistance to antibiotics, virulence, and pathogenicity by modulating gene expression in response to environmental stimuli [38,105]. TCSs like BfmRS, PmrAB, and GacSA, along with stringent response regulators such as ppGpp and DksA, play crucial roles in controlling virulence-related genes in Acinetobacter baumannii. The expression of these genes and associated virulence factors is highly complex. Notably, PmrAB and BfmRS influence the production of outer membrane vesicles (OMVs), and the levels of AbOmpA within these OMVs can fluctuate based on culture conditions or regulatory input from TCSs [74,106,107,108,109,110].

2.9. Secretion Systems (SSs)

Although six secretion systems are well-known in Gram-negative bacteria, their functions in A. baumannii are still under investigation. These systems contribute to virulence and antibiotic resistance. With growing resistance, carbapenems are becoming less effective against MDR strains. As a result, CRAB is a WHO-designated critical threat. Targeting secretion systems may offer new therapeutic and vaccine strategies against drug-resistant A. baumannii [21,111,112].

3. Antimicrobial Resistance Mechanisms in CRAB

Multiple strategies are employed to resist antimicrobial agents (Figure 1), including:
(1)
The production of enzymes like β-lactamases and aminoglycoside-modifying enzymes, which are normally acquired [113,114,115].
(2)
Reduced cell membrane permeability due to the loss of OMPs or porins, which are normally acquired [115,116,117].
(3)
Overexpression/mutation of efflux pumps, belonging to six known multidrug resistance (MDR) families, MATE, ABC, PACE, MFS, SMR, and RND, which are normally acquired [115,118].
(4)
Structural modifications at antibiotic target sites, which are normally acquired [115,119].

3.1. Ambler Classification of β-Lactamases

Although β-lactamases were initially classified by Bush et al. [120] based on their substrate and inhibitor profiles, the molecular classification proposed by Ambler is now more widely accepted. Ambler’s system relies on amino acid sequence analysis to establish a molecular phylogeny and divides β-lactamases into four classes: A, B, C, and D [121,122].
Class A includes serine-based β-lactamases such as SHV (sulfhydryl variable), TEM (temoniera), CTX-M (cefotaxime-hydrolyzing), PER (Pseudomonas extended-resistant), GES (Guiana extended-spectrum), VEB (Vietnamese extended-spectrum), IBC (integron-borne cephalosporinase), SFO (from Serratia fonticola), BES (Brazil extended-spectrum), BEL (Belgium extended-spectrum), and TLA (Tlahuicas Indians). Some, like SHV, TEM, and CTX-M, can function as extended-spectrum β-lactamases (ESBLs) following minor genetic changes. This class also includes inhibitor-resistant variants such as IRTs (inhibitor-resistant TEMs), IRSs (inhibitor-resistant SHVs), and KPCs (Klebsiella pneumoniae carbapenemases) [122,123,124,125]. Notably, KPC-producing strains serve as long-term reservoirs, facilitating the spread of MGEs carrying the blaKPC gene [126].
Class B β-lactamases, known as MBLs, are carbapenemases that can hydrolyze nearly all β-lactams except aztreonam. Their enzymatic activity depends on zinc ions (Zn2+). The most common MBLs include Verona integron-encoded MBL (VIM) and New Delhi MBL (NDM), followed by others such as imipenemase (IMP), German imipenemase (GIM), São Paulo MBL (SPM), Seoul imipenemase (SIM), Australian imipenemase (AIM), Dutch imipenemase (DIM), and the more recently identified Tripoli MBL (TMB) and Florence imipenemase (FIM) [122,127,128,129,130,131,132,133,134,135]. MBLs are further categorized into three subgroups, B1, B2, and B3 [121,122].
Class C β-lactamases, also referred to as cephalosporinases or AmpC β-lactamases, are serine-based enzymes capable of hydrolyzing a wide range of β-lactam antibiotics. Their expression can be either constitutive or inducible, and they may be encoded chromosomally or on plasmids—plasmid-encoded variants are commonly known as AmpC-like β-lactamases. Based on Jacoby’s classification, these enzymes are divided into specific subclasses according to their molecular structure and functional properties [122,136]. At present, ADC-68 is the sole Class C β-lactamase identified in A. baumannii that has been experimentally verified to possess carbapenemase activity [115,122,137].
Class D β-lactamases, known as oxacillinases (OXA), are also serine-based enzymes. Their hydrolytic activity varies by subtype, with certain subtypes functioning as carbapenemases and contributing to broad-spectrum resistance and multidrug-resistant phenotypes. Most OXA-type carbapenemases have been identified in CRAB, including the recently emerging OXA-48 variant [122,138,139,140]. The majority of OXA-type carbapenemase genes are known as acquired carbapenemase genes (ACGs) in CRAB strains [115,122].
A. baumannii naturally harbors the blaOXA-51 gene, which typically exhibits low carbapenemase activity. However, its expression can be markedly enhanced by the presence of upstream IS elements [115].
According to an in silico analysis conducted by Capodimonte et al. [78] in a Dry Lab [141], enzymes belonging to Classes A, B, and C exhibited a very low incidence of lipobox sequences. Conversely, Class D β-lactamases, primarily composed of OXA types, showed a significantly higher prevalence, with roughly 60% possessing a lipobox sequence, leading to the inference of their likely function as membrane-associated lipoproteins. Indeed, these predicted OXA β-lactamase lipoproteins were exclusively detected within Acinetobacter spp. [78]. Moreover, Capodimonte et al. [78] demonstrated that OXA β-lactamases are membrane-associated, a characteristic that facilitates their incorporation into OMVs, akin to NDM-1. This tendency is further supported by predictions indicating that the major carbapenem-hydrolyzing Class D β-lactamases (CHDLs)—including the chromosomally encoded OXA-51-like and the acquired OXA-23-like, OXA-58-like, and OXA-24/40-like variants—function as lipoproteins [78]. Furthermore, according to Capodimonte et al. [78], soluble OXA enzymes are not expected to exist in Acinetobacter spp. While lipidated Class A and B enzymes are prevalent across many bacterial hosts, the direct association of protein lipidation with a specific host like Acinetobacter is a characteristic unique to Class D enzymes [78].
Migliaccio et al. [142] conducted a phylogenomic study involving 837 Acinetobacter isolates representing 72 different species. Using the Pasteur Multilocus Sequence Typing (MLST) scheme, they analyzed phylogenetic relationships and compared them with genome-based and ribosomal MLST (rMLST) phylogenies within the A. baumannii group. Additionally, the study aimed to identify ARGs across the Acinetobacter genomes [142]. ARGs associated with at least three different antibiotic classes were detected in 91 isolates spanning 17 distinct Acinetobacter spp. Moreover, a class D oxacillinase—an enzyme inherently found in various Acinetobacter spp.—was detected in 503 isolates spanning 35 different species within the genus [142]. Moreover, Migliaccio et al. identified class D oxacillinases in 503 isolates across 35 Acinetobacter spp. A total of 94 class D β-lactamase genes from 11 blaOXA families—including blaOXA-211, -134, -214, -294, -51, -213, -274, -286, -58, -40, and -23—were detected. Within the A. baumannii group, A. baumannii and A. pittii carried intrinsic blaOXA-51 and blaOXA-213, respectively, while A. nosocomialis and A. seifertii lacked intrinsic class D β-lactamases.
Carbapenem resistance in A. baumannii has increased globally, largely due to acquired class D β-lactamases—blaOXA-23, blaOXA-40, and blaOXA-58. Among them, blaOXA-23, originally identified in Scotland and likely derived from A. radioresistens, is the most widespread. Outbreaks of OXA-23-producing strains have been reported in various countries, from Eastern Europe and West Asia to Southeast Asia and South America [143,144,145,146].
The spread of blaOXA-23 is linked to Tns, e.g., Tn2006, Tn2007, and Tn2008. Tn2006 includes two ISAba1 elements, while Tn2008 has one. Tn2007 carries a single ISAba4. In some strains reported from the Arab states of the Persian Gulf region, the gene is related to one ISAba1 [143,147,148,149,150,151,152].
According to Papadopoulou et al.’s report [17], all examined A. baumannii isolates possessed an intrinsic, chromosomally located blaOXA-51-like gene. In 97.7% of the isolates, a blaOXA-23-like gene was present. Those isolates harboring blaOXA-23-like demonstrated resistance to carbapenems. In these strains, an ISAba1 element was situated upstream of the gene’s promoter region, a genetic arrangement that may enhance OXA-23 expression [17,153,154].
Accordingly, Mugnier et al. [143] investigated factors contributing to the global spread of the blaOXA-23 gene in A. baumannii. They analyzed 20 OXA-23-producing CRAB strains from various regions (including Asia and Europe) using pulsed-field gel electrophoresis and MLST. Eight distinct sequence types were identified, including four novel ones. The majority of isolates were associated with two dominant European clonal lineages [143].

3.2. Reduced Cell Membrane Permeability Due to the Loss of OMPs

OMP loss contributes secondarily to the development of CRAB. Studies have linked the loss of the CarO porin to imipenem resistance [155,156]. Additionally, overexpression of iron-regulated OMPs under iron-limiting conditions may further enhance carbapenem resistance [157]. The connection between the absence of the 29-kilodalton Omp and reduced susceptibility to imipenem has also been recognized for years [158].

3.3. Overexpression of Efflux Pumps

Efflux pump overexpression also plays a secondary role in the emergence of CRAB. Mutant-based experimental models have highlighted the significant contribution of the AdeABC efflux pump to carbapenem resistance [159]. Additionally, efflux pumps belonging to the RND family have been linked to imipenem resistance in A. baumannii [160].

3.4. Structural Modifications at Antibiotic Target Sites

Scientific evidence on target site modifications contributing to antimicrobial resistance in A. baumannii remains limited. The most commonly reported mechanism involves reduced binding affinity of penicillin-binding protein 2 (PBP2) for imipenem [161]. These alterations are typically caused by genetic mutations at specific loci or by post-transcriptional modifications of certain proteins [162].

4. Trends in Molecular Epidemiology

The earliest reports of CRAB emerged as isolated cases several years ago [163,164]. Initially, the carbapenem resistance was linked to MBLs and OXA-type enzymes [164]. However, in the early stages of CRAB’s genetic evolution, some strains exhibited low-level resistance to carbapenems despite the absence of detectable carbapenemase production [165].

4.1. OXA-Type Carbapenemases

The chromosomally encoded blaOXA-51-like gene, first identified in A. baumannii in the early 1990s, is considered intrinsic to this species and is not inherently linked to carbapenem resistance. However, overexpression of this gene—often driven by upstream ISs such as ISAba1 and, less commonly, ISAba9 or ISAba19—can lead to low-level resistance [166,167,168,169]. Variants like OXA-65, OXA-66, and OXA-69, also part of the OXA-51 family, are commonly detected and possess carbapenemase activity [170]. Over the years, numerous other blaOXA-51-like alleles such as blaOXA-64, blaOXA-94, blaOXA-365, blaOXA-68, blaOXA-90, blaOXA-132, blaOXA-79, blaOXA-82, blaOXA-92, and blaOXA-131 have emerged [171,172,173], along with the recently identified blaOXA-1117 and blaOXA-1118 [173]. Although this gene was once widely used as a diagnostic marker for A. baumannii, it is no longer considered sufficient for accurate species identification [169].
Until around 2010, OXA-58 was the dominant OXA-type carbapenemase in CRAB isolates, largely due to its higher enzymatic activity compared to intrinsic OXA-51. The blaOXA-58-like gene is typically flanked by two ISAba3-like elements, a structure first described in France [170,174,175,176,177].
OXA-23, although initially detected earlier, gained prominence after 2010 and gradually replaced OXA-58 as the most common carbapenemase in CRAB due to its superior hydrolytic efficiency [178,179,180,181]. The blaOXA-23-like gene remains dominant and is often found adjacent to ISAba1. In some endemic regions, strains co-harboring both blaOXA-23-like and blaOXA-58-like have been reported [182,183,184,185,186,187]. The OXA-24 variant—sharing approximately 60% identity with OXA-23—is more frequently seen in Spain, Portugal, and China [188,189,190].
Domingues et al. [48] reported a temporal shift in the prevalence of blaOXA-like genes, with blaOXA-40-like detected in 2005, subsequently replaced by blaOXA-23 between 2006 and 2019. This trend reflects the broader historical pattern in Portugal, where blaOXA-58 was predominant from 2002 to 2004, followed by blaOXA-40 (2002–2006), and later blaOXA-23 from 2006 onward. These shifts highlight the central role of Class D β-lactamases as the predominant carbapenemases in CRAB clinical isolates—a pattern also observed in reports from the United States and multiple Asian healthcare settings [46,48,189,191].
Mavroidi et al. [192] documented the emergence of A. baumannii isolates belonging to sequence type 3LST ST101, producing blaOXA-23 and classified as international clone II, which exhibited resistance to both tigecycline and colistin in a Greek hospital over a three-year span. According to the authors’ report [192], this represented the first reported occurrence of such isolates in Greece. The identification of two blaOXA-23-producing strains resistant to both agents is particularly alarming, highlighting the organism’s expanding ability to develop diverse antibiotic resistance mechanisms [17,192]. CRAB recruits intrinsic OXA-51-like enzymes as well as acquired forms such as OXA-23-like, OXA-40-like, and OXA-58-like for most strains worldwide [48].
The OXA-23 gene, a prominent member of the OXA family, is recognized as the most prevalent carbapenem resistance mechanism worldwide [45,48].
Other notable OXA-type carbapenemases include OXA-49 and OXA-73 (prevalent in China), and OXA-143 and OXA-231, primarily reported in Brazil [166].
A. baumannii isolates like CRAB strains display a complex resistance profile, with OXA-type carbapenemases representing the primary mechanism underlying resistance to carbapenems and other β-lactams. Additionally, target site modifications and efflux pump activity often contribute to resistance against key therapeutic agents, including polymyxins, cefiderocol, and other β-lactams [31].

4.2. Metallo-β-Lactamases (MBLs)

MBLs, particularly VIM enzymes, are the most frequently detected among CRAB strains. In endemic regions such as Greece, VIM-1 and VIM-4 are the most common [193,194,195,196], whereas VIM-2 predominates in South Korea [197,198]. The blaVIM genes are consistently integrated within class 1 Ints [193,194]. Although rare, other variants like VIM-35 have also been identified [199]. Additional MBLs, including IMP-1 and SIM-1, have been reported in countries such as South Korea, Iran, and Morocco [131,200,201,202,203]. SPM-producing CRAB strains are also notably present in Morocco [203,204]. Recently, strains co-expressing VIM-2 and OXA-23 were identified in Tunisia [205].
Although VIM-producing CRAB strains have been predominant, the global emergence of NDM-1 and NDM-2 producers began after 2012 [206,207,208]. NDM-1, in particular, has spread extensively, leading to multiple severe outbreaks over the following years and remains widespread today [209,210]. The blaNDM-1 gene is typically preceded by the insertion sequence ISAba125 [211,212]. Additional NDM variants have also been reported, including NDM-6 in Spain [213], NDM-9 in France (2023) [214], and NDM-5 in Thailand during the same year [215]. CRAB strains co-producing NDM-1 and OXA-58 have been identified [35,216], though the most commonly observed pattern is the coexistence of NDM-1 and OXA-23 in the same isolates [217,218,219,220,221].
In a study by Wang et al. [37], the resistome of 125 CRAB isolates was analyzed, revealing 47 unique ARGs. These genes conferred resistance to four major antibiotic classes of aminoglycosides, sulfonamides, tetracyclines, and β-lactams. A key finding was the presence of carbapenemases in all CRAB isolates.
Wang et al. [37] found that 26 ARGs were highly prevalent, being detected in more than half of the strains. The most common were AdeFGH, blaOXA-66, and blaOXA-23, respectively. Temporal patterns such as blaOXA-51, blaOXA-217, and blaOXA-374 were found only in 2019 isolates, while blaNDM-1 and blaOXA-91 were unique to 2023 isolates. No resistance genes of mcr-1 (colistin) or tet(X) (tigecycline) were detected by Wang et al. [37]. However, two isolates from 2023 (e.g., 2023-AB023 and 2023-AB033) were identified by Wang et al. [37], harboring two different carbapenemase genes and a total of seven resistance genes, including blaOXA-23, blaOXA-91, and blaNDM-1.

4.3. Klebsiella pneumoniae Carbapenemases (KPCs)

KPC-type carbapenemases are relatively uncommon in CRAB isolates. The blaKPC gene was first identified in A. baumannii strains from Puerto Rico in 2009, involving variants such as KPC-2, KPC-3, KPC-4, and KPC-10 [11,222]. However, its presence remained largely confined to that region in the following years [223]. Since then, only sporadic cases have been reported globally—for instance, a KPC-3-producing CRAB isolate in Portugal [224] and a recent case from Tunisia involving a strain co-producing OXA-23 and KPC-2 [225].

4.4. Sequence Types (STs)

The emergence of resistant Acinetobacter calcoaceticus–baumannii (Acb) strains has prompted widespread epidemiological research. MLST is now the standard tool due to its strong reproducibility, global consistency, and ability to trace evolutionary patterns. As an advantage, its use of standardized ST nomenclatures enables effective tracking of major clonal lineages [166,226,227]. In A. baumannii, MLST’s effectiveness is limited by the existence of two main schemes: Oxford and Pasteur. Though both classify similar strains, comparing their accuracy, resolution, and phylogenetic consistency remains necessary [226,228,229,230]. Molecular studies have identified major clonal lineages in A. baumannii, now known globally as International Clones (IC) I–III. In the Pasteur MLST scheme, these align with clonal complexes CC1 (ST1), CC2 (ST2), and CC3 (ST3). Other common sequence types include ST10, ST15, ST25, ST32, ST78, and ST79 [166,171,226,230,231,232,233]. The Oxford scheme provides higher resolution but is prone to recombination and technical issues, especially in the gpi gene, part of the capsule operon. As gpi affects capsule type and virulence, some studies recommend using this scheme for tracking capsular variation [226,234,235,236,237].
The updated epidemiology of A. baumannii sequence types, isolates, and genomes is available on the AcinetobacterPubMLST website (https://pubmlst.org/organisms/acinetobacter-baumannii, accessed on 27 June 2025) [238].
In detail, 2779 Pasteur STs and 3415 Oxford STs are available at https://pubmlst.org/bigsdb?db=pubmlst_abaumannii_seqdef&page=query (accessed on 27 June 2025). Also, 12570 genomes assigned to validated Acinetobacter spp. are available at https://pubmlst.org/bigsdb?db=pubmlst_abaumannii_isolates&page=query&genomes=1 (accessed on 27 June 2025) [238].
Before ST2 became dominant, ST1 was the most common sequence type [239]. The rise of ST2 has been linked to the spread of OXA-23-producing CRAB [178]. VIM-1 and VIM-4 enzymes have been associated with ST2 and ST1, respectively [166]. International Clones IC1 and IC2 correspond to ST1 and ST2, including their single-locus variants [240].
NDM-1-producing CRAB strains are typically assigned to ST25 [241]. Less frequently reported types include ST1407, ST164, and ST85 [242,243,244,245]. Other NDM variants have been linked to various sequence types: NDM-9 with ST25, NDM-5 with ST19, and NDM-2 with ST103 [214,246,247]. In recent years, a concerning trend has emerged with CRAB strains co-producing NDM-1 and OXA-23, most commonly associated with ST2 [211,221], though ST1 has also been identified in some cases [220].

5. Trends in Antimicrobial Treatment

A range of older and newly developed antimicrobials show potential as treatment options for CRAB infections. However, some of the recently introduced agents lack activity against these resistant strains [11,248,249].

5.1. Colistin—Polymyxins

Colistin (PubChem CID: 44144393, Figure 2a) is an old antimicrobial discovered in 1949 and classified as a polymyxin (specifically polymyxin E). Its clinical use was largely discontinued in the 1980s due to severe side effects, particularly nephrotoxicity [250].
The resurgence of CRAB and other MDR bacteria in recent years has led to the renewed use of colistin as a key therapeutic option [263].
Both colistin and polymyxin B have been employed to treat hospital-acquired pneumonia (HAP), ventilator-associated pneumonia (VAP), and bloodstream infections caused by CRAB [249]. However, colistin has been associated with a higher risk of nephrotoxicity compared to polymyxin B [264].
There are different reports from different studies. In an in vitro study performed by Vardakas et al. [265], colistin and other polymyxins have shown strong synergistic effects when combined with carbapenems, rifampicin, or vancomycin, which may contribute to improved survival outcomes [265]. Some clinical studies have found no significant difference in treatment failure rates between colistin monotherapy and combination therapies such as colistin–meropenem or colistin–rifampicin [266,267], while in an investigation conducted by Dickstein et al. [268], they studied 266 A. baumannii cases and found lower adjusted mortality in colistin-resistant infections compared to colistin-susceptible ones. Colistin-resistant patients had better baseline health and needed less ventilation [268]. Among colistin-resistant cases, colistin–meropenem therapy led to higher mortality than colistin alone [268]. Colistin resistance, based on broth microdilution (BMD) testing, was linked to improved outcomes, with monotherapy outperforming combination treatment [268].
A randomized controlled trial (RCT) comparing colistin with ampicillin–sulbactam for treating CRAB strains susceptible to ampicillin–sulbactam found no significant differences in mortality, clinical outcomes, or microbiological failure [269]. However, another study reported higher rates of all-cause mortality and microbiological failure with colistin. These findings suggest a possible advantage of ampicillin–sulbactam over polymyxins, though the overall quality of evidence remains low [270].
Colistin has demonstrated notable synergistic activity with levofloxacin in treating VAP caused by CRAB [271]. Given the emergence of colistin-resistant CRAB strains [192] and the risk of resistance development and treatment failure with colistin monotherapy [272,273], it is recommended that colistin be used as part of combination therapy for severe CRAB infections [274].

5.2. Ampicillin–Sulbactam

Ampicillin–sulbactam (PubChem CID: 18541918, Figure 2b) is another potential option for treating HAP/VAP caused by CRAB, although the supporting evidence is limited or conditional [249]. As aforementioned, it has shown a strong synergistic effect when combined with levofloxacin in managing CRAB-related VAP [271]. In the treatment of A. baumannii infections, the antibacterial activity of ampicillin–sulbactam is primarily attributed to its sulbactam component, with ampicillin functioning mainly as a carrier. Based on this understanding, the 2023 guidelines designated ampicillin–sulbactam (6–9 g of sulbactam daily), in combination with at least one other agent, as the preferred therapy for CRAB [275]. This recommendation applied regardless of in vitro susceptibility profiles, due to concerns over potential PBP saturation and testing inaccuracies. A significant shift occurred in 2024, when sulbactam–durlobactam, administered with a carbapenem, became the first-line treatment [275]. Ampicillin–sulbactam was subsequently reclassified as an alternative therapy, limited to the higher sulbactam dose of 9 g per day. Polymyxin B, minocycline, and cefiderocol are recommended as combination partners in such regimens. Differences between ESCMID and Infectious Diseases Society of America (IDSA) guidelines likely reflect the regional timing of sulbactam–durlobactam’s approval in 2023 across the United States and Europe [275]. Xacduro, a fixed-dose sulbactam–durlobactam therapy approved in the U.S., treats HAP and VAP caused by the A. baumannii–calcoaceticus complex. Sulbactam acts as the antibacterial agent, while durlobactam, a DBO beta-lactamase (classes A, C, and D) inhibitor, shields it from enzymatic breakdown. Though durlobactam lacks direct killing power, it boosts sulbactam’s efficacy. In vitro, the combo rivals colistin and outperforms several other antibiotics against CRAB. Clinically, it improves outcomes with fewer deaths and less kidney toxicity than colistin. Since its effect without carbapenems remains uncertain, the IDSA advises using it alongside imipenem–cilastatin or meropenem [115,276,277,278,279,280].

5.3. Tigecycline

Tigecycline (PubChem CID: 54686904, Figure 2c), a glycylcycline and derivative of minocycline, reaches high concentrations in the lungs, skin, soft tissues, and bones [281]. It demonstrates strong activity against CRAB strains; however, exposure to suboptimal tigecycline levels may promote resistance development [282].
Compared to colistin in treating CRAB pneumonia, tigecycline monotherapy has been associated with higher mortality and lower clinical response [283,284,285]. Conversely, one study reported better survival rates with tigecycline than colistin [286], though overall evidence remains inconclusive [249].
When assessed against ampicillin–sulbactam, tigecycline-based therapies showed lower clinical and microbiological failure rates [287]. In contrast, another study found significantly lower 28-day mortality with cefoperazone–sulbactam compared to tigecycline [288]. However, the evidence for the superiority of sulbactam-based regimens over tigecycline is still of low certainty [249].

5.4. Fosfomycin

Fosfomycin (PubChem CID: 446987, Figure 2d) is an older antibiotic that has been reintroduced, primarily for treating uncomplicated urinary tract infections (UTIs) caused by MDR uropathogens [87,96,289,290,291]. In the context of CRAB infections, it has been used in combination therapies for VAP and bacteremia. However, its clinical effectiveness in these settings requires further confirmation through larger, well-designed studies [292,293].

5.5. Plazomicin

Plazomicin (PubChem CID: 42613186, Figure 2e) is a synthetic aminoglycoside approved in 2018 for the treatment of complicated urinary tract infections (cUTIs) and pyelonephritis [248]. Early studies suggest it has some in vitro activity against CRAB [294]. Despite its enhanced potency compared to other aminoglycosides, plazomicin is not regarded as a first-line treatment for CRAB infections [249,295].

5.6. Eravacycline

Eravacycline (PubChem CID: 54726192, Figure 2f) is a fluorocycline that is two to eight times more potent than tigecycline against CRAB. While some clinical evidence supports its effectiveness, eravacycline is currently considered a last-resort treatment, and further research is needed to validate its clinical utility [249,296].

5.7. Cefiderocol

Cefiderocol (PubChem CID: 77843966, Figure 2g) is a novel siderophore cephalosporin approved by the FDA for the treatment of cUTIs in 2019 and VAP in 2020 [297]. It also received marketing authorization from the European Medicines Agency (EMA) for treating infections caused by aerobic MDR Gram-negative bacteria in adults with limited treatment options [298]. Cefiderocol utilizes siderophore-mediated transport to penetrate the bacterial outer membrane and accumulate in the periplasmic space, enabling it to inhibit a broad range of MDR bacteria regardless of the resistance mechanism [299].
Against CRAB, cefiderocol shows a minimum inhibitory concentration (MIC) of ≤2 μg/mL and has demonstrated a 70% survival rate in critically ill patients with bacteremia or VAP in one study [300]. However, the CREDIBLE-CR randomized controlled trial comparing cefiderocol with best available therapy for carbapenem-resistant Gram-negative infections reported a higher 28-day mortality rate among CRAB patients treated with cefiderocol (49%) compared to those receiving other treatments (18%) [301]. While cefiderocol has been used in managing severe CRAB outbreaks [210], emerging resistance poses a growing concern, with some studies linking cefiderocol resistance to clinical failure. As a result, cefiderocol monotherapy for CRAB is generally not recommended [302]. Overall, data on its efficacy against CRAB remain limited, and further research is required [249].

5.8. Temocillin

Temocillin (PubChem CID: 171758, Figure 2h) is a 6-α-methoxy derivative of ticarcillin introduced in the UK during the 1980s. While it exhibits activity against various Enterobacterales, it has no efficacy against A. baumannii or CRAB [248,303].

5.9. Ceftolozane–Tazobactam

Ceftolozane–tazobactam (PubChem CID: 172973390, Figure 2i) received FDA approval in 2014 for the treatment of cUTIs and intra-abdominal infections (IAIs), with its use later extended to VAP in 2019 [248]. In 2022, approval was further expanded to include pediatric patients (from birth to under 18 years) for cIAIs and cUTIs [304]. However, it shows limited in vivo activity against CRAB [305,306].

5.10. Imipenem/Cilastatin–Relebactam

Imipenem/cilastatin–relebactam (PubChem CID: --) was approved by the FDA in 2019 for the treatment of cUTIs and IAIs, and in 2020, its approval was extended to include VAP. It has also been authorized by the EMA [248]. Relebactam functions by inhibiting class A and C β-lactamases [307]. However, this combination is not considered effective against CRAB, as the addition of relebactam does not enhance imipenem’s in vitro activity against these strains [308,309].

5.11. Meropenem–Vaborbactam

Vaborbactam is a cyclic boronate β-lactamase inhibitor. When combined with meropenem, it is effective against KPC-producing multidrug-resistant Gram-negative bacteria and shows notable activity against OXA-48 producers. This combination, meropenem–vaborbactam (PubChem CID: 86298703, Figure 2j), is approved for the treatment of cUTIs, IAIs, and VAP [310,311]. However, it is not considered a viable option for CRAB, as vaborbactam does not enhance meropenem’s in vitro activity against these strains [308,309].

5.12. Ceftazidime–Avibactam

Avibactam is a non-β-lactam β-lactamase inhibitor with in vitro activity against Ambler class A and C β-lactamases and partial activity against certain OXA-type enzymes classified under Ambler class D. It was patented in 2011 [312]. Several RCTs have evaluated the safety and effectiveness of the ceftazidime–avibactam combination for treating cUTIs and cIAIs [313].
Ceftazidime–avibactam (PubChem CID: 90643431, Figure 2k) was approved by the FDA in 2015 for the treatment of cUTIs and, in combination with metronidazole, for cIAIs [314]. Its dosing was later reassessed for use in critically ill patients [315]. In 2018, the FDA extended its approval to include HAP/VAP, based on results from the pivotal Phase III REPROVE trial [316]. However, data on its efficacy against CRAB are limited, and it is therefore not routinely recommended for these infections [249,317].

5.13. Aztreonam–Avibactam

Aztreonam–avibactam (PubChem CID: --) is a combination antimicrobial agent effective against MDR bacteria producing MBLs [318]. It was approved by the EMA in 2024 for the treatment of infections such as cIAIs, cUTIs, and HAP/VAP [319]. In February 2025, the FDA approved it for treating cIAIs in adults with limited therapeutic options [320]. In the context of CRAB, aztreonam–avibactam is particularly effective against strains producing MBLs such as VIM or NDM [319,321,322].

6. Guidelines for the Treatment of CRAB Infections

According to the latest guidelines from the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), ampicillin–sulbactam is conditionally recommended for patients with HAP/VAP caused by sulbactam-susceptible CRAB. Alternatives include polymyxins or high-dose tigecycline, provided in vitro activity is confirmed; however, the quality of evidence is low. For CRAB strains resistant to sulbactam, polymyxins or high-dose tigecycline may be considered if susceptibility is demonstrated, though no formal recommendation is provided. ESCMID also conditionally advises against the use of cefiderocol for CRAB infections, citing low-quality evidence for this guidance [249,323].
For patients with severe, high-risk CRAB infections, ESCMID conditionally recommends combination therapy using two antimicrobials with confirmed in vitro activity—such as polymyxins, aminoglycosides, tigecycline, or sulbactam-based regimens. However, this recommendation is based on low-quality evidence. Combination treatments involving polymyxin–meropenem or polymyxin–rifampin are strongly discouraged, supported by high-quality evidence. In cases where CRAB isolates have a meropenem MIC ≤ 8 mg/L, a carbapenem-based combination therapy using high-dose, extended-infusion meropenem is considered good clinical practice, although this guidance is based on expert opinion [249,274,275].
The IDSA recommends ampicillin–sulbactam as the first-line treatment for CRAB isolates susceptible to sulbactam. Alternative options include tetracyclines (such as eravacycline or minocycline), tigecycline, polymyxins, and cefiderocol. For sulbactam-resistant CRAB, IDSA provides no formal recommendation, but the use of high-dose ampicillin–sulbactam in combination with a second active agent may be considered [324,325,326].
For severe CRAB infections, IDSA strongly supports combination therapy using at least two active antimicrobials. High-dose ampicillin–sulbactam should serve as the core agent, combined with another drug such as a tetracycline, polymyxin, extended-infusion meropenem, or cefiderocol. Fosfomycin and rifampin are not recommended as part of combination regimens. Similarly, polymyxin–meropenem combinations should be avoided unless a third agent is included [274,327].

7. Conclusions

Pan-genomic analyses have revealed that A. baumannii has an open pan-genome, containing a wide array of virulence factors. Most of its virulence and ARGs are disseminated via MGEs, including Tns, ISs, Ints, and bacteriophages (Φs)—often transferred through plasmids via HGT. As a result, A. baumannii harbors a robust arsenal of resistance and virulence mechanisms, making CRAB infections a serious public health concern [12,21,24].
Understanding the specific mechanisms of antimicrobial resistance is crucial for selecting effective treatment options. Potential therapies include older agents such as polymyxins, ampicillin–sulbactam, high-dose carbapenems, tigecycline, and minocycline, as well as newer drugs like eravacycline, cefiderocol, and aztreonam–avibactam.

Author Contributions

T.K., K.T. and P.B. have equally contributed to the conception and design of the work and have approved the submitted version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

AI has been employed to check the spelling and grammatical issues. All in all, AI has been applied for language polishing (Toolbaz.com and Chatgpt.com).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Cogliati Dezza, F.; Covino, S.; Petrucci, F.; Sacco, F.; Viscido, A.; Gavaruzzi, F.; Ceccarelli, G.; Raponi, G.; Borrazzo, C.; Alessandri, F.; et al. Risk factors for carbapenem-resistant Acinetobacter baumannii (CRAB) bloodstream infections and related mortality in critically ill patients with CRAB colonization. JAC-Antimicrob. Resist. 2023, 5, dlad096. [Google Scholar] [CrossRef] [PubMed]
  2. Doughty, E.L.; Liu, H.; Moran, R.A.; Hua, X.; Ba, X.; Guo, F.; Chen, X.; Zhang, L.; Holmes, M.; van Schaik, W.; et al. Endemicity and diversification of carbapenem-resistant Acinetobacter baumannii in an intensive care unit. Lancet Reg. Health. West. Pac. 2023, 37, 100780. [Google Scholar] [CrossRef]
  3. Lemos, E.V.; de la Hoz, F.P.; Alvis, N.; Einarson, T.R.; Quevedo, E.; Castaneda, C.; Leon, Y.; Amado, C.; Canon, O.; Kawai, K. Impact of carbapenem resistance on clinical and economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 174–180. [Google Scholar] [CrossRef]
  4. Villegas, M.V.; Hartstein, A.I. Acinetobacter outbreaks, 1977–2000. Infect. Control Hosp. Epidemiol. 2003, 24, 284–295. [Google Scholar] [CrossRef]
  5. Routsi, C.; Pratikaki, M.; Platsouka, E.; Sotiropoulou, C.; Nanas, S.; Markaki, V.; Vrettou, C.; Paniara, O.; Giamarellou, H.; Roussos, C. Carbapenem-resistant versus carbapenem-susceptible Acinetobacter baumannii bacteremia in a Greek intensive care unit: Risk factors, clinical features and outcomes. Infection 2010, 38, 173–180. [Google Scholar] [CrossRef]
  6. Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P. The WHO Bacterial Priority Pathogens List 2024: A prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect. Dis. 2025, 25, 1033–1043. [Google Scholar] [CrossRef]
  7. Karampatakis, T.; Antachopoulos, C.; Tsakris, A.; Roilides, E. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in Greece: An extended review (2000–2015). Future Microbiol. 2017, 12, 801–815. [Google Scholar] [CrossRef]
  8. European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases. 2023. Available online: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4 (accessed on 1 May 2025).
  9. Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef]
  10. Golpasand, T.; Keshvari, M.; Behzadi, P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol. 2024, 24, 344. [Google Scholar] [CrossRef] [PubMed]
  11. Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
  12. Sarshar, M.; Behzadi, P.; Scribano, D.; Palamara, A.T.; Ambrosi, C. Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021, 10, 387. [Google Scholar] [CrossRef]
  13. Algammal, A.M.; Behzadi, P. Antimicrobial Resistance: A Global Public Health Concern that Needs Perspective Combating Strategies and New Talented Antibiotics. Discov. Med. 2024, 36, 1911–1913. [Google Scholar] [CrossRef]
  14. Viehman, J.A.; Nguyen, M.H.; Doi, Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014, 74, 1315–1333. [Google Scholar] [CrossRef]
  15. Karakonstantis, S.; Gikas, A.; Astrinaki, E.; Kritsotakis, E.I. Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. J. Hosp. Infect. 2020, 106, 447–453. [Google Scholar] [CrossRef] [PubMed]
  16. Kritsotakis, E.I.; Lagoutari, D.; Michailellis, E.; Georgakakis, I.; Gikas, A. Burden of multidrug and extensively drug-resistant ESKAPEE pathogens in a secondary hospital care setting in Greece. Epidemiol. Infect. 2022, 150, e170. [Google Scholar] [CrossRef]
  17. Papadopoulou, M.; Deliolanis, I.; Polemis, M.; Vatopoulos, A.; Psichogiou, M.; Giakkoupi, P. Characteristics of the Genetic Spread of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Greek Hospital. Genes 2024, 15, 458. [Google Scholar] [CrossRef] [PubMed]
  18. Wu, H.J.; Xiao, Z.G.; Lv, X.J.; Huang, H.T.; Liao, C.; Hui, C.Y.; Xu, Y.; Li, H.F. Drug-resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp. Ther. Med. 2023, 25, 209. [Google Scholar] [CrossRef]
  19. Medini, D.; Donati, C.; Tettelin, H.; Masignani, V.; Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 2005, 15, 589–594. [Google Scholar] [CrossRef]
  20. Urhan, A.; Abeel, T. A comparative study of pan-genome methods for microbial organisms: Acinetobacter baumannii pan-genome reveals structural variation in antimicrobial resistance-carrying plasmids. Microb. Genom. 2021, 7, 690. [Google Scholar] [CrossRef] [PubMed]
  21. Karampatakis, T.; Tsergouli, K.; Behzadi, P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics 2024, 13, 257. [Google Scholar] [CrossRef]
  22. Tantoso, E.; Eisenhaber, B.; Kirsch, M.; Shitov, V.; Zhao, Z.; Eisenhaber, F. To kill or to be killed: Pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol. 2022, 20, 146. [Google Scholar] [CrossRef]
  23. Mira, A.; Martin-Cuadrado, A.B.; D’Auria, G.; Rodriguez-Valera, F. The bacterial pan-genome:a new paradigm in microbiology. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2010, 13, 45–57. [Google Scholar] [CrossRef]
  24. Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Pseudomonas aeruginosa’s Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics 2025, 14, 353. [Google Scholar] [CrossRef] [PubMed]
  25. Lean, S.S.; Yeo, C.C. Small, Enigmatic Plasmids of the Nosocomial Pathogen, Acinetobacter baumannii: Good, Bad, Who Knows? Front. Microbiol. 2017, 8, 1547. [Google Scholar] [CrossRef]
  26. Noel, H.R.; Petrey, J.R.; Palmer, L.D. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann. N. Y. Acad. Sci. 2022, 1518, 166–182. [Google Scholar] [CrossRef] [PubMed]
  27. Costa, A.R.; Monteiro, R.; Azeredo, J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci. Rep. 2018, 8, 15346. [Google Scholar] [CrossRef]
  28. Behzadi, P.; Ambrosi, C.; Scribano, D.; Zanetti, S.; Sarshar, M.; Gajdacs, M.; Donadu, M.G. Editorial: Current perspectives on Pseudomonas aeruginosa: Epidemiology, virulence and contemporary strategies to combat multidrug-resistant (MDR) pathogens. Front. Microbiol. 2022, 13, 975616. [Google Scholar] [CrossRef]
  29. Hamidian, M.; Hawkey, J.; Wick, R.; Holt, K.E.; Hall, R.M. Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1. Microb. Genom. 2019, 5, e000242. [Google Scholar] [CrossRef]
  30. Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
  31. Castanheira, M.; Mendes, R.E.; Gales, A.C. Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex. Clin. Infect. Dis. 2023, 76, S166–S178. [Google Scholar] [CrossRef] [PubMed]
  32. Algammal, A.; Hetta, H.F.; Mabrok, M.; Behzadi, P. Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol. 2023, 14, 1135614. [Google Scholar] [CrossRef]
  33. Matos, A.P.; Cayô, R.; Almeida, L.G.; Streling, A.P.; Nodari, C.S.; Martins, W.M.; Narciso, A.C.; Silva, R.M.; Vasconcelos, A.T.; Gales, A.C. Genetic characterization of plasmid-borne bla OXA-58 in distinct Acinetobacter species. Msphere 2019, 4, e00376-19. [Google Scholar] [CrossRef]
  34. Alattraqchi, A.; Rani, F.; Rahman, N.; Ismail, S.; Cleary, D.; Clarke, S.; Yeo, C. Complete genome sequencing of Acinetobacter baumannii AC1633 andAcinetobacter nosocomialisAC1530 unveils a large multidrug resistant plasmid encoding the NDM-1 and OXA-58 carbapenemases. Msphere 2020, 6, e01076-20. [Google Scholar] [CrossRef]
  35. Liu, H.; Moran, R.A.; Chen, Y.; Doughty, E.L.; Hua, X.; Jiang, Y.; Xu, Q.; Zhang, L.; Blair, J.M.; McNally, A.; et al. Transferable Acinetobacter baumannii plasmid pDETAB2 encodes OXA-58 and NDM-1 and represents a new class of antibiotic resistance plasmids. J. Antimicrob. Chemother. 2021, 76, 1130–1134. [Google Scholar] [CrossRef]
  36. Ramoul, A.; Loucif, L.; Bakour, S.; Amiri, S.; Dekhil, M.; Rolain, J.-M. Co-occurrence of blaNDM-1 with blaOXA-23 or blaOXA-58 in clinical multidrug-resistant Acinetobacter baumannii isolates in Algeria. J. Glob. Antimicrob. Resist. 2016, 6, 136–141. [Google Scholar] [CrossRef]
  37. Wang, X.; Zhao, B.; Zhou, Y.; Zhang, Y.; Xu, T.; Zhuang, Y.; Chen, M.; Hao, L.; Shen, Y.; Feng, J. Genomic insights of the co-existence of blaOXA-23, blaOXA-91, blaNDM-1 harboring carbapenem-resistant Acinetobacter baumannii isolates from the intensive care units environment in Shanghai. J. Glob. Antimicrob. Resist. 2025, 44, 72–80. [Google Scholar] [CrossRef] [PubMed]
  38. Shadan, A.; Pathak, A.; Ma, Y.; Pathania, R.; Singh, R.P. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front. Cell. Infect. Microbiol. 2023, 13, 1053968. [Google Scholar] [CrossRef] [PubMed]
  39. Wachino, J.I.; Jin, W.; Kimura, K.; Arakawa, Y. Intercellular Transfer of Chromosomal Antimicrobial Resistance Genes between Acinetobacter baumannii Strains Mediated by Prophages. Antimicrob. Agents Chemother. 2019, 63, e00334-19. [Google Scholar] [CrossRef]
  40. Brovedan, M.A.; Cameranesi, M.M.; Limansky, A.S.; Moran-Barrio, J.; Marchiaro, P.; Repizo, G.D. What do we know about plasmids carried by members of the Acinetobacter genus? World J. Microbiol. Biotechnol. 2020, 36, 109. [Google Scholar] [CrossRef]
  41. Geisinger, E.; Huo, W.; Hernandez-Bird, J.; Isberg, R.R. Acinetobacter baumannii: Envelope determinants that control drug resistance, virulence, and surface variability. Annu. Rev. Microbiol. 2019, 73, 481–506. [Google Scholar] [CrossRef] [PubMed]
  42. Wyres, K.L.; Cahill, S.M.; Holt, K.E.; Hall, R.M.; Kenyon, J.J. Identification of Acinetobacter baumannii loci for capsular polysaccharide (KL) and lipooligosaccharide outer core (OCL) synthesis in genome assemblies using curated reference databases compatible with Kaptive. Microb. Genom. 2019, 6, e000339. [Google Scholar] [CrossRef]
  43. Russo, T.A.; Luke, N.R.; Beanan, J.M.; Olson, R.; Sauberan, S.L.; MacDonald, U.; Schultz, L.W.; Umland, T.C.; Campagnari, A.A. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect. Immun. 2010, 78, 3993–4000. [Google Scholar] [CrossRef]
  44. Pérez-Varela, M.; Tierney, A.R.; Dawson, E.; Hutcheson, A.R.; Tipton, K.A.; Anderson, S.E.; Haldopoulos, M.E.; Song, S.; Tomlinson, B.R.; Shaw, L.N. Stochastic activation of a family of TetR type transcriptional regulators controls phenotypic heterogeneity in Acinetobacter baumannii. PNAS Nexus 2022, 1, pgac231. [Google Scholar] [CrossRef] [PubMed]
  45. Nguyen, M.; Joshi, S. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. J. Appl. Microbiol. 2021, 131, 2715–2738. [Google Scholar] [CrossRef] [PubMed]
  46. Silva, L.; Grosso, F.; Rodrigues, C.; Ksiezarek, M.; Ramos, H.; Peixe, L. The success of particular Acinetobacter baumannii clones: Accumulating resistance and virulence inside a sugary shield. J. Antimicrob. Chemother. 2021, 76, 305–311. [Google Scholar] [CrossRef]
  47. Oliveira, H.; Costa, A.R.; Ferreira, A.; Konstantinides, N.; Santos, S.B.; Boon, M.; Noben, J.-P.; Lavigne, R.; Azeredo, J. Functional analysis and antivirulence properties of a new depolymerase from a myovirus that infects Acinetobacter baumannii capsule K45. J. Virol. 2019, 93, e01163-18. [Google Scholar] [CrossRef]
  48. Domingues, R.; Oliveira, R.; Silva, S.; Araújo, D.; Almeida, C.; Cho, G.-S.; Franz, C.M.; Saavedra, M.J.; Azeredo, J.; Oliveira, H. Molecular detection of carbapenemases in Acinetobacter baumannii strains of Portugal and association with sequence types, capsular types, and virulence. Clin. Ther. 2024, 46, e9–e15. [Google Scholar] [CrossRef] [PubMed]
  49. Gao, Y.; Li, H.; Chen, H.; Zhang, J.; Wang, R.; Wang, Z.; Wang, H. Origin, phylogeny, and transmission of the epidemic clone ST208 of carbapenem-resistant Acinetobacter baumannii on a global scale. Microbiol. Spectr. 2022, 10, e02604–e02621. [Google Scholar] [CrossRef]
  50. Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef]
  51. Luo, Y.-C.; Hsieh, Y.-C.; Wu, J.-W.; Quyen, T.L.T.; Chen, Y.-Y.; Liao, W.-C.; Li, S.-W.; Wang, S.-H.; Pan, Y.-J. Exploring the association between capsular types, sequence types, and carbapenemase genes in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2022, 59, 106470. [Google Scholar] [CrossRef]
  52. Kikuchi-Ueda, T.; Ubagai, T.; Kamoshida, G.; Nakano, R.; Nakano, A.; Ono, Y. Acinetobacter baumannii LOS Regulate the Expression of Inflammatory Cytokine Genes and Proteins in Human Mast Cells. Pathogens 2021, 10, 290. [Google Scholar] [CrossRef] [PubMed]
  53. Behzadi, P.; Chandran, D.; Chakraborty, C.; Bhattacharya, M.; Saikumar, G.; Dhama, K.; Chakraborty, A.; Mukherjee, S.; Sarshar, M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int. J. Biol. Macromol. 2025, 284, 137836. [Google Scholar] [CrossRef]
  54. Behzadi, P.; Kim, C.H.; Pawlak, E.A.; Algammal, A. Editorial: The innate and adaptive immune system in human urinary system. Front. Immunol. 2023, 14, 1294869. [Google Scholar] [CrossRef]
  55. Gudueva, E.; Chemisova, O. Pathogenicity factors of Acinetobacter baumannii. Med. Her. South Russ. 2023, 14, 66–74. [Google Scholar] [CrossRef]
  56. Luke, N.R.; Sauberan, S.L.; Russo, T.A.; Beanan, J.M.; Olson, R.; Loehfelm, T.W.; Cox, A.D.; St. Michael, F.; Vinogradov, E.V.; Campagnari, A.A. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect. Immun. 2010, 78, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
  57. Tiku, V.; Kew, C.; Kofoed, E.M.; Peng, Y.; Dikic, I.; Tan, M.-W. Acinetobacter baumannii secretes a bioactive lipid that triggers inflammatory signaling and cell death. Front. Microbiol. 2022, 13, 870101. [Google Scholar] [CrossRef]
  58. Talyansky, Y.; Nielsen, T.B.; Yan, J.; Carlino-Macdonald, U.; Di Venanzio, G.; Chakravorty, S.; Ulhaq, A.; Feldman, M.F.; Russo, T.A.; Vinogradov, E.; et al. Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathog. 2021, 17, e1009291. [Google Scholar] [CrossRef]
  59. Lucidi, M.; Visaggio, D.; Migliaccio, A.; Capecchi, G.; Visca, P.; Imperi, F.; Zarrilli, R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024, 15, 2289769. [Google Scholar] [CrossRef]
  60. Boll, J.M.; Tucker, A.T.; Klein, D.R.; Beltran, A.M.; Brodbelt, J.S.; Davies, B.W.; Trent, M.S. Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. MBio 2015, 6, e00478-15. [Google Scholar] [CrossRef]
  61. Herrera, C.M.; Voss, B.J.; Trent, M.S. Homeoviscous adaptation of the Acinetobacter baumannii outer membrane: Alteration of lipooligosaccharide structure during cold stress. mBio 2021, 12, e0129521. [Google Scholar] [CrossRef]
  62. Thacharodi, A.; Vithlani, A.; Hassan, S.; Alqahtani, A.; Pugazhendhi, A. Carbapenem-resistant Acinetobacter baumannii raises global alarm for new antibiotic regimens. Iscience 2024, 27, 111367. [Google Scholar] [CrossRef]
  63. Roy, S.; Junghare, V.; Dutta, S.; Hazra, S.; Basu, S. Differential binding of carbapenems with the AdeABC efflux pump and modulation of the expression of AdeB linked to novel mutations within two-component system AdeRS in carbapenem-resistant Acinetobacter baumannii. MSystems 2022, 7, e00217–e00222. [Google Scholar] [CrossRef] [PubMed]
  64. Thacharodi, A.; Lamont, I.L. Aminoglycoside resistance in Pseudomonas aeruginosa: The contribution of the MexXY-OprM efflux pump varies between isolates. J. Med. Microbiol. 2022, 71, 001551. [Google Scholar] [CrossRef]
  65. Yoon, E.-J.; Nait Chabane, Y.; Goussard, S.; Snesrud, E.; Courvalin, P.; Dé, E.; Grillot-Courvalin, C. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 2015, 6, e00309-15. [Google Scholar] [CrossRef] [PubMed]
  66. Dou, Q.; Zou, M.; Li, J.; Wang, H.; Hu, Y.; Liu, W.e. AdeABC efflux pump and resistance of Acinetobacter baumannii against carbapenem. Zhong Nan Da Xue Xue Bao. Yi Xue Ban= J. Cent. South. Univ. Med. Sci. 2017, 42, 426–433. [Google Scholar]
  67. Thacharodi, A.; Lamont, I.L. Gene–gene interactions reduce aminoglycoside susceptibility of Pseudomonas aeruginosa through efflux pump-dependent and-independent mechanisms. Antibiotics 2023, 12, 152. [Google Scholar] [CrossRef]
  68. Zhu, L.-J.; Pan, Y.; Gao, C.-Y.; Hou, P.-F. Distribution of carbapenemases and efflux pump in carbapenem-resistance Acinetobacter baumannii. Ann. Clin. Lab. Sci. 2020, 50, 241–246. [Google Scholar]
  69. Dolma, K.G.; Khati, R.; Paul, A.K.; Rahmatullah, M.; de Lourdes Pereira, M.; Wilairatana, P.; Khandelwal, B.; Gupta, C.; Gautam, D.; Gupta, M. Virulence characteristics and emerging therapies for biofilm-forming Acinetobacter baumannii: A review. Biology 2022, 11, 1343. [Google Scholar] [CrossRef]
  70. Dahdouh, E.; Gómez-Gil, R.; Pacho, S.; Mingorance, J.; Daoud, Z.; Suárez, M. Clonality, virulence determinants, and profiles of resistance of clinical Acinetobacter baumannii isolates obtained from a Spanish hospital. PLoS ONE 2017, 12, e0176824. [Google Scholar] [CrossRef]
  71. Chapartegui-González, I.; Lázaro-Díez, M.; Bravo, Z.; Navas, J.; Icardo, J.M.; Ramos-Vivas, J. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS ONE 2018, 13, e0201961. [Google Scholar] [CrossRef]
  72. Choi, C.H.; Lee, J.S.; Lee, Y.C.; Park, T.I.; Lee, J.C. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol. 2008, 8, 216. [Google Scholar] [CrossRef]
  73. Smani, Y.; Fàbrega, A.; Roca, I.; Sánchez-Encinales, V.; Vila, J.; Pachón, J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 1806–1808. [Google Scholar] [CrossRef]
  74. Sarshar, M.; Scribano, D.; Behzadi, P.; Masotti, A.; Ambrosi, C. Outer membrane vesicles are the powerful cell-to-cell communication vehicles that allow bacteria to monitor extracellular milieu. ExRNA 2022, 4, 25. [Google Scholar] [CrossRef]
  75. Gaddy, J.A.; Actis, L.A. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009, 4, 273–278. [Google Scholar] [CrossRef]
  76. Fattahian, Y.; Rasooli, I.; Gargari, S.L.M.; Rahbar, M.R.; Astaneh, S.D.A.; Amani, J. Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap). Microb. Pathog. 2011, 51, 402–406. [Google Scholar] [CrossRef] [PubMed]
  77. López, C.; Ayala, J.A.; Bonomo, R.A.; González, L.J.; Vila, A.J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 2019, 10, 3617. [Google Scholar] [CrossRef]
  78. Capodimonte, L.; Meireles, F.T.P.; Bahr, G.; Bonomo, R.A.; Dal Peraro, M.; López, C.; Vila, A.J. OXA β-lactamases from Acinetobacter spp. are membrane bound and secreted into outer membrane vesicles. mBio 2025, 16, e03343-24. [Google Scholar] [CrossRef] [PubMed]
  79. Pereira, I.L.; Hartwig, D.D. Unveiling the role of adhesin proteins in controlling Acinetobacter baumannii infections: A systematic review. Infect. Immun. 2025, 93, e00348-24. [Google Scholar] [CrossRef] [PubMed]
  80. Brossard, K.A.; Campagnari, A.A. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect. Immun. 2012, 80, 228–233. [Google Scholar] [CrossRef]
  81. Smani, Y.; McConnell, M.J.; Pachón, J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS ONE 2012, 7, e33073. [Google Scholar] [CrossRef]
  82. Geng, J.; Henry, N. Short time-scale bacterial adhesion dynamics. In Bacterial Adhesion: Chemistry, Biology and Physics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 315–331. [Google Scholar]
  83. Ishikawa, M.; Nakatani, H.; Hori, K. AtaA, a new member of the trimeric autotransporter adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces. PLoS ONE 2012, 7, e48830. [Google Scholar] [CrossRef] [PubMed]
  84. Berne, C.; Ducret, A.; Hardy, G.G.; Brun, Y.V. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. In Microbial biofilms; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2015; pp. 163–199. [Google Scholar]
  85. Loehfelm, T.W.; Luke, N.R.; Campagnari, A.A. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J. Bacteriol. 2008, 190, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
  86. Suh, J.W.; Park, S.M.; Ju, Y.K.; Yang, K.S.; Kim, J.Y.; Kim, S.B.; Sohn, J.W.; Yoon, Y.K. Clinical and molecular predictors of mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: A retrospective cohort study. J. Microbiol. Immunol. Infect. 2024, 57, 148–155. [Google Scholar] [CrossRef]
  87. Behzadi, P.; Najafi, A.; Behzadi, E.; Ranjbar, R. Microarray long oligo probe designing for Escherichia coli: An in-silico DNA marker extraction. Cent. Eur. J. Urol. 2016, 69, 105–111. [Google Scholar]
  88. Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed. Pharmacother. 2017, 93, 763–771. [Google Scholar] [CrossRef]
  89. Klemm, P.; Schembri, M.A. Bacterial adhesins: Function and structure. Int. J. Med. Microbiol. 2000, 290, 27–35. [Google Scholar] [CrossRef] [PubMed]
  90. Arciola, C.R.; Campoccia, D.; Ravaioli, S.; Montanaro, L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front. Cell. Infect. Microbiol. 2015, 5, 7. [Google Scholar] [CrossRef]
  91. Bouckaert, J.; Mackenzie, J.; De Paz, J.L.; Chipwaza, B.; Choudhury, D.; Zavialov, A.; Mannerstedt, K.; Anderson, J.; Piérard, D.; Wyns, L. The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol. Microbiol. 2006, 61, 1556–1568. [Google Scholar] [CrossRef]
  92. Behzadi, P.; Ranjbar, R.; Alavian, S.M. Nucleic acid-based approaches for detection of viral hepatitis. Jundishapur J. Microbiol. 2014, 8, e17449. [Google Scholar] [CrossRef]
  93. Ranjbar, R.; Behzadi, P.; Farshad, S. Advances in diagnosis and treatment of Helicobacter pylori infection. Acta Microbiol. Immunol. Hung. 2017, 64, 273–292. [Google Scholar] [CrossRef]
  94. Hospenthal, M.K.; Costa, T.R.D.; Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 2017, 15, 365–379. [Google Scholar] [CrossRef]
  95. Ramezanalizadeh, F.; Owlia, P.; Rasooli, I. Type I pili, CsuA/B and FimA induce a protective immune response against Acinetobacter baumannii. Vaccine 2020, 38, 5436–5446. [Google Scholar] [CrossRef]
  96. Behzadi, P.; Urban, E.; Matuz, M.; Benko, R.; Gajdacs, M. The Role of Gram-Negative Bacteria in Urinary Tract Infections: Current Concepts and Therapeutic Options. Adv. Exp. Med. Biol. 2021, 1323, 35–69. [Google Scholar] [CrossRef] [PubMed]
  97. Zhang, R.; Li, D.; Fang, H.; Xie, Q.; Tang, H.; Chen, L. Iron-dependent mechanisms in Acinetobacter baumannii: Pathogenicity and resistance. JAC-Antimicrob. Resist. 2025, 7, dlaf039. [Google Scholar] [CrossRef]
  98. Kim, M.; Kim, D.Y.; Song, W.Y.; Park, S.E.; Harrison, S.A.; Chazin, W.J.; Oh, M.H.; Kim, H.J. Distinctive roles of two acinetobactin isomers in challenging host nutritional immunity. mBio 2021, 12, e0224821. [Google Scholar] [CrossRef]
  99. Song, W.Y.; Kim, H.J. Current biochemical understanding regarding the metabolism of acinetobactin, the major siderophore of the human pathogen Acinetobacter baumannii, and outlook for discovery of novel anti-infectious agents based thereon. Nat. Prod. Rep. 2020, 37, 477–487. [Google Scholar] [CrossRef] [PubMed]
  100. Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed]
  101. Begg, S.L. The role of metal ions in the virulence and viability of bacterial pathogens. Biochem. Soc. Trans. 2019, 47, 77–87. [Google Scholar] [CrossRef] [PubMed]
  102. Obisesan, A.O.; Zygiel, E.M.; Nolan, E.M. Bacterial responses to iron withholding by calprotectin. Biochemistry 2021, 60, 3337–3346. [Google Scholar] [CrossRef]
  103. Lonergan, Z.R.; Nairn, B.L.; Wang, J.; Hsu, Y.-P.; Hesse, L.E.; Beavers, W.N.; Chazin, W.J.; Trinidad, J.C.; VanNieuwenhze, M.S.; Giedroc, D.P. An Acinetobacter baumannii, zinc-regulated peptidase maintains cell wall integrity during immune-mediated nutrient sequestration. Cell Rep. 2019, 26, 2009–2018. e2006. [Google Scholar] [CrossRef]
  104. Hood, M.I.; Mortensen, B.L.; Moore, J.L.; Zhang, Y.; Kehl-Fie, T.E.; Sugitani, N.; Chazin, W.J.; Caprioli, R.M.; Skaar, E.P. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog. 2012, 8, e1003068. [Google Scholar] [CrossRef]
  105. Zschiedrich, C.P.; Keidel, V.; Szurmant, H. Molecular Mechanisms of Two-Component Signal Transduction. J. Mol. Biol. 2016, 428, 3752–3775. [Google Scholar] [CrossRef]
  106. Oh, M.H.; Islam, M.M.; Kim, N.; Choi, C.H.; Shin, M.; Shin, W.S.; Lee, J.C. AbOmpA in Acinetobacter baumannii: Exploring virulence mechanisms of outer membrane-integrated and outer membrane vesicle-associated AbOmpA and developing anti-infective agents targeting AbOmpA. J. Biomed. Sci. 2025, 32, 53. [Google Scholar] [CrossRef]
  107. Kim, N.; Son, J.H.; Kim, K.; Kim, H.J.; Kim, Y.J.; Shin, M.; Lee, J.C. Global regulator DksA modulates virulence of Acinetobacter baumannii. Virulence 2021, 12, 2750–2763. [Google Scholar] [CrossRef]
  108. Kim, H.-J.; Kim, N.-Y.; Ko, S.-Y.; Park, S.-Y.; Oh, M.-H.; Shin, M.-S.; Lee, Y.-C.; Lee, J.-C. Complementary regulation of BfmRS two-component and AbaIR quorum sensing systems to express virulence-associated genes in Acinetobacter baumannii. Int. J. Mol. Sci. 2022, 23, 13136. [Google Scholar] [CrossRef] [PubMed]
  109. Ko, S.Y.; Kim, N.; Park, S.Y.; Kim, S.Y.; Kim, S.; Shin, M.; Lee, J.C. PmrAB controls virulence-associated traits and outer membrane vesicle biogenesis in Acinetobacter baumannii. Microb. Pathog. 2023, 185, 106434. [Google Scholar] [CrossRef]
  110. Kim, K.; Islam, M.; Jung, H.-w.; Lim, D.; Kim, K.; Lee, S.-G.; Park, C.; Lee, J.C.; Shin, M. ppGpp signaling plays a critical role in virulence of Acinetobacter baumannii. Virulence 2021, 12, 2122–2132. [Google Scholar] [CrossRef]
  111. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
  112. Li, P.; Zhang, S.; Wang, J.; Al-Shamiri, M.M.; Han, B.; Chen, Y.; Han, S.; Han, L. Uncovering the secretion systems of Acinetobacter baumannii: Structures and functions in pathogenicity and antibiotic resistance. Antibiotics 2023, 12, 195. [Google Scholar] [CrossRef] [PubMed]
  113. Hansen, F.; Porsbo, L.J.; Frandsen, T.H.; Kaygisiz, A.N.S.; Roer, L.; Henius, A.E.; Holzknecht, B.J.; Soes, L.; Schonning, K.; Roder, B.L.; et al. Characterisation of carbapenemase-producing Acinetobacter baumannii isolates from danish patients 2014–2021: Detection of a new international clone—IC11. Int. J. Antimicrob. Agents 2023, 62, 106866. [Google Scholar] [CrossRef] [PubMed]
  114. Foudraine, D.E.; Strepis, N.; Klaassen, C.H.W.; Raaphorst, M.N.; Verbon, A.; Luider, T.M.; Goessens, W.H.F.; Dekker, L.J.M. Rapid and Accurate Detection of Aminoglycoside-Modifying Enzymes and 16S rRNA Methyltransferases by Targeted Liquid Chromatography-Tandem Mass Spectrometry. J. Clin. Microbiol. 2021, 59, e0046421. [Google Scholar] [CrossRef]
  115. de Souza, J.; D’Espindula, H.R.S.; Ribeiro, I.d.F.; Gonçalves, G.A.; Pillonetto, M.; Faoro, H. Carbapenem Resistance in Acinetobacter baumannii: Mechanisms, Therapeutics, and Innovations. Microorganisms 2025, 13, 1501. [Google Scholar] [CrossRef]
  116. Limansky, A.S.; Mussi, M.A.; Viale, A.M. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J. Clin. Microbiol. 2002, 40, 4776–4778. [Google Scholar] [CrossRef] [PubMed]
  117. Han, L.; Gao, Y.; Liu, Y.; Yao, S.; Zhong, S.; Zhang, S.; Wang, J.; Mi, P.; Wen, Y.; Ouyang, Z.; et al. An Outer Membrane Protein YiaD Contributes to Adaptive Resistance of Meropenem in Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e0017322. [Google Scholar] [CrossRef]
  118. Kornelsen, V.; Kumar, A. Update on Multidrug Resistance Efflux Pumps in Acinetobacter spp. Antimicrob. Agents Chemother. 2021, 65, e0051421. [Google Scholar] [CrossRef]
  119. Martinez-Trejo, A.; Ruiz-Ruiz, J.M.; Gonzalez-Avila, L.U.; Saldana-Padilla, A.; Hernandez-Cortez, C.; Loyola-Cruz, M.A.; Bello-Lopez, J.M.; Castro-Escarpulli, G. Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism. Int. J. Mol. Sci. 2022, 23, 6582. [Google Scholar] [CrossRef]
  120. Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
  121. Hall, B.G.; Barlow, M. Revised Ambler classification of beta-lactamases. J. Antimicrob. Chemother. 2005, 55, 1050–1051. [Google Scholar] [CrossRef]
  122. Behzadi, P.; Garcia-Perdomo, H.A.; Karpinski, T.M.; Issakhanian, L. Metallo-β-lactamases: A review. Mol. Biol. Rep. 2020, 47, 6281–6294. [Google Scholar] [CrossRef] [PubMed]
  123. Akinci, E.; Vahaboglu, H. Minor extended-spectrum beta-lactamases. Expert Rev. Anti-Infect. Ther. 2010, 8, 1251–1258. [Google Scholar] [CrossRef]
  124. Naas, T.; Poirel, L.; Nordmann, P. Minor extended-spectrum beta-lactamases. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008, 14 (Suppl. S1), 42–52. [Google Scholar] [CrossRef]
  125. Behzadi, P.; Gajdács, M.; Pallós, P.; Ónodi, B.; Stájer, A.; Matusovits, D.; Kárpáti, K.; Burián, K.; Battah, B.; Ferrari, M. Relationship between biofilm-formation, phenotypic virulence factors and antibiotic resistance in environmental Pseudomonas aeruginosa. Pathogens 2022, 11, 1015. [Google Scholar] [CrossRef]
  126. Ferrari, C.; Corbella, M.; Gaiarsa, S.; Comandatore, F.; Scaltriti, E.; Bandi, C.; Cambieri, P.; Marone, P.; Sassera, D. Multiple Klebsiella pneumoniae KPC Clones Contribute to an Extended Hospital Outbreak. Front. Microbiol. 2019, 10, 2767. [Google Scholar] [CrossRef]
  127. Toleman, M.A.; Simm, A.M.; Murphy, T.A.; Gales, A.C.; Biedenbach, D.J.; Jones, R.N.; Walsh, T.R. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: Report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 2002, 50, 673–679. [Google Scholar] [CrossRef]
  128. Senda, K.; Arakawa, Y.; Nakashima, K.; Ito, H.; Ichiyama, S.; Shimokata, K.; Kato, N.; Ohta, M. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 1996, 40, 349–353. [Google Scholar] [CrossRef] [PubMed]
  129. Poirel, L.; Naas, T.; Nicolas, D.; Collet, L.; Bellais, S.; Cavallo, J.D.; Nordmann, P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 2000, 44, 891–897. [Google Scholar] [CrossRef]
  130. Castanheira, M.; Toleman, M.A.; Jones, R.N.; Schmidt, F.J.; Walsh, T.R. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob. Agents Chemother. 2004, 48, 4654–4661. [Google Scholar] [CrossRef] [PubMed]
  131. Lee, K.; Yum, J.H.; Yong, D.; Lee, H.M.; Kim, H.D.; Docquier, J.D.; Rossolini, G.M.; Chong, Y. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 2005, 49, 4485–4491. [Google Scholar] [CrossRef]
  132. Tada, T.; Shimada, K.; Satou, K.; Hirano, T.; Pokhrel, B.M.; Sherchand, J.B.; Kirikae, T. Pseudomonas aeruginosa Clinical Isolates in Nepal Coproducing Metallo-beta-Lactamases and 16S rRNA Methyltransferases. Antimicrob. Agents Chemother. 2017, 61, e00694-17. [Google Scholar] [CrossRef]
  133. Yong, D.; Toleman, M.A.; Bell, J.; Ritchie, B.; Pratt, R.; Ryley, H.; Walsh, T.R. Genetic and biochemical characterization of an acquired subgroup B3 metallo-beta-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob. Agents Chemother. 2012, 56, 6154–6159. [Google Scholar] [CrossRef]
  134. El Salabi, A.; Borra, P.S.; Toleman, M.A.; Samuelsen, O.; Walsh, T.R. Genetic and biochemical characterization of a novel metallo-beta-lactamase, TMB-1, from an Achromobacter xylosoxidans strain isolated in Tripoli, Libya. Antimicrob. Agents Chemother. 2012, 56, 2241–2245. [Google Scholar] [CrossRef] [PubMed]
  135. Pollini, S.; Maradei, S.; Pecile, P.; Olivo, G.; Luzzaro, F.; Docquier, J.D.; Rossolini, G.M. FIM-1, a new acquired metallo-beta-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob. Agents Chemother. 2013, 57, 410–416. [Google Scholar] [CrossRef]
  136. Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
  137. Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, M.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. Beta-lactamase database (BLDB)–structure and function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. [Google Scholar] [CrossRef] [PubMed]
  138. Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef]
  139. Antunes, N.T.; Lamoureaux, T.L.; Toth, M.; Stewart, N.K.; Frase, H.; Vakulenko, S.B. Class D beta-lactamases: Are they all carbapenemases? Antimicrob. Agents Chemother. 2014, 58, 2119–2125. [Google Scholar] [CrossRef]
  140. Akilli, F.M.; Ulukanligil, M. Postoperative Meningitis Caused by Multidrug-Resistant Pathogens: A Case Report. New Microbiol. 2025, 48, 84–88. [Google Scholar]
  141. Ranjbar, R.; Behzadi, P.; Mammina, C. Respiratory tularemia: Francisella tularensis and microarray probe designing. Open Microbiol. J. 2016, 10, 176. [Google Scholar] [CrossRef]
  142. Migliaccio, A.; Bray, J.; Intoccia, M.; Stabile, M.; Scala, G.; Jolley, K.A.; Brisse, S.; Zarrilli, R. Phylogenomics of Acinetobacter species and analysis of antimicrobial resistance genes. Front. Microbiol. 2023, 14, 1264030. [Google Scholar] [CrossRef]
  143. Mugnier, P.D.; Poirel, L.; Naas, T.; Nordmann, P. Worldwide dissemination of the blaOXA-23 Carbapenemase gene of Acinetobacter baumannii1. Emerg. Infect. Dis. 2010, 16, 35. [Google Scholar] [CrossRef]
  144. Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [PubMed]
  145. Scaife, W.; Young, H.-K.; Paton, R.H.; Amyes, S.G. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J. Antimicrob. Chemother. 1995, 36, 585–586. [Google Scholar] [CrossRef] [PubMed]
  146. Poirel, L.; Figueiredo, S.; Cattoir, V.; Carattoli, A.; Nordmann, P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 2008, 52, 1252–1256. [Google Scholar] [CrossRef]
  147. Naas, T.; Levy, M.; Hirschauer, C.; Marchandin, H.; Nordmann, P. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-23 in a tertiary care hospital of Papeete, French Polynesia. J. Clin. Microbiol. 2005, 43, 4826–4829. [Google Scholar] [CrossRef]
  148. Corvec, S.; Poirel, L.; Naas, T.; Drugeon, H.; Nordmann, P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 1530–1533. [Google Scholar] [CrossRef]
  149. Adams-Haduch, J.M.; Paterson, D.L.; Sidjabat, H.E.; Pasculle, A.W.; Potoski, B.A.; Muto, C.A.; Harrison, L.H.; Doi, Y. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob. Agents Chemother. 2008, 52, 3837–3843. [Google Scholar] [CrossRef]
  150. Mugnier, P.D.; Poirel, L.; Nordmann, P. Functional analysis of insertion sequence IS Aba1, responsible for genomic plasticity of Acinetobacter baumannii. J. Bacteriol. 2009, 191, 2414–2418. [Google Scholar] [CrossRef]
  151. Mugnier, P.; Poirel, L.; Pitout, M.; Nordmann, P. Carbapenem-resistant and OXA-23-producing Acinetobacter baumannii isolates in the United Arab Emirates. Clin. Microbiol. Infect. 2008, 14, 879–882. [Google Scholar] [CrossRef]
  152. Mugnier, P.D.; Bindayna, K.M.; Poirel, L.; Nordmann, P. Diversity of plasmid-mediated carbapenem-hydrolysing oxacillinases among carbapenem-resistant Acinetobacter baumannii isolates from Kingdom of Bahrain. J. Antimicrob. Chemother. 2009, 63, 1071–1073. [Google Scholar] [CrossRef]
  153. Bahador, A.; Raoofian, R.; Pourakbari, B.; Taheri, M.; Hashemizadeh, Z.; Hashemi, F.B. Genotypic and antimicrobial susceptibility of carbapenem-resistant Acinetobacter baumannii: Analysis of is aba elements and bla OXA-23-like genes including a new variant. Front. Microbiol. 2015, 6, 1249. [Google Scholar] [CrossRef] [PubMed]
  154. Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
  155. Fonseca, E.L.; Scheidegger, E.; Freitas, F.S.; Cipriano, R.; Vicente, A.C. Carbapenem-resistant Acinetobacter baumannii from Brazil: Role of carO alleles expression and blaOXA-23 gene. BMC Microbiol. 2013, 13, 245. [Google Scholar] [CrossRef]
  156. Gopikrishnan, M.; George Priya Doss, C. Molecular docking and dynamic approach to screen the drug candidate against the Imipenem-resistant CarO porin in Acinetobacter baumannii. Microb. Pathog. 2023, 177, 106049. [Google Scholar] [CrossRef]
  157. Hwa, W.E.; Subramaniam, G.; Mansor, M.B.; Yan, O.S.; Gracie; Anbazhagan, D.; Devi, S.S. Iron regulated outer membrane proteins (IROMPs) as potential targets against carbapenem-resistant Acinetobacter spp. isolated from a Medical Centre in Malaysia. Indian J. Med. Res. 2010, 131, 578–583. [Google Scholar]
  158. Jeong, H.W.; Cheong, H.J.; Kim, W.J.; Kim, M.J.; Song, K.J.; Song, J.W.; Kim, H.S.; Roh, K.H. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in Acinetobacter baumannii is associated with decreased imipenem susceptibility. Microb. Drug Resist. 2009, 15, 151–158. [Google Scholar] [CrossRef] [PubMed]
  159. Verma, P.; Tiwari, M.; Tiwari, V. Potentiate the activity of current antibiotics by naringin dihydrochalcone targeting the AdeABC efflux pump of multidrug-resistant Acinetobacter baumannii. Int. J. Biol. Macromol. 2022, 217, 592–605. [Google Scholar] [CrossRef]
  160. Vahhabi, A.; Hasani, A.; Rezaee, M.A.; Baradaran, B.; Hasani, A.; Samadi Kafil, H.; Abbaszadeh, F.; Dehghani, L. A plethora of carbapenem resistance in Acinetobacter baumannii: No end to a long insidious genetic journey. J. Chemother. 2021, 33, 137–155. [Google Scholar] [CrossRef]
  161. Gehrlein, M.; Leying, H.; Cullmann, W.; Wendt, S.; Opferkuch, W. Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy 1991, 37, 405–412. [Google Scholar] [CrossRef]
  162. Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
  163. Lopez-Hernandez, S.; Alarcon, T.; Lopez-Brea, M. Carbapenem resistance mediated by beta-lactamases in clinical isolates of Acinetobacter baumannii in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 282–285. [Google Scholar] [CrossRef] [PubMed]
  164. Afzal-Shah, M.; Villar, H.E.; Livermore, D.M. Biochemical characteristics of a carbapenemase from an Acinetobacter baumannii isolate collected in Buenos Aires, Argentina. J. Antimicrob. Chemother. 1999, 43, 127–131. [Google Scholar] [CrossRef]
  165. Tsakris, A.; Tsioni, C.; Pournaras, S.; Polyzos, S.; Maniatis, A.N.; Sofianou, D. Spread of low-level carbapenem-resistant Acinetobacter baumannii clones in a tertiary care Greek hospital. J. Antimicrob. Chemother. 2003, 52, 1046–1047. [Google Scholar] [CrossRef]
  166. Zarrilli, R.; Pournaras, S.; Giannouli, M.; Tsakris, A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int. J. Antimicrob. Agents 2013, 41, 11–19. [Google Scholar] [CrossRef]
  167. Zander, E.; Chmielarczyk, A.; Heczko, P.; Seifert, H.; Higgins, P.G. Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. J. Antimicrob. Chemother. 2013, 68, 308–311. [Google Scholar] [CrossRef]
  168. Figueiredo, S.; Poirel, L.; Papa, A.; Koulourida, V.; Nordmann, P. Overexpression of the naturally occurring blaOXA-51 gene in Acinetobacter baumannii mediated by novel insertion sequence ISAba9. Antimicrob. Agents Chemother. 2009, 53, 4045–4047. [Google Scholar] [CrossRef]
  169. Ahmadi, A.; Salimizand, H. Delayed identification of Acinetobacter baumannii during an outbreak owing to disrupted bla(OXA-51-like) by ISAba19. Int. J. Antimicrob. Agents 2017, 50, 119–122. [Google Scholar] [CrossRef] [PubMed]
  170. Pournaras, S.; Markogiannakis, A.; Ikonomidis, A.; Kondyli, L.; Bethimouti, K.; Maniatis, A.N.; Legakis, N.J.; Tsakris, A. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother. 2006, 57, 557–561. [Google Scholar] [CrossRef] [PubMed]
  171. Pournaras, S.; Gogou, V.; Giannouli, M.; Dimitroulia, E.; Dafopoulou, K.; Tsakris, A.; Zarrilli, R. Single-locus-sequence-based typing of blaOXA-51-like genes for rapid assignment of Acinetobacter baumannii clinical isolates to international clonal lineages. J. Clin. Microbiol. 2014, 52, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
  172. Aly, M.; Tayeb, H.T.; Al Johani, S.M.; Alyamani, E.J.; Aldughaishem, F.; Alabdulkarim, I.; Balkhy, H.H. Genetic diversity of OXA-51-like genes among multidrug-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1223–1228. [Google Scholar] [CrossRef]
  173. Quinones Perez, D.; Aung, M.S.; Carmona Cartaya, Y.; Gonzalez Molina, M.K.; Pereda Novales, N.; Kobayashi, N. Clonal diversity of Acinetobacter clinical isolates producing NDM-type carbapenemase in Cuba, 2013–2019. IJID Reg. 2022, 5, 93–96. [Google Scholar] [CrossRef]
  174. Bogaerts, P.; Naas, T.; Wybo, I.; Bauraing, C.; Soetens, O.; Pierard, D.; Nordmann, P.; Glupczynski, Y. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. J. Clin. Microbiol. 2006, 44, 4189–4192. [Google Scholar] [CrossRef] [PubMed]
  175. Vranic-Ladavac, M.; Bedenic, B.; Minandri, F.; Istok, M.; Bosnjak, Z.; Francula-Zaninovic, S.; Ladavac, R.; Visca, P. Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 471–478. [Google Scholar] [CrossRef] [PubMed]
  176. Tsakris, A.; Ikonomidis, A.; Pournaras, S.; Spanakis, N.; Markogiannakis, A. Carriage of OXA-58 but not of OXA-51 beta-lactamase gene correlates with carbapenem resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2006, 58, 1097–1099. [Google Scholar] [CrossRef] [PubMed]
  177. Poirel, L.; Marque, S.; Heritier, C.; Segonds, C.; Chabanon, G.; Nordmann, P. OXA-58, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 202–208. [Google Scholar] [CrossRef]
  178. Liakopoulos, A.; Miriagou, V.; Katsifas, E.A.; Karagouni, A.D.; Daikos, G.L.; Tzouvelekis, L.S.; Petinaki, E. Identification of OXA-23-producing Acinetobacter baumannii in Greece, 2010 to 2011. Eurosurveillance 2012, 17, 20117. [Google Scholar] [CrossRef]
  179. Longjam, L.A.; Tsering, D.C.; Das, D. Molecular Characterization of Class A-ESBLs, Class B-MBLs, Class C-AmpC, and Class D-OXA Carbapenemases in MDR Acinetobacter baumannii Clinical Isolates in a Tertiary Care Hospital, West Bengal, India. Cureus 2023, 15, e43656. [Google Scholar] [CrossRef]
  180. El Bannah, A.M.S.; Nawar, N.N.; Hassan, R.M.M.; Salem, S.T.B. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Care Hospital in Egypt: Clonal Spread of blaOXA-23. Microb. Drug Resist. 2018, 24, 269–277. [Google Scholar] [CrossRef]
  181. Dalla-Costa, L.M.; Coelho, J.M.; Souza, H.A.; Castro, M.E.; Stier, C.J.; Bragagnolo, K.L.; Rea-Neto, A.; Penteado-Filho, S.R.; Livermore, D.M.; Woodford, N. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J. Clin. Microbiol. 2003, 41, 3403–3406. [Google Scholar] [CrossRef]
  182. Furlan, J.P.R.; Ramos, M.S.; Rosa, R.D.S.; Dos Santos, L.D.R.; Savazzi, E.A.; Stehling, E.G. Unveiling transposon-mediated multidrug resistance in OXA-23-producing Acinetobacter baumannii ST79/ST233 subclone KL9-OCL10 in Brazil. Gene 2025, 958, 149489. [Google Scholar] [CrossRef] [PubMed]
  183. Ababneh, Q.; Aldaken, N.; Jaradat, Z.; Al-Rousan, E.; Inaya, Z.; Alsaleh, D.; Alawneh, D.; Al Sbei, S.; Saadoun, I. Predominance of extensively-drug resistant Acinetobacter baumannii carrying bla OXA-23 in Jordanian patients admitted to the intensive care units. PLoS ONE 2025, 20, e0317798. [Google Scholar] [CrossRef]
  184. Pournaras, S.; Dafopoulou, K.; Del Franco, M.; Zarkotou, O.; Dimitroulia, E.; Protonotariou, E.; Poulou, A.; Zarrilli, R.; Tsakris, A.; Greek Study Group on Acinetobacter Antimicrobial, R. Predominance of international clone 2 OXA-23-producing-Acinetobacter baumannii clinical isolates in Greece, 2015: Results of a nationwide study. Int. J. Antimicrob. Agents 2017, 49, 749–753. [Google Scholar] [CrossRef]
  185. Karampatakis, T.; Tsergouli, K.; Politi, L.; Diamantopoulou, G.; Iosifidis, E.; Antachopoulos, C.; Karyoti, A.; Sdougka, M.; Tsakris, A.; Roilides, E. Polyclonal predominance of concurrently producing OXA-23 and OXA-58 carbapenem-resistant Acinetobacter baumannii strains in a pediatric intensive care unit. Mol. Biol. Rep. 2019, 46, 3497–3500. [Google Scholar] [CrossRef]
  186. Liu, H.; Liu, X.; He, J.; Zhang, L.; Zhao, F.; Zhou, Z.; Hua, X.; Yu, Y. Emergence and Evolution of OXA-23-Producing ST46(Pas)-ST462(Oxf)-KL28-OCL1 Carbapenem-Resistant Acinetobacter baumannii Mediated by a Novel ISAba1-Based Tn7534 Transposon. Antibiotics 2023, 12, 396. [Google Scholar] [CrossRef] [PubMed]
  187. Carascal, M.B.; Destura, R.V.; Rivera, W.L. Colorimetric Loop-Mediated Isothermal Amplification Assays Accurately Detect bla(OXA-23-like) and ISAba1 Genes from Acinetobacter baumannii in Pure Cultures and Spiked Human Sera. Microb. Drug Resist. 2024, 30, 432–441. [Google Scholar] [CrossRef]
  188. Aranzamendi, M.; Xanthopoulou, K.; Sanchez-Urtaza, S.; Burgwinkel, T.; Arazo Del Pino, R.; Lucassen, K.; Perez-Vazquez, M.; Oteo-Iglesias, J.; Sota, M.; Marimon, J.M.; et al. Genomic Surveillance Uncovers a 10-Year Persistence of an OXA-24/40 Acinetobacter baumannii Clone in a Tertiary Hospital in Northern Spain. Int. J. Mol. Sci. 2024, 25, 2333. [Google Scholar] [CrossRef]
  189. Grosso, F.; Quinteira, S.; Peixe, L. Understanding the dynamics of imipenem-resistant Acinetobacter baumannii lineages within Portugal. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 1275–1279. [Google Scholar] [CrossRef]
  190. Li, J.; Fu, Y.; Zhang, J.; Zhao, Y.; Fan, X.; Yu, L.; Wang, Y.; Zhang, X.; Li, C. The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J. Chemother. 2020, 32, 359–367. [Google Scholar] [CrossRef] [PubMed]
  191. Iovleva, A.; Mustapha, M.M.; Griffith, M.P.; Komarow, L.; Luterbach, C.; Evans, D.R.; Cober, E.; Richter, S.S.; Rydell, K.; Arias, C.A. Carbapenem-resistant Acinetobacter baumannii in US hospitals: Diversification of circulating lineages and antimicrobial resistance. MBio 2022, 13, e02759-21. [Google Scholar] [CrossRef]
  192. Mavroidi, A.; Likousi, S.; Palla, E.; Katsiari, M.; Roussou, Z.; Maguina, A.; Platsouka, E.D. Molecular identification of tigecycline-and colistin-resistant carbapenemase-producing Acinetobacter baumannii from a Greek hospital from 2011 to 2013. J. Med. Microbiol. 2015, 64, 993–997. [Google Scholar] [CrossRef]
  193. Tsakris, A.; Ikonomidis, A.; Pournaras, S.; Tzouvelekis, L.S.; Sofianou, D.; Legakis, N.J.; Maniatis, A.N. VIM-1 metallo-beta-lactamase in Acinetobacter baumannii. Emerg. Infect. Dis. 2006, 12, 981–983. [Google Scholar] [CrossRef] [PubMed]
  194. Loli, A.; Tzouvelekis, L.S.; Gianneli, D.; Tzelepi, E.; Miriagou, V. Outbreak of Acinetobacter baumannii with chromosomally encoded VIM-1 undetectable by imipenem-EDTA synergy tests. Antimicrob. Agents Chemother. 2008, 52, 1894–1896. [Google Scholar] [CrossRef]
  195. Tsakris, A.; Ikonomidis, A.; Poulou, A.; Spanakis, N.; Vrizas, D.; Diomidous, M.; Pournaras, S.; Markou, F. Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008, 14, 588–594. [Google Scholar] [CrossRef]
  196. Peleg, A.Y.; Bell, J.M.; Hofmeyr, A.; Wiese, P. Inter-country transfer of Gram-negative organisms carrying the VIM-4 and OXA-58 carbapenem-hydrolysing enzymes. J. Antimicrob. Chemother. 2006, 57, 794–795. [Google Scholar] [CrossRef] [PubMed]
  197. Yum, J.H.; Yi, K.; Lee, H.; Yong, D.; Lee, K.; Kim, J.M.; Rossolini, G.M.; Chong, Y. Molecular characterization of metallo-beta-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: Identification of two new integrons carrying the bla(VIM-2) gene cassettes. J. Antimicrob. Chemother. 2002, 49, 837–840. [Google Scholar] [CrossRef] [PubMed]
  198. Oh, E.J.; Lee, S.; Park, Y.J.; Park, J.J.; Park, K.; Kim, S.I.; Kang, M.W.; Kim, B.K. Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-beta-lactamase. J. Microbiol. Methods 2003, 54, 411–418. [Google Scholar] [CrossRef]
  199. Castanheira, M.; Costello, S.E.; Woosley, L.N.; Deshpande, L.M.; Davies, T.A.; Jones, R.N. Evaluation of clonality and carbapenem resistance mechanisms among Acinetobacter baumannii-Acinetobacter calcoaceticus complex and Enterobacteriaceae isolates collected in European and Mediterranean countries and detection of two novel beta-lactamases, GES-22 and VIM-35. Antimicrob. Agents Chemother. 2014, 58, 7358–7366. [Google Scholar] [CrossRef]
  200. Sung, J.Y.; Kwon, K.C.; Park, J.W.; Kim, Y.S.; Kim, J.M.; Shin, K.S.; Kim, J.W.; Ko, C.S.; Shin, S.Y.; Song, J.H.; et al. Dissemination of IMP-1 and OXA type beta-lactamase in carbapenem-resistant Acinetobacter baumannii. Korean J. Lab. Med. 2008, 28, 16–23. [Google Scholar] [CrossRef]
  201. Kim, H.J.; Kim, H.S.; Lee, J.M.; Yoon, S.S.; Yong, D. Rapid detection of Pseudomonas aeruginosa and Acinetobacter baumannii Harboring bla(VIM-2), bla(IMP-1) and bla(OXA-23) genes by using loop-mediated isothermal amplification methods. Ann. Lab. Med. 2016, 36, 15–22. [Google Scholar] [CrossRef] [PubMed]
  202. Davoodi, S.; Boroumand, M.A.; Sepehriseresht, S.; Pourgholi, L. Detection of VIM- and IMP-type Metallo-Beta-Lactamase Genes in Acinetobacter baumannii Isolates from Patients in Two Hospitals in Tehran. Iran. J. Biotechnol. 2015, 13, 63–67. [Google Scholar] [CrossRef]
  203. Massik, A.; Hibaoui, L.; Benboubker, M.; Yahyaoui, G.; Oumokhtar, B.; Mahmoud, M. Acinetobacter baumannii Carbapenemase Producers in Morocco: Genetic Diversity. Cureus 2023, 15, e43629. [Google Scholar] [CrossRef]
  204. Massik, A.; Hibaoui, L.; Moussa, B.; Yahyaoui, G.; Oumokhtar, B.; Mahmoud, M. First report of SPM metallo-beta-lactamases producing Acinetobacter baumannii isolates in Morocco. Iran. J. Microbiol. 2022, 14, 438–444. [Google Scholar] [CrossRef] [PubMed]
  205. Ferjani, S.; Kanzari, L.; Maamar, E.; Hamzaoui, Z.; Rehaiem, A.; Ferjani, A.; Boutiba-Ben Boubaker, I. Extensively drug-resistant Acinetobacter baumannii co-producing VIM-2 and OXA-23 in intensive care units: Results of a one-day point prevalence in a Tunisian hospital. Infect. Dis. Now. 2022, 52, 426–431. [Google Scholar] [CrossRef] [PubMed]
  206. Zhou, Z.; Guan, R.; Yang, Y.; Chen, L.; Fu, J.; Deng, Q.; Xie, Y.; Huang, Y.; Wang, J.; Wang, D.; et al. Identification of New Delhi metallo-beta-lactamase gene (NDM-1) from a clinical isolate of Acinetobacter junii in China. Can. J. Microbiol. 2012, 58, 112–115. [Google Scholar] [CrossRef] [PubMed]
  207. Ghazawi, A.; Sonnevend, A.; Bonnin, R.A.; Poirel, L.; Nordmann, P.; Hashmey, R.; Rizvi, T.A.; M, B.H.; Pal, T. NDM-2 carbapenemase-producing Acinetobacter baumannii in the United Arab Emirates. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, E34–E36. [Google Scholar] [CrossRef]
  208. Revathi, G.; Siu, L.K.; Lu, P.L.; Huang, L.Y. First report of NDM-1-producing Acinetobacter baumannii in East Africa. Int. J. Infect. Dis. 2013, 17, e1255–e1258. [Google Scholar] [CrossRef]
  209. Decousser, J.W.; Jansen, C.; Nordmann, P.; Emirian, A.; Bonnin, R.A.; Anais, L.; Merle, J.C.; Poirel, L. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Eurosurveillance 2013, 18, 20547. [Google Scholar] [CrossRef]
  210. Travi, G.; Peracchi, F.; Merli, M.; Lo Re, N.; Matarazzo, E.; Tartaglione, L.; Bielli, A.; Casalicchio, G.; Crippa, F.; Vismara, C.S.; et al. Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics 2024, 13, 770. [Google Scholar] [CrossRef]
  211. Voulgari, E.; Politi, L.; Pitiriga, V.; Dendrinos, J.; Poulou, A.; Georgiadis, G.; Tsakris, A. First report of an NDM-1 metallo-beta-lactamase-producing Acinetobacter baumannii clinical isolate in Greece. Int. J. Antimicrob. Agents 2016, 48, 761–762. [Google Scholar] [CrossRef]
  212. Chatterjee, S.; Datta, S.; Roy, S.; Ramanan, L.; Saha, A.; Viswanathan, R.; Som, T.; Basu, S. Carbapenem Resistance in Acinetobacter baumannii and Other Acinetobacter spp. Causing Neonatal Sepsis: Focus on NDM-1 and Its Linkage to ISAba125. Front. Microbiol. 2016, 7, 1126. [Google Scholar] [CrossRef]
  213. Xanthopoulou, K.; Urrutikoetxea-Gutierrez, M.; Vidal-Garcia, M.; Diaz de Tuesta Del Arco, J.L.; Sanchez-Urtaza, S.; Wille, J.; Seifert, H.; Higgins, P.G.; Gallego, L. First Report of New Delhi Metallo-beta-Lactamase-6 (NDM-6) in a Clinical Acinetobacter baumannii Isolate From Northern Spain. Front. Microbiol. 2020, 11, 589253. [Google Scholar] [CrossRef]
  214. Gaillot, S.; Oueslati, S.; Vuillemenot, J.B.; Bour, M.; Iorga, B.I.; Triponney, P.; Plesiat, P.; Bonnin, R.A.; Naas, T.; Jeannot, K.; et al. Genomic characterization of an NDM-9-producing Acinetobacter baumannii clinical isolate and role of Glu152Lys substitution in the enhanced cefiderocol hydrolysis of NDM-9. Front. Microbiol. 2023, 14, 1253160. [Google Scholar] [CrossRef]
  215. Kitti, T.; Manrueang, S.; Leungtongkam, U.; Khongfak, S.; Thummeepak, R.; Wannalerdsakun, S.; Jindayok, T.; Sitthisak, S. Genomic relatedness and dissemination of bla (NDM-5) among Acinetobacter baumannii isolated from hospital environments and clinical specimens in Thailand. PeerJ 2023, 11, e14831. [Google Scholar] [CrossRef]
  216. Gutierrez, K.; Vasquez-Mendoza, A.; Rodriguez, C. An outbreak of severe or lethal infections by a multidrug-resistant Acinetobacter baumannii ST126 strain carrying a plasmid with bla(NDM-1) and bla(OXA-58) carbapenemases. Diagn. Microbiol. Infect. Dis. 2024, 110, 116428. [Google Scholar] [CrossRef]
  217. Joshi, P.R.; Acharya, M.; Kakshapati, T.; Leungtongkam, U.; Thummeepak, R.; Sitthisak, S. Co-existence of bla(OXA-23) and bla(NDM-1) genes of Acinetobacter baumannii isolated from Nepal: Antimicrobial resistance and clinical significance. Antimicrob. Resist. Infect. Control 2017, 6, 21. [Google Scholar] [CrossRef]
  218. Lukovic, B.; Gajic, I.; Dimkic, I.; Kekic, D.; Zornic, S.; Pozder, T.; Radisavljevic, S.; Opavski, N.; Kojic, M.; Ranin, L. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: Emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob. Resist. Infect. Control 2020, 9, 101. [Google Scholar] [CrossRef]
  219. Martins-Goncalves, T.; Pimenta, J.S.; Fontana, H.; Esposito, F.; Melocco, G.; Dantas, K.; Vasquez-Ponce, F.; Carrara, F.E.; Vespero, E.C.; Lincopan, N. Acinetobacter baumannii international clone 2 co-producing OXA-23, NDM-1, and ArmA emerging in South America. Antimicrob. Agents Chemother. 2024, 68, e0029824. [Google Scholar] [CrossRef]
  220. Hidalgo, E.; Sotelo, J.; Perez-Vazquez, M.; Iniesta, A.; Canada-Garcia, J.E.; Valiente, O.; Aracil, B.; Arana, D.M.; Oteo-Iglesias, J. Emergence of NDM-1- and OXA-23-Co-Producing Acinetobacter baumannii ST1 Isolates from a Burn Unit in Spain. Microorganisms 2025, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
  221. Castilho, P.O.S.; Takahashi, F.M.; Onca Moreira, M.J.; Martins-Goncalves, T.; Carrara, F.E.; Lincopan, N.; Vespero, E.C. Outbreak and persistence of dual carbapenemase (OXA-23 and NDM-1)-producing Acinetobacter baumannii international clone 2 (ST2) in a tertiary hospital intensive care unit in Brazil. J. Hosp. Infect. 2025, 160, 121–124. [Google Scholar] [CrossRef]
  222. Robledo, I.E.; Aquino, E.E.; Sante, M.I.; Santana, J.L.; Otero, D.M.; Leon, C.F.; Vazquez, G.J. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob. Agents Chemother. 2010, 54, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
  223. Escandon-Vargas, K.; Reyes, S.; Gutierrez, S.; Villegas, M.V. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev. Anti-Infect. Ther. 2017, 15, 277–297. [Google Scholar] [CrossRef] [PubMed]
  224. Caneiras, C.; Calisto, F.; Jorge da Silva, G.; Lito, L.; Melo-Cristino, J.; Duarte, A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
  225. Miniaoui, D.; Dziri, O.; Ben Lamine, Y.; El Salabi, A.A.; Omar, E.O.; Slimene, K.; Dziri, R.; Bouhalila-Besbes, S.; Hadjadj, L.; Mabrouk, A.; et al. Prevalence of carbapenemases among Gram-negative bacteria in Tunisia: First report of KPC-2 producing Acinetobacter baumannii. J. Infect. Dev. Ctries. 2023, 17, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
  226. Gaiarsa, S.; Batisti Biffignandi, G.; Esposito, E.P.; Castelli, M.; Jolley, K.A.; Brisse, S.; Sassera, D.; Zarrilli, R. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front. Microbiol. 2019, 10, 930. [Google Scholar] [CrossRef]
  227. Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.-S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.-H. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis. 2014, 20, 1812. [Google Scholar] [CrossRef] [PubMed]
  228. Bartual, S.G.; Seifert, H.; Hippler, C.; Luzon, M.A.D.n.; Wisplinghoff, H.; Rodríguez-Valera, F. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 4382–4390. [Google Scholar] [CrossRef]
  229. Wisplinghoff, H.; Hippler, C.; Bartual, S.; Haefs, C.; Stefanik, D.; Higgins, P.; Seifert, H. Molecular epidemiology of clinical Acinetobacter baumannii and Acinetobacter genomic species 13TU isolates using a multilocus sequencing typing scheme. Clin. Microbiol. Infect. 2008, 14, 708–715. [Google Scholar] [CrossRef]
  230. Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef]
  231. Da Silva, G.; Van Der Reijden, T.; Domingues, S.; Mendonça, N.; Petersen, K.; Dijkshoorn, L. Characterization of a novel international clonal complex (CC32) of Acinetobacter baumannii with epidemic potential. Epidemiol. Infect. 2014, 142, 1554–1558. [Google Scholar] [CrossRef]
  232. Sahl, J.W.; Del Franco, M.; Pournaras, S.; Colman, R.E.; Karah, N.; Dijkshoorn, L.; Zarrilli, R. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci. Rep. 2015, 5, 15188. [Google Scholar] [CrossRef]
  233. Ou, H.-Y.; Kuang, S.N.; He, X.; Molgora, B.M.; Ewing, P.J.; Deng, Z.; Osby, M.; Chen, W.; Xu, H.H. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: Epidemiology, resistance genetic determinants and potential virulence factors. Sci. Rep. 2015, 5, 8643. [Google Scholar] [CrossRef]
  234. Feng, Y.; Ruan, Z.; Shu, J.; Chen, C.-L.; Chiu, C.-H. A glimpse into evolution and dissemination of multidrug-resistant Acinetobacter baumannii isolates in East Asia: A comparative genomics study. Sci. Rep. 2016, 6, 24342. [Google Scholar] [CrossRef]
  235. Tomaschek, F.; Higgins, P.G.; Stefanik, D.; Wisplinghoff, H.; Seifert, H. Head-to-head comparison of two multi-locus sequence typing (MLST) schemes for characterization of Acinetobacter baumannii outbreak and sporadic isolates. PLoS ONE 2016, 11, e0153014. [Google Scholar] [CrossRef] [PubMed]
  236. Hamidian, M.; Nigro, S.J.; Hall, R.M. Problems with the Oxford multilocus sequence typing scheme for Acinetobacter baumannii: Do sequence type 92 (ST92) and ST109 exist? J. Clin. Microbiol. 2017, 55, 2287–2289. [Google Scholar] [CrossRef] [PubMed]
  237. Hamouda, A.; Evans, B.A.; Towner, K.J.; Amyes, S.G. Characterization of epidemiologically unrelated Acinetobacter baumannii isolates from four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, and sequence-based typing of bla OXA-51-like genes. J. Clin. Microbiol. 2010, 48, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
  238. Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
  239. Gogou, V.; Pournaras, S.; Giannouli, M.; Voulgari, E.; Piperaki, E.T.; Zarrilli, R.; Tsakris, A. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages: A 10 year study in Greece (2000-09). J. Antimicrob. Chemother. 2011, 66, 2767–2772. [Google Scholar] [CrossRef]
  240. Li, S.; Jiang, G.; Wang, S.; Wang, M.; Wu, Y.; Zhang, J.; Liu, X.; Zhong, L.; Zhou, M.; Xie, S.; et al. Emergence and global spread of a dominant multidrug-resistant clade within Acinetobacter baumannii. Nat. Commun. 2025, 16, 2787. [Google Scholar] [CrossRef]
  241. Rodgers, D.; Pasteran, F.; Calderon, M.; Jaber, S.; Traglia, G.M.; Albornoz, E.; Corso, A.; Vila, A.J.; Bonomo, R.A.; Adams, M.D.; et al. Characterisation of ST25 NDM-1-producing Acinetobacter spp. strains leading the increase in NDM-1 emergence in Argentina. J. Glob. Antimicrob. Resist. 2020, 23, 108–110. [Google Scholar] [CrossRef]
  242. Aung, M.S.; Hlaing, M.S.; San, N.; Aung, M.T.; Mar, T.T.; Kobayashi, N. Clonal diversity of Acinetobacter baumannii clinical isolates in Myanmar: Identification of novel ST1407 harbouring blaNDM-1. New Microbes New Infect. 2021, 40, 100847. [Google Scholar] [CrossRef]
  243. Wang, K.; Zhu, W.; Gong, L.; Yang, X.; Ye, H.; Lou, Z.; Yang, J.; Jiang, X.; Li, W.; Tao, F.; et al. Genomic and phenotypic insights into ST164 bla(NDM-1)-positive Acinetobacter baumannii from intestinal colonization in China. BMC Microbiol. 2025, 25, 272. [Google Scholar] [CrossRef]
  244. Heydari, F.; Mammina, C.; Koksal, F. NDM-1-producing Acinetobacter baumannii ST85 now in Turkey, including one isolate from a Syrian refugee. J. Med. Microbiol. 2015, 64, 1027–1029. [Google Scholar] [CrossRef]
  245. Bonnin, R.A.; Cuzon, G.; Poirel, L.; Nordmann, P. Multidrug-resistant Acinetobacter baumannii clone, France. Emerg. Infect. Dis. 2013, 19, 822–823. [Google Scholar] [CrossRef] [PubMed]
  246. Luo, T.L.; Martin, M.J.; Kovalchuk, V.; Kondratiuk, V.; Trapaidze, N.; Metreveli, M.; Hulseberg, C.E.; Dao, H.D.; Kwak, Y.I.; Maybank, R.; et al. Detection of carbapenemase producing Acinetobacter baumannii ST19 from Georgia and Ukraine carrying bla (OXA-23), bla (OXA-72), and/or bla (NDM-5), December 2019 to June 2023. Eurosurveillance 2024, 29, 2400259. [Google Scholar] [CrossRef] [PubMed]
  247. Nawfal Dagher, T.; Hadjadj, L.; Bittar, F.; Fenianos, F.; Abdo, E.; Rolain, J.M.; Al-Bayssari, C. Clonal dissemination of an NDM-2-producing Acinetobacter baumannii ST103 clone resulting in an outbreak in an intensive care unit of a Lebanese tertiary care hospital. J. Glob. Antimicrob. Resist. 2025, 40, 66–71. [Google Scholar] [CrossRef] [PubMed]
  248. Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. J. Clin. Med. 2021, 10, 1068. [Google Scholar] [CrossRef]
  249. Paul, M.; Carrara, E.; Retamar, P.; Tangden, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2022, 28, 521–547. [Google Scholar] [CrossRef]
  250. Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti-Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef]
  251. PubChem Compound Summary for CID 44144393. Colistin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Colistine (accessed on 27 June 2025).
  252. Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A. DrugBank 6.0: The DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef]
  253. PubChem Compound Summary for CID 18541918. Ampicillin-Sulbactam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ampicillin-sulbactam (accessed on 27 June 2025).
  254. PubChem Compound Summary for CID 54686904. Tigecycline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tigecycline (accessed on 27 June 2025).
  255. PubChem Compound Summary for CID 446987. Fosfomycin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fosfomycin (accessed on 27 June 2025).
  256. PubChem Compound Summary for CID 42613186. Plazomicin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Plazomicin (accessed on 27 June 2025).
  257. PubChem Compound Summary for CID 54726192. Eravacycline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tp-434 (accessed on 27 June 2025).
  258. PubChem Compound Summary for CID 77843966. Cefiderocol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cefiderocol (accessed on 27 June 2025).
  259. PubChem Compound Summary for CID 171758. Temocillin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Temocillin (accessed on 27 June 2025).
  260. PubChem Compound Summary for CID 172973390. Ceftolozane-Tazobactam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ceftolozane-tazobactam (accessed on 27 June 2025).
  261. PubChem Compound Summary for CID 86298703. Meropenem; Vaborbactam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/86298703 (accessed on 27 June 2025).
  262. PubChem Compound Summary for CID 90643431. Avycaz. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Avycaz (accessed on 27 June 2025).
  263. Cassir, N.; Rolain, J.M.; Brouqui, P. A new strategy to fight antimicrobial resistance: The revival of old antibiotics. Front. Microbiol. 2014, 5, 551. [Google Scholar] [CrossRef]
  264. Akajagbor, D.S.; Wilson, S.L.; Shere-Wolfe, K.D.; Dakum, P.; Charurat, M.E.; Gilliam, B.L. Higher incidence of acute kidney injury with intravenous colistimethate sodium compared with polymyxin B in critically ill patients at a tertiary care medical center. Clin. Infect. Dis. 2013, 57, 1300–1303. [Google Scholar] [CrossRef]
  265. Vardakas, K.Z.; Athanassaki, F.; Pitiriga, V.; Falagas, M.E. Clinical relevance of in vitro synergistic activity of antibiotics for multidrug-resistant Gram-negative infections: A systematic review. J. Glob. Antimicrob. Resist. 2019, 17, 250–259. [Google Scholar] [CrossRef] [PubMed]
  266. Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
  267. Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
  268. Dickstein, Y.; Lellouche, J.; Ben Dalak Amar, M.; Schwartz, D.; Nutman, A.; Daitch, V.; Yahav, D.; Leibovici, L.; Skiada, A.; Antoniadou, A. Treatment outcomes of colistin-and carbapenem-resistant Acinetobacter baumannii infections: An exploratory subgroup analysis of a randomized clinical trial. Clin. Infect. Dis. 2019, 69, 769–776. [Google Scholar] [CrossRef] [PubMed]
  269. Betrosian, A.P.; Frantzeskaki, F.; Xanthaki, A.; Douzinas, E.E. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J. Infect. 2008, 56, 432–436. [Google Scholar] [CrossRef]
  270. Zalts, R.; Neuberger, A.; Hussein, K.; Raz-Pasteur, A.; Geffen, Y.; Mashiach, T.; Finkelstein, R. Treatment of Carbapenem-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia: Retrospective Comparison Between Intravenous Colistin and Intravenous Ampicillin-Sulbactam. Am. J. Ther. 2016, 23, e78–e85. [Google Scholar] [CrossRef]
  271. Mosaed, R.; Haghighi, M.; Kouchak, M.; Miri, M.M.; Salarian, S.; Shojaei, S.; Javadi, A.; Taheri, S.; Nazirzadeh, P.; Foroumand, M.; et al. Interim Study: Comparison Of Safety And Efficacy of Levofloxacin Plus Colistin Regimen With Levofloxacin Plus High Dose Ampicillin/Sulbactam Infusion In Treatment of Ventilator-Associated Pneumonia Due To Multi Drug Resistant Acinetobacter. Iran. J. Pharm. Res. 2018, 17, 206–213. [Google Scholar]
  272. Safarika, A.; Galani, I.; Pistiki, A.; Giamarellos-Bourboulis, E.J. Time-kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Synergism with imipenem and colistin. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 317–323. [Google Scholar] [CrossRef]
  273. Choi, S.J.; Kim, E.S. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect. Chemother. 2024, 56, 171–187. [Google Scholar] [CrossRef]
  274. Lawandi, A.; Yek, C.; Kadri, S.S. IDSA guidance and ESCMID guidelines: Complementary approaches toward a care standard for MDR Gram-negative infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2022, 28, 465–469. [Google Scholar] [CrossRef]
  275. Kubin, C.J.; Garzia, C.; Uhlemann, A.-C. Acinetobacter baumannii treatment strategies: A review of therapeutic challenges and considerations. Antimicrob. Agents Chemother. 2025, 69, e01063-24. [Google Scholar] [CrossRef]
  276. Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating available treatment options for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections. Clin. Infect. Dis. 2023, 76, S179–S193. [Google Scholar] [CrossRef]
  277. Karruli, A.; Migliaccio, A.; Pournaras, S.; Durante-Mangoni, E.; Zarrilli, R. Cefiderocol and sulbactam-durlobactam against carbapenem-resistant Acinetobacter baumannii. Antibiotics 2023, 12, 1729. [Google Scholar] [CrossRef]
  278. Keam, S.J. Sulbactam/durlobactam: First approval. Drugs 2023, 83, 1245–1252. [Google Scholar] [CrossRef]
  279. Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii–calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [PubMed]
  280. Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Miller, A.; Kresken, M. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 2616–2621. [Google Scholar] [CrossRef]
  281. Entenza, J.M.; Moreillon, P. Tigecycline in combination with other antimicrobials: A review of in vitro, animal and case report studies. Int. J. Antimicrob. Agents 2009, 34, 8.e1–8.e9. [Google Scholar] [CrossRef]
  282. Karageorgopoulos, D.E.; Kelesidis, T.; Kelesidis, I.; Falagas, M.E. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: A review of the scientific evidence. J. Antimicrob. Chemother. 2008, 62, 45–55. [Google Scholar] [CrossRef] [PubMed]
  283. Chuang, Y.C.; Cheng, C.Y.; Sheng, W.H.; Sun, H.Y.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Effectiveness of tigecycline-based versus colistin- based therapy for treatment of pneumonia caused by multidrug-resistant Acinetobacter baumannii in a critical setting: A matched cohort analysis. BMC Infect. Dis. 2014, 14, 102. [Google Scholar] [CrossRef]
  284. Kim, W.Y.; Moon, J.Y.; Huh, J.W.; Choi, S.H.; Lim, C.M.; Koh, Y.; Chong, Y.P.; Hong, S.B. Comparable Efficacy of Tigecycline versus Colistin Therapy for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients. PLoS ONE 2016, 11, e0150642. [Google Scholar] [CrossRef] [PubMed]
  285. Kwon, S.H.; Ahn, H.L.; Han, O.Y.; La, H.O. Efficacy and safety profile comparison of colistin and tigecycline on the extensively drug resistant Acinetobacter baumannii. Biol. Pharm. Bull. 2014, 37, 340–346. [Google Scholar] [CrossRef]
  286. Ku, K.; Pogue, J.M.; Moshos, J.; Bheemreddy, S.; Wang, Y.; Bhargava, A.; Campbell, M.; Khandker, N.; Lephart, P.R.; Chopra, T.; et al. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am. J. Infect. Control 2012, 40, 983–987. [Google Scholar] [CrossRef]
  287. Ye, J.J.; Lin, H.S.; Yeh, C.F.; Wu, Y.M.; Huang, P.Y.; Yang, C.C.; Huang, C.T.; Lee, M.H. Tigecycline-based versus sulbactam-based treatment for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. BMC Infect. Dis. 2016, 16, 374. [Google Scholar] [CrossRef]
  288. Niu, T.; Luo, Q.; Li, Y.; Zhou, Y.; Yu, W.; Xiao, Y. Comparison of Tigecycline or Cefoperazone/Sulbactam therapy for bloodstream infection due to Carbapenem-resistant Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed]
  289. Mezzatesta, M.L.; La Rosa, G.; Maugeri, G.; Zingali, T.; Caio, C.; Novelli, A.; Stefani, S. In vitro activity of fosfomycin trometamol and other oral antibiotics against multidrug-resistant uropathogens. Int. J. Antimicrob. Agents 2017, 49, 763–766. [Google Scholar] [CrossRef] [PubMed]
  290. Behzadi, P.; Garcia-Perdomo, H.A.; Autran Gomez, A.M.; Pinheiro, M.; Sarshar, M. Editorial: Uropathogens, urinary tract infections, the host-pathogen interactions and treatment. Front. Microbiol. 2023, 14, 1183236. [Google Scholar] [CrossRef]
  291. Issakhanian, L.; Behzadi, P. Antimicrobial Agents and Urinary Tract Infections. Curr. Pharm. Des. 2019, 25, 1409–1423. [Google Scholar] [CrossRef] [PubMed]
  292. Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
  293. Russo, A.; Gulli, S.P.; D’Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multi-centre clinical experience. Int. J. Antimicrob. Agents 2024, 64, 107190. [Google Scholar] [CrossRef]
  294. Garcia-Salguero, C.; Rodriguez-Avial, I.; Picazo, J.J.; Culebras, E. Can Plazomicin Alone or in Combination Be a Therapeutic Option against Carbapenem-Resistant Acinetobacter baumannii? Antimicrob. Agents Chemother. 2015, 59, 5959–5966. [Google Scholar] [CrossRef]
  295. Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A Novel Aminoglycoside for the Treatment of Resistant Gram-Negative Bacterial Infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef] [PubMed]
  296. Jackson, M.N.W.; Wei, W.; Mang, N.S.; Prokesch, B.C.; Ortwine, J.K. Combination eravacycline therapy for ventilator-associated pneumonia due to carbapenem-resistant Acinetobacter baumannii in patients with COVID-19: A case series. Pharmacotherapy 2024, 44, 301–307. [Google Scholar] [CrossRef]
  297. Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
  298. Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef] [PubMed]
  299. Soriano, A.; Mensa, J. Mechanism of action of cefiderocol. Rev. Esp. Quim. 2022, 35 (Suppl. S2), 16–19. [Google Scholar] [CrossRef]
  300. Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as Rescue Therapy for Acinetobacter baumannii and Other Carbapenem-resistant Gram-negative Infections in Intensive Care Unit Patients. Clin. Infect. Dis. 2021, 72, 2021–2024. [Google Scholar] [CrossRef]
  301. Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
  302. Desmoulin, A.; Sababadichetty, L.; Kamus, L.; Daniel, M.; Feletti, L.; Allou, N.; Potron, A.; Leroy, A.G.; Jaffar-Bandjee, M.C.; Belmonte, O.; et al. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024, 10, e30365. [Google Scholar] [CrossRef] [PubMed]
  303. Livermore, D.M.; Tulkens, P.M. Temocillin revived. J. Antimicrob. Chemother. 2009, 63, 243–245. [Google Scholar] [CrossRef]
  304. Shafiekhani, M.; Fatemi, S.A.; Hosseini, P.; Marhemati, F.; Mohammadi, S.; Sharifi, F.; Moorkani Kurde Esfahani Pour, A.; Sadeghi Habibabad, F.; Saad Abadi, N.; Shorafa, E.; et al. Pharmacokinetic and Pharmacodynamic Considerations of Novel Antibiotic Agents for Pediatric Infections: A Narrative Review. Surg. Infect. 2023, 24, 703–715. [Google Scholar] [CrossRef]
  305. Jun, S.H.; Lee, D.E.; Hwang, H.R.; Kim, N.; Kim, H.J.; Lee, Y.C.; Kim, Y.K.; Lee, J.C. Clonal change of carbapenem-resistant Acinetobacter baumannii isolates in a Korean hospital. Infect. Genet. Evol. 2021, 93, 104935. [Google Scholar] [CrossRef] [PubMed]
  306. Ju, Y.G.; Lee, H.J.; Yim, H.S.; Lee, M.G.; Sohn, J.W.; Yoon, Y.K. In vitro synergistic antimicrobial activity of a combination of meropenem, colistin, tigecycline, rifampin, and ceftolozane/tazobactam against carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2022, 12, 7541. [Google Scholar] [CrossRef]
  307. Mansour, H.; Ouweini, A.E.L.; Chahine, E.B.; Karaoui, L.R. Imipenem/cilastatin/relebactam: A new carbapenem beta-lactamase inhibitor combination. Am. J. Health Syst. Pharm. 2021, 78, 674–683. [Google Scholar] [CrossRef]
  308. Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New beta-Lactam-beta-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
  309. Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagace-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-beta-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
  310. Mouktaroudi, M.; Kotsaki, A.; Giamarellos-Bourboulis, E.J. Meropenem-vaborbactam: A critical positioning for the management of infections by Carbapenem-resistant Enterobacteriaceae. Expert Rev. Anti-Infect. Ther. 2022, 20, 809–818. [Google Scholar] [CrossRef]
  311. Castanheira, M.; Doyle, T.B.; Kantro, V.; Mendes, R.E.; Shortridge, D. Meropenem-Vaborbactam Activity against Carbapenem-Resistant Enterobacterales Isolates Collected in U.S. Hospitals during 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e01951-19. [Google Scholar] [CrossRef]
  312. Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagace-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/beta-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef] [PubMed]
  313. Mawal, Y.; Critchley, I.A.; Riccobene, T.A.; Talley, A.K. Ceftazidime-avibactam for the treatment of complicated urinary tract infections and complicated intra-abdominal infections. Expert Rev. Clin. Pharmacol. 2015, 8, 691–707. [Google Scholar] [CrossRef] [PubMed]
  314. Thompson, C.A. Ceftazidime with beta-lactamase inhibitor approved for complicated infections. Am. J. Health Syst. Pharm. 2015, 72, 511. [Google Scholar] [CrossRef]
  315. Stein, G.E.; Smith, C.L.; Scharmen, A.; Kidd, J.M.; Cooper, C.; Kuti, J.; Mitra, S.; Nicolau, D.P.; Havlichek, D.H. Pharmacokinetic and Pharmacodynamic Analysis of Ceftazidime/Avibactam in Critically Ill Patients. Surg. Infect. 2019, 20, 55–61. [Google Scholar] [CrossRef]
  316. Torres, A.; Rank, D.; Melnick, D.; Rekeda, L.; Chen, X.; Riccobene, T.; Critchley, I.A.; Lakkis, H.D.; Taylor, D.; Talley, A.K. Randomized Trial of Ceftazidime-Avibactam vs Meropenem for Treatment of Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia (REPROVE): Analyses per US FDA-Specified End Points. Open Forum Infect. Dis. 2019, 6, ofz149. [Google Scholar] [CrossRef]
  317. Pouya, N.; Smith, J.E.; Hudson, C.S.; Teran, N.S.; Tam, V.H. In vitro evaluation of using ceftazidime/avibactam against carbapenem-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2024, 38, 252–255. [Google Scholar] [CrossRef] [PubMed]
  318. Ransom, E.; Bhatnagar, A.; Patel, J.B.; Machado, M.J.; Boyd, S.; Reese, N.; Lutgring, J.D.; Lonsway, D.; Anderson, K.; Brown, A.C.; et al. Validation of Aztreonam-Avibactam Susceptibility Testing Using Digitally Dispensed Custom Panels. J. Clin. Microbiol. 2020, 58, e01944-19. [Google Scholar] [CrossRef] [PubMed]
  319. Al Musawa, M.; Bleick, C.R.; Herbin, S.R.; Caniff, K.E.; Van Helden, S.R.; Rybak, M.J. Aztreonam-avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2024, 44, 927–938. [Google Scholar] [CrossRef]
  320. Sader, H.S.; Kimbrough, J.H.; Doyle, T.B.; Winkler, M.L.; Castanheira, M. Frequency, Antimicrobial Susceptibility, and Molecular Characterization of Carbapenem-Resistant Enterobacterales Stratified by United States Census Divisions: Results From the INFORM Program (2018–2022). Open Forum Infect. Dis. 2025, 12, ofaf005. [Google Scholar] [CrossRef]
  321. Wu, Y.; Chen, J.; Zhang, G.; Li, J.; Wang, T.; Kang, W.; Zhang, J.; Sun, H.; Liu, Y.; Xu, Y. In-vitro activities of essential antimicrobial agents including aztreonam/avibactam, eravacycline, colistin and other comparators against carbapenem-resistant bacteria with different carbapenemase genes: A multi-centre study in China, 2021. Int. J. Antimicrob. Agents 2024, 64, 107341. [Google Scholar] [CrossRef] [PubMed]
  322. Dumbleton, J.T.; Shah, A.P.; Ho, B.M.; Singh, N.; de Souza, H.; Smith, N.M. Pharmacodynamics of aztreonam/ceftazidime/avibactam and polymyxin B versus New Delhi MBL-producing Acinetobacter baumannii. JAC-Antimicrob. Resist. 2025, 7, dlaf068. [Google Scholar] [CrossRef] [PubMed]
  323. Coppola, N.; Maraolo, A.E.; Onorato, L.; Scotto, R.; Calò, F.; Atripaldi, L.; Borrelli, A.; Corcione, A.; De Cristofaro, M.G.; Durante-Mangoni, E. Epidemiology, mechanisms of resistance and treatment algorithm for infections due to carbapenem-resistant gram-negative bacteria: An expert panel opinion. Antibiotics 2022, 11, 1263. [Google Scholar] [CrossRef]
  324. Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America guidance on the treatment of AmpC β-lactamase–producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
  325. Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I. International consensus guidelines for the optimal use of the polymyxins: Endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti-infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 10–39. [Google Scholar]
  326. Rafailidis, P.; Panagopoulos, P.; Koutserimpas, C.; Samonis, G. Current therapeutic approaches for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infections. Antibiotics 2024, 13, 261. [Google Scholar] [CrossRef] [PubMed]
  327. Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum beta-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The major antibiotic resistance mechanisms in CRAB strains.
Figure 1. The major antibiotic resistance mechanisms in CRAB strains.
Microorganisms 13 01983 g001
Figure 2. Two-dimensional structures of antimicrobial agents including (a) colistin (polymyxin class) (2D structure of colistin; C52H98N16O13; https://pubchem.ncbi.nlm.nih.gov/compound/44144393) [251,252]; (b) ampicillin–sulbactam (2D structure of ampicillin–sulbactam; C25H31N3O9S2; https://pubchem.ncbi.nlm.nih.gov/compound/18541918) [253] (penicillins class-β-lactamase inhibitor) [252], (c) tigecycline (2D structure of tigecycline; C29H39N5O8; https://pubchem.ncbi.nlm.nih.gov/compound/54686904) [254] (glycylcyclines class) [252], (d) Fosfomycin (2D structure of fosfomycin; C3H7O4P; https://pubchem.ncbi.nlm.nih.gov/compound/446987) [255] (organic phosphonic acids class) [252], (e) plazomicin (2D structure of plazomicin; C25H48N6O10; https://pubchem.ncbi.nlm.nih.gov/compound/42613186) [256] (aminoglycosides class) [252], (f) eravacycline (2D structure of eravacycline; C27H31FN4O8; https://pubchem.ncbi.nlm.nih.gov/compound/54726192) [257] (tetracyclines class) [252], (g) cefiderocol (2D structure of cefiderocol; C30H34ClN7O10S2; https://pubchem.ncbi.nlm.nih.gov/compound/77843966) [258] (cephalosporins class) [252], (h) temocillin (2D structure of temocillin; C16H18N2O7S2; https://pubchem.ncbi.nlm.nih.gov/compound/171758) [259] (carboxylic acids class) [252], (i) ceftolozane–tazobactam (2D structure of ceftolozane–tazobactam; C33H44N16O17S4; https://pubchem.ncbi.nlm.nih.gov/compound/172973390) [260] (cephalosporins class-β-lactamase inhibitor) [252], (j) meropenem–vaborbactam (2D structure of meropenem–vaborbactam; C29H41BN4O10S2; https://pubchem.ncbi.nlm.nih.gov/compound/86298703) [261] (carbapenems class-β-lactamase inhibitor) [252], and (k) ceftazidime–avibactam (2D structure of ceftazidime–avibactam; C29H33N9O13S3; https://pubchem.ncbi.nlm.nih.gov/compound/90643431) [262] (cephalosporins class-non-β-lactam β-lactamase inhibitor) [252] against CRAB isolates (https://www.ncbi.nlm.nih.gov/; https://go.drugbank.com//drugs; accessed on 27 June 2025).
Figure 2. Two-dimensional structures of antimicrobial agents including (a) colistin (polymyxin class) (2D structure of colistin; C52H98N16O13; https://pubchem.ncbi.nlm.nih.gov/compound/44144393) [251,252]; (b) ampicillin–sulbactam (2D structure of ampicillin–sulbactam; C25H31N3O9S2; https://pubchem.ncbi.nlm.nih.gov/compound/18541918) [253] (penicillins class-β-lactamase inhibitor) [252], (c) tigecycline (2D structure of tigecycline; C29H39N5O8; https://pubchem.ncbi.nlm.nih.gov/compound/54686904) [254] (glycylcyclines class) [252], (d) Fosfomycin (2D structure of fosfomycin; C3H7O4P; https://pubchem.ncbi.nlm.nih.gov/compound/446987) [255] (organic phosphonic acids class) [252], (e) plazomicin (2D structure of plazomicin; C25H48N6O10; https://pubchem.ncbi.nlm.nih.gov/compound/42613186) [256] (aminoglycosides class) [252], (f) eravacycline (2D structure of eravacycline; C27H31FN4O8; https://pubchem.ncbi.nlm.nih.gov/compound/54726192) [257] (tetracyclines class) [252], (g) cefiderocol (2D structure of cefiderocol; C30H34ClN7O10S2; https://pubchem.ncbi.nlm.nih.gov/compound/77843966) [258] (cephalosporins class) [252], (h) temocillin (2D structure of temocillin; C16H18N2O7S2; https://pubchem.ncbi.nlm.nih.gov/compound/171758) [259] (carboxylic acids class) [252], (i) ceftolozane–tazobactam (2D structure of ceftolozane–tazobactam; C33H44N16O17S4; https://pubchem.ncbi.nlm.nih.gov/compound/172973390) [260] (cephalosporins class-β-lactamase inhibitor) [252], (j) meropenem–vaborbactam (2D structure of meropenem–vaborbactam; C29H41BN4O10S2; https://pubchem.ncbi.nlm.nih.gov/compound/86298703) [261] (carbapenems class-β-lactamase inhibitor) [252], and (k) ceftazidime–avibactam (2D structure of ceftazidime–avibactam; C29H33N9O13S3; https://pubchem.ncbi.nlm.nih.gov/compound/90643431) [262] (cephalosporins class-non-β-lactam β-lactamase inhibitor) [252] against CRAB isolates (https://www.ncbi.nlm.nih.gov/; https://go.drugbank.com//drugs; accessed on 27 June 2025).
Microorganisms 13 01983 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options. Microorganisms 2025, 13, 1983. https://doi.org/10.3390/microorganisms13091983

AMA Style

Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options. Microorganisms. 2025; 13(9):1983. https://doi.org/10.3390/microorganisms13091983

Chicago/Turabian Style

Karampatakis, Theodoros, Katerina Tsergouli, and Payam Behzadi. 2025. "Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options" Microorganisms 13, no. 9: 1983. https://doi.org/10.3390/microorganisms13091983

APA Style

Karampatakis, T., Tsergouli, K., & Behzadi, P. (2025). Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options. Microorganisms, 13(9), 1983. https://doi.org/10.3390/microorganisms13091983

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop