Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options
Abstract
1. Introduction
2. Genomic Pool, Virulence Factors, and Molecular Pathogenesis
2.1. Capsular Exopolysaccharide (CPS)
2.2. Lipopolysaccharide (LPS)
2.3. Lipooligosaccharide (LOS)
2.4. Efflux Pumps
2.5. Outer Membrane Proteins (OMPs)
2.6. Pili
2.7. Metal Ion Uptake Systems
2.8. Two-Component Systems (TCSs)
2.9. Secretion Systems (SSs)
3. Antimicrobial Resistance Mechanisms in CRAB
- (1)
- (2)
- (3)
- (4)
3.1. Ambler Classification of β-Lactamases
3.2. Reduced Cell Membrane Permeability Due to the Loss of OMPs
3.3. Overexpression of Efflux Pumps
3.4. Structural Modifications at Antibiotic Target Sites
4. Trends in Molecular Epidemiology
4.1. OXA-Type Carbapenemases
4.2. Metallo-β-Lactamases (MBLs)
4.3. Klebsiella pneumoniae Carbapenemases (KPCs)
4.4. Sequence Types (STs)
5. Trends in Antimicrobial Treatment
5.1. Colistin—Polymyxins
5.2. Ampicillin–Sulbactam
5.3. Tigecycline
5.4. Fosfomycin
5.5. Plazomicin
5.6. Eravacycline
5.7. Cefiderocol
5.8. Temocillin
5.9. Ceftolozane–Tazobactam
5.10. Imipenem/Cilastatin–Relebactam
5.11. Meropenem–Vaborbactam
5.12. Ceftazidime–Avibactam
5.13. Aztreonam–Avibactam
6. Guidelines for the Treatment of CRAB Infections
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cogliati Dezza, F.; Covino, S.; Petrucci, F.; Sacco, F.; Viscido, A.; Gavaruzzi, F.; Ceccarelli, G.; Raponi, G.; Borrazzo, C.; Alessandri, F.; et al. Risk factors for carbapenem-resistant Acinetobacter baumannii (CRAB) bloodstream infections and related mortality in critically ill patients with CRAB colonization. JAC-Antimicrob. Resist. 2023, 5, dlad096. [Google Scholar] [CrossRef] [PubMed]
- Doughty, E.L.; Liu, H.; Moran, R.A.; Hua, X.; Ba, X.; Guo, F.; Chen, X.; Zhang, L.; Holmes, M.; van Schaik, W.; et al. Endemicity and diversification of carbapenem-resistant Acinetobacter baumannii in an intensive care unit. Lancet Reg. Health. West. Pac. 2023, 37, 100780. [Google Scholar] [CrossRef]
- Lemos, E.V.; de la Hoz, F.P.; Alvis, N.; Einarson, T.R.; Quevedo, E.; Castaneda, C.; Leon, Y.; Amado, C.; Canon, O.; Kawai, K. Impact of carbapenem resistance on clinical and economic outcomes among patients with Acinetobacter baumannii infection in Colombia. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 174–180. [Google Scholar] [CrossRef]
- Villegas, M.V.; Hartstein, A.I. Acinetobacter outbreaks, 1977–2000. Infect. Control Hosp. Epidemiol. 2003, 24, 284–295. [Google Scholar] [CrossRef]
- Routsi, C.; Pratikaki, M.; Platsouka, E.; Sotiropoulou, C.; Nanas, S.; Markaki, V.; Vrettou, C.; Paniara, O.; Giamarellou, H.; Roussos, C. Carbapenem-resistant versus carbapenem-susceptible Acinetobacter baumannii bacteremia in a Greek intensive care unit: Risk factors, clinical features and outcomes. Infection 2010, 38, 173–180. [Google Scholar] [CrossRef]
- Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P. The WHO Bacterial Priority Pathogens List 2024: A prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect. Dis. 2025, 25, 1033–1043. [Google Scholar] [CrossRef]
- Karampatakis, T.; Antachopoulos, C.; Tsakris, A.; Roilides, E. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii in Greece: An extended review (2000–2015). Future Microbiol. 2017, 12, 801–815. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases. 2023. Available online: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4 (accessed on 1 May 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Golpasand, T.; Keshvari, M.; Behzadi, P. Distribution of chaperone-usher fimbriae and curli fimbriae among uropathogenic Escherichia coli. BMC Microbiol. 2024, 24, 344. [Google Scholar] [CrossRef] [PubMed]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Sarshar, M.; Behzadi, P.; Scribano, D.; Palamara, A.T.; Ambrosi, C. Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021, 10, 387. [Google Scholar] [CrossRef]
- Algammal, A.M.; Behzadi, P. Antimicrobial Resistance: A Global Public Health Concern that Needs Perspective Combating Strategies and New Talented Antibiotics. Discov. Med. 2024, 36, 1911–1913. [Google Scholar] [CrossRef]
- Viehman, J.A.; Nguyen, M.H.; Doi, Y. Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs 2014, 74, 1315–1333. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Gikas, A.; Astrinaki, E.; Kritsotakis, E.I. Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. J. Hosp. Infect. 2020, 106, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Kritsotakis, E.I.; Lagoutari, D.; Michailellis, E.; Georgakakis, I.; Gikas, A. Burden of multidrug and extensively drug-resistant ESKAPEE pathogens in a secondary hospital care setting in Greece. Epidemiol. Infect. 2022, 150, e170. [Google Scholar] [CrossRef]
- Papadopoulou, M.; Deliolanis, I.; Polemis, M.; Vatopoulos, A.; Psichogiou, M.; Giakkoupi, P. Characteristics of the Genetic Spread of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Greek Hospital. Genes 2024, 15, 458. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.J.; Xiao, Z.G.; Lv, X.J.; Huang, H.T.; Liao, C.; Hui, C.Y.; Xu, Y.; Li, H.F. Drug-resistant Acinetobacter baumannii: From molecular mechanisms to potential therapeutics (Review). Exp. Ther. Med. 2023, 25, 209. [Google Scholar] [CrossRef]
- Medini, D.; Donati, C.; Tettelin, H.; Masignani, V.; Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 2005, 15, 589–594. [Google Scholar] [CrossRef]
- Urhan, A.; Abeel, T. A comparative study of pan-genome methods for microbial organisms: Acinetobacter baumannii pan-genome reveals structural variation in antimicrobial resistance-carrying plasmids. Microb. Genom. 2021, 7, 690. [Google Scholar] [CrossRef] [PubMed]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics 2024, 13, 257. [Google Scholar] [CrossRef]
- Tantoso, E.; Eisenhaber, B.; Kirsch, M.; Shitov, V.; Zhao, Z.; Eisenhaber, F. To kill or to be killed: Pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol. 2022, 20, 146. [Google Scholar] [CrossRef]
- Mira, A.; Martin-Cuadrado, A.B.; D’Auria, G.; Rodriguez-Valera, F. The bacterial pan-genome:a new paradigm in microbiology. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2010, 13, 45–57. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Pseudomonas aeruginosa’s Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics 2025, 14, 353. [Google Scholar] [CrossRef] [PubMed]
- Lean, S.S.; Yeo, C.C. Small, Enigmatic Plasmids of the Nosocomial Pathogen, Acinetobacter baumannii: Good, Bad, Who Knows? Front. Microbiol. 2017, 8, 1547. [Google Scholar] [CrossRef]
- Noel, H.R.; Petrey, J.R.; Palmer, L.D. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann. N. Y. Acad. Sci. 2022, 1518, 166–182. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Monteiro, R.; Azeredo, J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci. Rep. 2018, 8, 15346. [Google Scholar] [CrossRef]
- Behzadi, P.; Ambrosi, C.; Scribano, D.; Zanetti, S.; Sarshar, M.; Gajdacs, M.; Donadu, M.G. Editorial: Current perspectives on Pseudomonas aeruginosa: Epidemiology, virulence and contemporary strategies to combat multidrug-resistant (MDR) pathogens. Front. Microbiol. 2022, 13, 975616. [Google Scholar] [CrossRef]
- Hamidian, M.; Hawkey, J.; Wick, R.; Holt, K.E.; Hall, R.M. Evolution of a clade of Acinetobacter baumannii global clone 1, lineage 1 via acquisition of carbapenem- and aminoglycoside-resistance genes and dispersion of ISAba1. Microb. Genom. 2019, 5, e000242. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Castanheira, M.; Mendes, R.E.; Gales, A.C. Global epidemiology and mechanisms of resistance of Acinetobacter baumannii-calcoaceticus complex. Clin. Infect. Dis. 2023, 76, S166–S178. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.; Hetta, H.F.; Mabrok, M.; Behzadi, P. Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol. 2023, 14, 1135614. [Google Scholar] [CrossRef]
- Matos, A.P.; Cayô, R.; Almeida, L.G.; Streling, A.P.; Nodari, C.S.; Martins, W.M.; Narciso, A.C.; Silva, R.M.; Vasconcelos, A.T.; Gales, A.C. Genetic characterization of plasmid-borne bla OXA-58 in distinct Acinetobacter species. Msphere 2019, 4, e00376-19. [Google Scholar] [CrossRef]
- Alattraqchi, A.; Rani, F.; Rahman, N.; Ismail, S.; Cleary, D.; Clarke, S.; Yeo, C. Complete genome sequencing of Acinetobacter baumannii AC1633 andAcinetobacter nosocomialisAC1530 unveils a large multidrug resistant plasmid encoding the NDM-1 and OXA-58 carbapenemases. Msphere 2020, 6, e01076-20. [Google Scholar] [CrossRef]
- Liu, H.; Moran, R.A.; Chen, Y.; Doughty, E.L.; Hua, X.; Jiang, Y.; Xu, Q.; Zhang, L.; Blair, J.M.; McNally, A.; et al. Transferable Acinetobacter baumannii plasmid pDETAB2 encodes OXA-58 and NDM-1 and represents a new class of antibiotic resistance plasmids. J. Antimicrob. Chemother. 2021, 76, 1130–1134. [Google Scholar] [CrossRef]
- Ramoul, A.; Loucif, L.; Bakour, S.; Amiri, S.; Dekhil, M.; Rolain, J.-M. Co-occurrence of blaNDM-1 with blaOXA-23 or blaOXA-58 in clinical multidrug-resistant Acinetobacter baumannii isolates in Algeria. J. Glob. Antimicrob. Resist. 2016, 6, 136–141. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.; Zhou, Y.; Zhang, Y.; Xu, T.; Zhuang, Y.; Chen, M.; Hao, L.; Shen, Y.; Feng, J. Genomic insights of the co-existence of blaOXA-23, blaOXA-91, blaNDM-1 harboring carbapenem-resistant Acinetobacter baumannii isolates from the intensive care units environment in Shanghai. J. Glob. Antimicrob. Resist. 2025, 44, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Shadan, A.; Pathak, A.; Ma, Y.; Pathania, R.; Singh, R.P. Deciphering the virulence factors, regulation, and immune response to Acinetobacter baumannii infection. Front. Cell. Infect. Microbiol. 2023, 13, 1053968. [Google Scholar] [CrossRef] [PubMed]
- Wachino, J.I.; Jin, W.; Kimura, K.; Arakawa, Y. Intercellular Transfer of Chromosomal Antimicrobial Resistance Genes between Acinetobacter baumannii Strains Mediated by Prophages. Antimicrob. Agents Chemother. 2019, 63, e00334-19. [Google Scholar] [CrossRef]
- Brovedan, M.A.; Cameranesi, M.M.; Limansky, A.S.; Moran-Barrio, J.; Marchiaro, P.; Repizo, G.D. What do we know about plasmids carried by members of the Acinetobacter genus? World J. Microbiol. Biotechnol. 2020, 36, 109. [Google Scholar] [CrossRef]
- Geisinger, E.; Huo, W.; Hernandez-Bird, J.; Isberg, R.R. Acinetobacter baumannii: Envelope determinants that control drug resistance, virulence, and surface variability. Annu. Rev. Microbiol. 2019, 73, 481–506. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Cahill, S.M.; Holt, K.E.; Hall, R.M.; Kenyon, J.J. Identification of Acinetobacter baumannii loci for capsular polysaccharide (KL) and lipooligosaccharide outer core (OCL) synthesis in genome assemblies using curated reference databases compatible with Kaptive. Microb. Genom. 2019, 6, e000339. [Google Scholar] [CrossRef]
- Russo, T.A.; Luke, N.R.; Beanan, J.M.; Olson, R.; Sauberan, S.L.; MacDonald, U.; Schultz, L.W.; Umland, T.C.; Campagnari, A.A. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect. Immun. 2010, 78, 3993–4000. [Google Scholar] [CrossRef]
- Pérez-Varela, M.; Tierney, A.R.; Dawson, E.; Hutcheson, A.R.; Tipton, K.A.; Anderson, S.E.; Haldopoulos, M.E.; Song, S.; Tomlinson, B.R.; Shaw, L.N. Stochastic activation of a family of TetR type transcriptional regulators controls phenotypic heterogeneity in Acinetobacter baumannii. PNAS Nexus 2022, 1, pgac231. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Joshi, S. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. J. Appl. Microbiol. 2021, 131, 2715–2738. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Grosso, F.; Rodrigues, C.; Ksiezarek, M.; Ramos, H.; Peixe, L. The success of particular Acinetobacter baumannii clones: Accumulating resistance and virulence inside a sugary shield. J. Antimicrob. Chemother. 2021, 76, 305–311. [Google Scholar] [CrossRef]
- Oliveira, H.; Costa, A.R.; Ferreira, A.; Konstantinides, N.; Santos, S.B.; Boon, M.; Noben, J.-P.; Lavigne, R.; Azeredo, J. Functional analysis and antivirulence properties of a new depolymerase from a myovirus that infects Acinetobacter baumannii capsule K45. J. Virol. 2019, 93, e01163-18. [Google Scholar] [CrossRef]
- Domingues, R.; Oliveira, R.; Silva, S.; Araújo, D.; Almeida, C.; Cho, G.-S.; Franz, C.M.; Saavedra, M.J.; Azeredo, J.; Oliveira, H. Molecular detection of carbapenemases in Acinetobacter baumannii strains of Portugal and association with sequence types, capsular types, and virulence. Clin. Ther. 2024, 46, e9–e15. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, H.; Chen, H.; Zhang, J.; Wang, R.; Wang, Z.; Wang, H. Origin, phylogeny, and transmission of the epidemic clone ST208 of carbapenem-resistant Acinetobacter baumannii on a global scale. Microbiol. Spectr. 2022, 10, e02604–e02621. [Google Scholar] [CrossRef]
- Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef]
- Luo, Y.-C.; Hsieh, Y.-C.; Wu, J.-W.; Quyen, T.L.T.; Chen, Y.-Y.; Liao, W.-C.; Li, S.-W.; Wang, S.-H.; Pan, Y.-J. Exploring the association between capsular types, sequence types, and carbapenemase genes in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2022, 59, 106470. [Google Scholar] [CrossRef]
- Kikuchi-Ueda, T.; Ubagai, T.; Kamoshida, G.; Nakano, R.; Nakano, A.; Ono, Y. Acinetobacter baumannii LOS Regulate the Expression of Inflammatory Cytokine Genes and Proteins in Human Mast Cells. Pathogens 2021, 10, 290. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, P.; Chandran, D.; Chakraborty, C.; Bhattacharya, M.; Saikumar, G.; Dhama, K.; Chakraborty, A.; Mukherjee, S.; Sarshar, M. The dual role of toll-like receptors in COVID-19: Balancing protective immunity and immunopathogenesis. Int. J. Biol. Macromol. 2025, 284, 137836. [Google Scholar] [CrossRef]
- Behzadi, P.; Kim, C.H.; Pawlak, E.A.; Algammal, A. Editorial: The innate and adaptive immune system in human urinary system. Front. Immunol. 2023, 14, 1294869. [Google Scholar] [CrossRef]
- Gudueva, E.; Chemisova, O. Pathogenicity factors of Acinetobacter baumannii. Med. Her. South Russ. 2023, 14, 66–74. [Google Scholar] [CrossRef]
- Luke, N.R.; Sauberan, S.L.; Russo, T.A.; Beanan, J.M.; Olson, R.; Loehfelm, T.W.; Cox, A.D.; St. Michael, F.; Vinogradov, E.V.; Campagnari, A.A. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect. Immun. 2010, 78, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Tiku, V.; Kew, C.; Kofoed, E.M.; Peng, Y.; Dikic, I.; Tan, M.-W. Acinetobacter baumannii secretes a bioactive lipid that triggers inflammatory signaling and cell death. Front. Microbiol. 2022, 13, 870101. [Google Scholar] [CrossRef]
- Talyansky, Y.; Nielsen, T.B.; Yan, J.; Carlino-Macdonald, U.; Di Venanzio, G.; Chakravorty, S.; Ulhaq, A.; Feldman, M.F.; Russo, T.A.; Vinogradov, E.; et al. Capsule carbohydrate structure determines virulence in Acinetobacter baumannii. PLoS Pathog. 2021, 17, e1009291. [Google Scholar] [CrossRef]
- Lucidi, M.; Visaggio, D.; Migliaccio, A.; Capecchi, G.; Visca, P.; Imperi, F.; Zarrilli, R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024, 15, 2289769. [Google Scholar] [CrossRef]
- Boll, J.M.; Tucker, A.T.; Klein, D.R.; Beltran, A.M.; Brodbelt, J.S.; Davies, B.W.; Trent, M.S. Reinforcing lipid A acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. MBio 2015, 6, e00478-15. [Google Scholar] [CrossRef]
- Herrera, C.M.; Voss, B.J.; Trent, M.S. Homeoviscous adaptation of the Acinetobacter baumannii outer membrane: Alteration of lipooligosaccharide structure during cold stress. mBio 2021, 12, e0129521. [Google Scholar] [CrossRef]
- Thacharodi, A.; Vithlani, A.; Hassan, S.; Alqahtani, A.; Pugazhendhi, A. Carbapenem-resistant Acinetobacter baumannii raises global alarm for new antibiotic regimens. Iscience 2024, 27, 111367. [Google Scholar] [CrossRef]
- Roy, S.; Junghare, V.; Dutta, S.; Hazra, S.; Basu, S. Differential binding of carbapenems with the AdeABC efflux pump and modulation of the expression of AdeB linked to novel mutations within two-component system AdeRS in carbapenem-resistant Acinetobacter baumannii. MSystems 2022, 7, e00217–e00222. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Lamont, I.L. Aminoglycoside resistance in Pseudomonas aeruginosa: The contribution of the MexXY-OprM efflux pump varies between isolates. J. Med. Microbiol. 2022, 71, 001551. [Google Scholar] [CrossRef]
- Yoon, E.-J.; Nait Chabane, Y.; Goussard, S.; Snesrud, E.; Courvalin, P.; Dé, E.; Grillot-Courvalin, C. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. mBio 2015, 6, e00309-15. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Zou, M.; Li, J.; Wang, H.; Hu, Y.; Liu, W.e. AdeABC efflux pump and resistance of Acinetobacter baumannii against carbapenem. Zhong Nan Da Xue Xue Bao. Yi Xue Ban= J. Cent. South. Univ. Med. Sci. 2017, 42, 426–433. [Google Scholar]
- Thacharodi, A.; Lamont, I.L. Gene–gene interactions reduce aminoglycoside susceptibility of Pseudomonas aeruginosa through efflux pump-dependent and-independent mechanisms. Antibiotics 2023, 12, 152. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Pan, Y.; Gao, C.-Y.; Hou, P.-F. Distribution of carbapenemases and efflux pump in carbapenem-resistance Acinetobacter baumannii. Ann. Clin. Lab. Sci. 2020, 50, 241–246. [Google Scholar]
- Dolma, K.G.; Khati, R.; Paul, A.K.; Rahmatullah, M.; de Lourdes Pereira, M.; Wilairatana, P.; Khandelwal, B.; Gupta, C.; Gautam, D.; Gupta, M. Virulence characteristics and emerging therapies for biofilm-forming Acinetobacter baumannii: A review. Biology 2022, 11, 1343. [Google Scholar] [CrossRef]
- Dahdouh, E.; Gómez-Gil, R.; Pacho, S.; Mingorance, J.; Daoud, Z.; Suárez, M. Clonality, virulence determinants, and profiles of resistance of clinical Acinetobacter baumannii isolates obtained from a Spanish hospital. PLoS ONE 2017, 12, e0176824. [Google Scholar] [CrossRef]
- Chapartegui-González, I.; Lázaro-Díez, M.; Bravo, Z.; Navas, J.; Icardo, J.M.; Ramos-Vivas, J. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS ONE 2018, 13, e0201961. [Google Scholar] [CrossRef]
- Choi, C.H.; Lee, J.S.; Lee, Y.C.; Park, T.I.; Lee, J.C. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol. 2008, 8, 216. [Google Scholar] [CrossRef]
- Smani, Y.; Fàbrega, A.; Roca, I.; Sánchez-Encinales, V.; Vila, J.; Pachón, J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2014, 58, 1806–1808. [Google Scholar] [CrossRef]
- Sarshar, M.; Scribano, D.; Behzadi, P.; Masotti, A.; Ambrosi, C. Outer membrane vesicles are the powerful cell-to-cell communication vehicles that allow bacteria to monitor extracellular milieu. ExRNA 2022, 4, 25. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Actis, L.A. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009, 4, 273–278. [Google Scholar] [CrossRef]
- Fattahian, Y.; Rasooli, I.; Gargari, S.L.M.; Rahbar, M.R.; Astaneh, S.D.A.; Amani, J. Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap). Microb. Pathog. 2011, 51, 402–406. [Google Scholar] [CrossRef] [PubMed]
- López, C.; Ayala, J.A.; Bonomo, R.A.; González, L.J.; Vila, A.J. Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat. Commun. 2019, 10, 3617. [Google Scholar] [CrossRef]
- Capodimonte, L.; Meireles, F.T.P.; Bahr, G.; Bonomo, R.A.; Dal Peraro, M.; López, C.; Vila, A.J. OXA β-lactamases from Acinetobacter spp. are membrane bound and secreted into outer membrane vesicles. mBio 2025, 16, e03343-24. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.L.; Hartwig, D.D. Unveiling the role of adhesin proteins in controlling Acinetobacter baumannii infections: A systematic review. Infect. Immun. 2025, 93, e00348-24. [Google Scholar] [CrossRef] [PubMed]
- Brossard, K.A.; Campagnari, A.A. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect. Immun. 2012, 80, 228–233. [Google Scholar] [CrossRef]
- Smani, Y.; McConnell, M.J.; Pachón, J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS ONE 2012, 7, e33073. [Google Scholar] [CrossRef]
- Geng, J.; Henry, N. Short time-scale bacterial adhesion dynamics. In Bacterial Adhesion: Chemistry, Biology and Physics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 315–331. [Google Scholar]
- Ishikawa, M.; Nakatani, H.; Hori, K. AtaA, a new member of the trimeric autotransporter adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces. PLoS ONE 2012, 7, e48830. [Google Scholar] [CrossRef] [PubMed]
- Berne, C.; Ducret, A.; Hardy, G.G.; Brun, Y.V. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. In Microbial biofilms; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2015; pp. 163–199. [Google Scholar]
- Loehfelm, T.W.; Luke, N.R.; Campagnari, A.A. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J. Bacteriol. 2008, 190, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.W.; Park, S.M.; Ju, Y.K.; Yang, K.S.; Kim, J.Y.; Kim, S.B.; Sohn, J.W.; Yoon, Y.K. Clinical and molecular predictors of mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: A retrospective cohort study. J. Microbiol. Immunol. Infect. 2024, 57, 148–155. [Google Scholar] [CrossRef]
- Behzadi, P.; Najafi, A.; Behzadi, E.; Ranjbar, R. Microarray long oligo probe designing for Escherichia coli: An in-silico DNA marker extraction. Cent. Eur. J. Urol. 2016, 69, 105–111. [Google Scholar]
- Patel, S.; Mathivanan, N.; Goyal, A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed. Pharmacother. 2017, 93, 763–771. [Google Scholar] [CrossRef]
- Klemm, P.; Schembri, M.A. Bacterial adhesins: Function and structure. Int. J. Med. Microbiol. 2000, 290, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Ravaioli, S.; Montanaro, L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front. Cell. Infect. Microbiol. 2015, 5, 7. [Google Scholar] [CrossRef]
- Bouckaert, J.; Mackenzie, J.; De Paz, J.L.; Chipwaza, B.; Choudhury, D.; Zavialov, A.; Mannerstedt, K.; Anderson, J.; Piérard, D.; Wyns, L. The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol. Microbiol. 2006, 61, 1556–1568. [Google Scholar] [CrossRef]
- Behzadi, P.; Ranjbar, R.; Alavian, S.M. Nucleic acid-based approaches for detection of viral hepatitis. Jundishapur J. Microbiol. 2014, 8, e17449. [Google Scholar] [CrossRef]
- Ranjbar, R.; Behzadi, P.; Farshad, S. Advances in diagnosis and treatment of Helicobacter pylori infection. Acta Microbiol. Immunol. Hung. 2017, 64, 273–292. [Google Scholar] [CrossRef]
- Hospenthal, M.K.; Costa, T.R.D.; Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 2017, 15, 365–379. [Google Scholar] [CrossRef]
- Ramezanalizadeh, F.; Owlia, P.; Rasooli, I. Type I pili, CsuA/B and FimA induce a protective immune response against Acinetobacter baumannii. Vaccine 2020, 38, 5436–5446. [Google Scholar] [CrossRef]
- Behzadi, P.; Urban, E.; Matuz, M.; Benko, R.; Gajdacs, M. The Role of Gram-Negative Bacteria in Urinary Tract Infections: Current Concepts and Therapeutic Options. Adv. Exp. Med. Biol. 2021, 1323, 35–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, D.; Fang, H.; Xie, Q.; Tang, H.; Chen, L. Iron-dependent mechanisms in Acinetobacter baumannii: Pathogenicity and resistance. JAC-Antimicrob. Resist. 2025, 7, dlaf039. [Google Scholar] [CrossRef]
- Kim, M.; Kim, D.Y.; Song, W.Y.; Park, S.E.; Harrison, S.A.; Chazin, W.J.; Oh, M.H.; Kim, H.J. Distinctive roles of two acinetobactin isomers in challenging host nutritional immunity. mBio 2021, 12, e0224821. [Google Scholar] [CrossRef]
- Song, W.Y.; Kim, H.J. Current biochemical understanding regarding the metabolism of acinetobactin, the major siderophore of the human pathogen Acinetobacter baumannii, and outlook for discovery of novel anti-infectious agents based thereon. Nat. Prod. Rep. 2020, 37, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed]
- Begg, S.L. The role of metal ions in the virulence and viability of bacterial pathogens. Biochem. Soc. Trans. 2019, 47, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Obisesan, A.O.; Zygiel, E.M.; Nolan, E.M. Bacterial responses to iron withholding by calprotectin. Biochemistry 2021, 60, 3337–3346. [Google Scholar] [CrossRef]
- Lonergan, Z.R.; Nairn, B.L.; Wang, J.; Hsu, Y.-P.; Hesse, L.E.; Beavers, W.N.; Chazin, W.J.; Trinidad, J.C.; VanNieuwenhze, M.S.; Giedroc, D.P. An Acinetobacter baumannii, zinc-regulated peptidase maintains cell wall integrity during immune-mediated nutrient sequestration. Cell Rep. 2019, 26, 2009–2018. e2006. [Google Scholar] [CrossRef]
- Hood, M.I.; Mortensen, B.L.; Moore, J.L.; Zhang, Y.; Kehl-Fie, T.E.; Sugitani, N.; Chazin, W.J.; Caprioli, R.M.; Skaar, E.P. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathog. 2012, 8, e1003068. [Google Scholar] [CrossRef]
- Zschiedrich, C.P.; Keidel, V.; Szurmant, H. Molecular Mechanisms of Two-Component Signal Transduction. J. Mol. Biol. 2016, 428, 3752–3775. [Google Scholar] [CrossRef]
- Oh, M.H.; Islam, M.M.; Kim, N.; Choi, C.H.; Shin, M.; Shin, W.S.; Lee, J.C. AbOmpA in Acinetobacter baumannii: Exploring virulence mechanisms of outer membrane-integrated and outer membrane vesicle-associated AbOmpA and developing anti-infective agents targeting AbOmpA. J. Biomed. Sci. 2025, 32, 53. [Google Scholar] [CrossRef]
- Kim, N.; Son, J.H.; Kim, K.; Kim, H.J.; Kim, Y.J.; Shin, M.; Lee, J.C. Global regulator DksA modulates virulence of Acinetobacter baumannii. Virulence 2021, 12, 2750–2763. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, N.-Y.; Ko, S.-Y.; Park, S.-Y.; Oh, M.-H.; Shin, M.-S.; Lee, Y.-C.; Lee, J.-C. Complementary regulation of BfmRS two-component and AbaIR quorum sensing systems to express virulence-associated genes in Acinetobacter baumannii. Int. J. Mol. Sci. 2022, 23, 13136. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.Y.; Kim, N.; Park, S.Y.; Kim, S.Y.; Kim, S.; Shin, M.; Lee, J.C. PmrAB controls virulence-associated traits and outer membrane vesicle biogenesis in Acinetobacter baumannii. Microb. Pathog. 2023, 185, 106434. [Google Scholar] [CrossRef]
- Kim, K.; Islam, M.; Jung, H.-w.; Lim, D.; Kim, K.; Lee, S.-G.; Park, C.; Lee, J.C.; Shin, M. ppGpp signaling plays a critical role in virulence of Acinetobacter baumannii. Virulence 2021, 12, 2122–2132. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.; Wang, J.; Al-Shamiri, M.M.; Han, B.; Chen, Y.; Han, S.; Han, L. Uncovering the secretion systems of Acinetobacter baumannii: Structures and functions in pathogenicity and antibiotic resistance. Antibiotics 2023, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Hansen, F.; Porsbo, L.J.; Frandsen, T.H.; Kaygisiz, A.N.S.; Roer, L.; Henius, A.E.; Holzknecht, B.J.; Soes, L.; Schonning, K.; Roder, B.L.; et al. Characterisation of carbapenemase-producing Acinetobacter baumannii isolates from danish patients 2014–2021: Detection of a new international clone—IC11. Int. J. Antimicrob. Agents 2023, 62, 106866. [Google Scholar] [CrossRef] [PubMed]
- Foudraine, D.E.; Strepis, N.; Klaassen, C.H.W.; Raaphorst, M.N.; Verbon, A.; Luider, T.M.; Goessens, W.H.F.; Dekker, L.J.M. Rapid and Accurate Detection of Aminoglycoside-Modifying Enzymes and 16S rRNA Methyltransferases by Targeted Liquid Chromatography-Tandem Mass Spectrometry. J. Clin. Microbiol. 2021, 59, e0046421. [Google Scholar] [CrossRef]
- de Souza, J.; D’Espindula, H.R.S.; Ribeiro, I.d.F.; Gonçalves, G.A.; Pillonetto, M.; Faoro, H. Carbapenem Resistance in Acinetobacter baumannii: Mechanisms, Therapeutics, and Innovations. Microorganisms 2025, 13, 1501. [Google Scholar] [CrossRef]
- Limansky, A.S.; Mussi, M.A.; Viale, A.M. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J. Clin. Microbiol. 2002, 40, 4776–4778. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Gao, Y.; Liu, Y.; Yao, S.; Zhong, S.; Zhang, S.; Wang, J.; Mi, P.; Wen, Y.; Ouyang, Z.; et al. An Outer Membrane Protein YiaD Contributes to Adaptive Resistance of Meropenem in Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e0017322. [Google Scholar] [CrossRef]
- Kornelsen, V.; Kumar, A. Update on Multidrug Resistance Efflux Pumps in Acinetobacter spp. Antimicrob. Agents Chemother. 2021, 65, e0051421. [Google Scholar] [CrossRef]
- Martinez-Trejo, A.; Ruiz-Ruiz, J.M.; Gonzalez-Avila, L.U.; Saldana-Padilla, A.; Hernandez-Cortez, C.; Loyola-Cruz, M.A.; Bello-Lopez, J.M.; Castro-Escarpulli, G. Evasion of Antimicrobial Activity in Acinetobacter baumannii by Target Site Modifications: An Effective Resistance Mechanism. Int. J. Mol. Sci. 2022, 23, 6582. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G.; Barlow, M. Revised Ambler classification of beta-lactamases. J. Antimicrob. Chemother. 2005, 55, 1050–1051. [Google Scholar] [CrossRef]
- Behzadi, P.; Garcia-Perdomo, H.A.; Karpinski, T.M.; Issakhanian, L. Metallo-β-lactamases: A review. Mol. Biol. Rep. 2020, 47, 6281–6294. [Google Scholar] [CrossRef] [PubMed]
- Akinci, E.; Vahaboglu, H. Minor extended-spectrum beta-lactamases. Expert Rev. Anti-Infect. Ther. 2010, 8, 1251–1258. [Google Scholar] [CrossRef]
- Naas, T.; Poirel, L.; Nordmann, P. Minor extended-spectrum beta-lactamases. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008, 14 (Suppl. S1), 42–52. [Google Scholar] [CrossRef]
- Behzadi, P.; Gajdács, M.; Pallós, P.; Ónodi, B.; Stájer, A.; Matusovits, D.; Kárpáti, K.; Burián, K.; Battah, B.; Ferrari, M. Relationship between biofilm-formation, phenotypic virulence factors and antibiotic resistance in environmental Pseudomonas aeruginosa. Pathogens 2022, 11, 1015. [Google Scholar] [CrossRef]
- Ferrari, C.; Corbella, M.; Gaiarsa, S.; Comandatore, F.; Scaltriti, E.; Bandi, C.; Cambieri, P.; Marone, P.; Sassera, D. Multiple Klebsiella pneumoniae KPC Clones Contribute to an Extended Hospital Outbreak. Front. Microbiol. 2019, 10, 2767. [Google Scholar] [CrossRef]
- Toleman, M.A.; Simm, A.M.; Murphy, T.A.; Gales, A.C.; Biedenbach, D.J.; Jones, R.N.; Walsh, T.R. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: Report from the SENTRY antimicrobial surveillance programme. J. Antimicrob. Chemother. 2002, 50, 673–679. [Google Scholar] [CrossRef]
- Senda, K.; Arakawa, Y.; Nakashima, K.; Ito, H.; Ichiyama, S.; Shimokata, K.; Kato, N.; Ohta, M. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob. Agents Chemother. 1996, 40, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nicolas, D.; Collet, L.; Bellais, S.; Cavallo, J.D.; Nordmann, P. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 2000, 44, 891–897. [Google Scholar] [CrossRef]
- Castanheira, M.; Toleman, M.A.; Jones, R.N.; Schmidt, F.J.; Walsh, T.R. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase. Antimicrob. Agents Chemother. 2004, 48, 4654–4661. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yum, J.H.; Yong, D.; Lee, H.M.; Kim, H.D.; Docquier, J.D.; Rossolini, G.M.; Chong, Y. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 2005, 49, 4485–4491. [Google Scholar] [CrossRef]
- Tada, T.; Shimada, K.; Satou, K.; Hirano, T.; Pokhrel, B.M.; Sherchand, J.B.; Kirikae, T. Pseudomonas aeruginosa Clinical Isolates in Nepal Coproducing Metallo-beta-Lactamases and 16S rRNA Methyltransferases. Antimicrob. Agents Chemother. 2017, 61, e00694-17. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Bell, J.; Ritchie, B.; Pratt, R.; Ryley, H.; Walsh, T.R. Genetic and biochemical characterization of an acquired subgroup B3 metallo-beta-lactamase gene, blaAIM-1, and its unique genetic context in Pseudomonas aeruginosa from Australia. Antimicrob. Agents Chemother. 2012, 56, 6154–6159. [Google Scholar] [CrossRef]
- El Salabi, A.; Borra, P.S.; Toleman, M.A.; Samuelsen, O.; Walsh, T.R. Genetic and biochemical characterization of a novel metallo-beta-lactamase, TMB-1, from an Achromobacter xylosoxidans strain isolated in Tripoli, Libya. Antimicrob. Agents Chemother. 2012, 56, 2241–2245. [Google Scholar] [CrossRef] [PubMed]
- Pollini, S.; Maradei, S.; Pecile, P.; Olivo, G.; Luzzaro, F.; Docquier, J.D.; Rossolini, G.M. FIM-1, a new acquired metallo-beta-lactamase from a Pseudomonas aeruginosa clinical isolate from Italy. Antimicrob. Agents Chemother. 2013, 57, 410–416. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Oueslati, S.; Bonnin, R.A.; Dabos, M.L.; Zavala, A.; Dortet, L.; Retailleau, P.; Iorga, B.I. Beta-lactamase database (BLDB)–structure and function. J. Enzym. Inhib. Med. Chem. 2017, 32, 917–919. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef]
- Antunes, N.T.; Lamoureaux, T.L.; Toth, M.; Stewart, N.K.; Frase, H.; Vakulenko, S.B. Class D beta-lactamases: Are they all carbapenemases? Antimicrob. Agents Chemother. 2014, 58, 2119–2125. [Google Scholar] [CrossRef]
- Akilli, F.M.; Ulukanligil, M. Postoperative Meningitis Caused by Multidrug-Resistant Pathogens: A Case Report. New Microbiol. 2025, 48, 84–88. [Google Scholar]
- Ranjbar, R.; Behzadi, P.; Mammina, C. Respiratory tularemia: Francisella tularensis and microarray probe designing. Open Microbiol. J. 2016, 10, 176. [Google Scholar] [CrossRef]
- Migliaccio, A.; Bray, J.; Intoccia, M.; Stabile, M.; Scala, G.; Jolley, K.A.; Brisse, S.; Zarrilli, R. Phylogenomics of Acinetobacter species and analysis of antimicrobial resistance genes. Front. Microbiol. 2023, 14, 1264030. [Google Scholar] [CrossRef]
- Mugnier, P.D.; Poirel, L.; Naas, T.; Nordmann, P. Worldwide dissemination of the blaOXA-23 Carbapenemase gene of Acinetobacter baumannii1. Emerg. Infect. Dis. 2010, 16, 35. [Google Scholar] [CrossRef]
- Poirel, L.; Nordmann, P. Carbapenem resistance in Acinetobacter baumannii: Mechanisms and epidemiology. Clin. Microbiol. Infect. 2006, 12, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Scaife, W.; Young, H.-K.; Paton, R.H.; Amyes, S.G. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J. Antimicrob. Chemother. 1995, 36, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Figueiredo, S.; Cattoir, V.; Carattoli, A.; Nordmann, P. Acinetobacter radioresistens as a silent source of carbapenem resistance for Acinetobacter spp. Antimicrob. Agents Chemother. 2008, 52, 1252–1256. [Google Scholar] [CrossRef]
- Naas, T.; Levy, M.; Hirschauer, C.; Marchandin, H.; Nordmann, P. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-23 in a tertiary care hospital of Papeete, French Polynesia. J. Clin. Microbiol. 2005, 43, 4826–4829. [Google Scholar] [CrossRef]
- Corvec, S.; Poirel, L.; Naas, T.; Drugeon, H.; Nordmann, P. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 1530–1533. [Google Scholar] [CrossRef]
- Adams-Haduch, J.M.; Paterson, D.L.; Sidjabat, H.E.; Pasculle, A.W.; Potoski, B.A.; Muto, C.A.; Harrison, L.H.; Doi, Y. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob. Agents Chemother. 2008, 52, 3837–3843. [Google Scholar] [CrossRef]
- Mugnier, P.D.; Poirel, L.; Nordmann, P. Functional analysis of insertion sequence IS Aba1, responsible for genomic plasticity of Acinetobacter baumannii. J. Bacteriol. 2009, 191, 2414–2418. [Google Scholar] [CrossRef]
- Mugnier, P.; Poirel, L.; Pitout, M.; Nordmann, P. Carbapenem-resistant and OXA-23-producing Acinetobacter baumannii isolates in the United Arab Emirates. Clin. Microbiol. Infect. 2008, 14, 879–882. [Google Scholar] [CrossRef]
- Mugnier, P.D.; Bindayna, K.M.; Poirel, L.; Nordmann, P. Diversity of plasmid-mediated carbapenem-hydrolysing oxacillinases among carbapenem-resistant Acinetobacter baumannii isolates from Kingdom of Bahrain. J. Antimicrob. Chemother. 2009, 63, 1071–1073. [Google Scholar] [CrossRef]
- Bahador, A.; Raoofian, R.; Pourakbari, B.; Taheri, M.; Hashemizadeh, Z.; Hashemi, F.B. Genotypic and antimicrobial susceptibility of carbapenem-resistant Acinetobacter baumannii: Analysis of is aba elements and bla OXA-23-like genes including a new variant. Front. Microbiol. 2015, 6, 1249. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.-J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.L.; Scheidegger, E.; Freitas, F.S.; Cipriano, R.; Vicente, A.C. Carbapenem-resistant Acinetobacter baumannii from Brazil: Role of carO alleles expression and blaOXA-23 gene. BMC Microbiol. 2013, 13, 245. [Google Scholar] [CrossRef]
- Gopikrishnan, M.; George Priya Doss, C. Molecular docking and dynamic approach to screen the drug candidate against the Imipenem-resistant CarO porin in Acinetobacter baumannii. Microb. Pathog. 2023, 177, 106049. [Google Scholar] [CrossRef]
- Hwa, W.E.; Subramaniam, G.; Mansor, M.B.; Yan, O.S.; Gracie; Anbazhagan, D.; Devi, S.S. Iron regulated outer membrane proteins (IROMPs) as potential targets against carbapenem-resistant Acinetobacter spp. isolated from a Medical Centre in Malaysia. Indian J. Med. Res. 2010, 131, 578–583. [Google Scholar]
- Jeong, H.W.; Cheong, H.J.; Kim, W.J.; Kim, M.J.; Song, K.J.; Song, J.W.; Kim, H.S.; Roh, K.H. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in Acinetobacter baumannii is associated with decreased imipenem susceptibility. Microb. Drug Resist. 2009, 15, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Tiwari, M.; Tiwari, V. Potentiate the activity of current antibiotics by naringin dihydrochalcone targeting the AdeABC efflux pump of multidrug-resistant Acinetobacter baumannii. Int. J. Biol. Macromol. 2022, 217, 592–605. [Google Scholar] [CrossRef]
- Vahhabi, A.; Hasani, A.; Rezaee, M.A.; Baradaran, B.; Hasani, A.; Samadi Kafil, H.; Abbaszadeh, F.; Dehghani, L. A plethora of carbapenem resistance in Acinetobacter baumannii: No end to a long insidious genetic journey. J. Chemother. 2021, 33, 137–155. [Google Scholar] [CrossRef]
- Gehrlein, M.; Leying, H.; Cullmann, W.; Wendt, S.; Opferkuch, W. Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy 1991, 37, 405–412. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Lopez-Hernandez, S.; Alarcon, T.; Lopez-Brea, M. Carbapenem resistance mediated by beta-lactamases in clinical isolates of Acinetobacter baumannii in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Afzal-Shah, M.; Villar, H.E.; Livermore, D.M. Biochemical characteristics of a carbapenemase from an Acinetobacter baumannii isolate collected in Buenos Aires, Argentina. J. Antimicrob. Chemother. 1999, 43, 127–131. [Google Scholar] [CrossRef]
- Tsakris, A.; Tsioni, C.; Pournaras, S.; Polyzos, S.; Maniatis, A.N.; Sofianou, D. Spread of low-level carbapenem-resistant Acinetobacter baumannii clones in a tertiary care Greek hospital. J. Antimicrob. Chemother. 2003, 52, 1046–1047. [Google Scholar] [CrossRef]
- Zarrilli, R.; Pournaras, S.; Giannouli, M.; Tsakris, A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int. J. Antimicrob. Agents 2013, 41, 11–19. [Google Scholar] [CrossRef]
- Zander, E.; Chmielarczyk, A.; Heczko, P.; Seifert, H.; Higgins, P.G. Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. J. Antimicrob. Chemother. 2013, 68, 308–311. [Google Scholar] [CrossRef]
- Figueiredo, S.; Poirel, L.; Papa, A.; Koulourida, V.; Nordmann, P. Overexpression of the naturally occurring blaOXA-51 gene in Acinetobacter baumannii mediated by novel insertion sequence ISAba9. Antimicrob. Agents Chemother. 2009, 53, 4045–4047. [Google Scholar] [CrossRef]
- Ahmadi, A.; Salimizand, H. Delayed identification of Acinetobacter baumannii during an outbreak owing to disrupted bla(OXA-51-like) by ISAba19. Int. J. Antimicrob. Agents 2017, 50, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, S.; Markogiannakis, A.; Ikonomidis, A.; Kondyli, L.; Bethimouti, K.; Maniatis, A.N.; Legakis, N.J.; Tsakris, A. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J. Antimicrob. Chemother. 2006, 57, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Pournaras, S.; Gogou, V.; Giannouli, M.; Dimitroulia, E.; Dafopoulou, K.; Tsakris, A.; Zarrilli, R. Single-locus-sequence-based typing of blaOXA-51-like genes for rapid assignment of Acinetobacter baumannii clinical isolates to international clonal lineages. J. Clin. Microbiol. 2014, 52, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.; Tayeb, H.T.; Al Johani, S.M.; Alyamani, E.J.; Aldughaishem, F.; Alabdulkarim, I.; Balkhy, H.H. Genetic diversity of OXA-51-like genes among multidrug-resistant Acinetobacter baumannii in Riyadh, Saudi Arabia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1223–1228. [Google Scholar] [CrossRef]
- Quinones Perez, D.; Aung, M.S.; Carmona Cartaya, Y.; Gonzalez Molina, M.K.; Pereda Novales, N.; Kobayashi, N. Clonal diversity of Acinetobacter clinical isolates producing NDM-type carbapenemase in Cuba, 2013–2019. IJID Reg. 2022, 5, 93–96. [Google Scholar] [CrossRef]
- Bogaerts, P.; Naas, T.; Wybo, I.; Bauraing, C.; Soetens, O.; Pierard, D.; Nordmann, P.; Glupczynski, Y. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. J. Clin. Microbiol. 2006, 44, 4189–4192. [Google Scholar] [CrossRef] [PubMed]
- Vranic-Ladavac, M.; Bedenic, B.; Minandri, F.; Istok, M.; Bosnjak, Z.; Francula-Zaninovic, S.; Ladavac, R.; Visca, P. Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Tsakris, A.; Ikonomidis, A.; Pournaras, S.; Spanakis, N.; Markogiannakis, A. Carriage of OXA-58 but not of OXA-51 beta-lactamase gene correlates with carbapenem resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2006, 58, 1097–1099. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Marque, S.; Heritier, C.; Segonds, C.; Chabanon, G.; Nordmann, P. OXA-58, a novel class D beta-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2005, 49, 202–208. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Miriagou, V.; Katsifas, E.A.; Karagouni, A.D.; Daikos, G.L.; Tzouvelekis, L.S.; Petinaki, E. Identification of OXA-23-producing Acinetobacter baumannii in Greece, 2010 to 2011. Eurosurveillance 2012, 17, 20117. [Google Scholar] [CrossRef]
- Longjam, L.A.; Tsering, D.C.; Das, D. Molecular Characterization of Class A-ESBLs, Class B-MBLs, Class C-AmpC, and Class D-OXA Carbapenemases in MDR Acinetobacter baumannii Clinical Isolates in a Tertiary Care Hospital, West Bengal, India. Cureus 2023, 15, e43656. [Google Scholar] [CrossRef]
- El Bannah, A.M.S.; Nawar, N.N.; Hassan, R.M.M.; Salem, S.T.B. Molecular Epidemiology of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Care Hospital in Egypt: Clonal Spread of blaOXA-23. Microb. Drug Resist. 2018, 24, 269–277. [Google Scholar] [CrossRef]
- Dalla-Costa, L.M.; Coelho, J.M.; Souza, H.A.; Castro, M.E.; Stier, C.J.; Bragagnolo, K.L.; Rea-Neto, A.; Penteado-Filho, S.R.; Livermore, D.M.; Woodford, N. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J. Clin. Microbiol. 2003, 41, 3403–3406. [Google Scholar] [CrossRef]
- Furlan, J.P.R.; Ramos, M.S.; Rosa, R.D.S.; Dos Santos, L.D.R.; Savazzi, E.A.; Stehling, E.G. Unveiling transposon-mediated multidrug resistance in OXA-23-producing Acinetobacter baumannii ST79/ST233 subclone KL9-OCL10 in Brazil. Gene 2025, 958, 149489. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, Q.; Aldaken, N.; Jaradat, Z.; Al-Rousan, E.; Inaya, Z.; Alsaleh, D.; Alawneh, D.; Al Sbei, S.; Saadoun, I. Predominance of extensively-drug resistant Acinetobacter baumannii carrying bla OXA-23 in Jordanian patients admitted to the intensive care units. PLoS ONE 2025, 20, e0317798. [Google Scholar] [CrossRef]
- Pournaras, S.; Dafopoulou, K.; Del Franco, M.; Zarkotou, O.; Dimitroulia, E.; Protonotariou, E.; Poulou, A.; Zarrilli, R.; Tsakris, A.; Greek Study Group on Acinetobacter Antimicrobial, R. Predominance of international clone 2 OXA-23-producing-Acinetobacter baumannii clinical isolates in Greece, 2015: Results of a nationwide study. Int. J. Antimicrob. Agents 2017, 49, 749–753. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Politi, L.; Diamantopoulou, G.; Iosifidis, E.; Antachopoulos, C.; Karyoti, A.; Sdougka, M.; Tsakris, A.; Roilides, E. Polyclonal predominance of concurrently producing OXA-23 and OXA-58 carbapenem-resistant Acinetobacter baumannii strains in a pediatric intensive care unit. Mol. Biol. Rep. 2019, 46, 3497–3500. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; He, J.; Zhang, L.; Zhao, F.; Zhou, Z.; Hua, X.; Yu, Y. Emergence and Evolution of OXA-23-Producing ST46(Pas)-ST462(Oxf)-KL28-OCL1 Carbapenem-Resistant Acinetobacter baumannii Mediated by a Novel ISAba1-Based Tn7534 Transposon. Antibiotics 2023, 12, 396. [Google Scholar] [CrossRef] [PubMed]
- Carascal, M.B.; Destura, R.V.; Rivera, W.L. Colorimetric Loop-Mediated Isothermal Amplification Assays Accurately Detect bla(OXA-23-like) and ISAba1 Genes from Acinetobacter baumannii in Pure Cultures and Spiked Human Sera. Microb. Drug Resist. 2024, 30, 432–441. [Google Scholar] [CrossRef]
- Aranzamendi, M.; Xanthopoulou, K.; Sanchez-Urtaza, S.; Burgwinkel, T.; Arazo Del Pino, R.; Lucassen, K.; Perez-Vazquez, M.; Oteo-Iglesias, J.; Sota, M.; Marimon, J.M.; et al. Genomic Surveillance Uncovers a 10-Year Persistence of an OXA-24/40 Acinetobacter baumannii Clone in a Tertiary Hospital in Northern Spain. Int. J. Mol. Sci. 2024, 25, 2333. [Google Scholar] [CrossRef]
- Grosso, F.; Quinteira, S.; Peixe, L. Understanding the dynamics of imipenem-resistant Acinetobacter baumannii lineages within Portugal. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2011, 17, 1275–1279. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Zhang, J.; Zhao, Y.; Fan, X.; Yu, L.; Wang, Y.; Zhang, X.; Li, C. The efficacy of colistin monotherapy versus combination therapy with other antimicrobials against carbapenem-resistant Acinetobacter baumannii ST2 isolates. J. Chemother. 2020, 32, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Iovleva, A.; Mustapha, M.M.; Griffith, M.P.; Komarow, L.; Luterbach, C.; Evans, D.R.; Cober, E.; Richter, S.S.; Rydell, K.; Arias, C.A. Carbapenem-resistant Acinetobacter baumannii in US hospitals: Diversification of circulating lineages and antimicrobial resistance. MBio 2022, 13, e02759-21. [Google Scholar] [CrossRef]
- Mavroidi, A.; Likousi, S.; Palla, E.; Katsiari, M.; Roussou, Z.; Maguina, A.; Platsouka, E.D. Molecular identification of tigecycline-and colistin-resistant carbapenemase-producing Acinetobacter baumannii from a Greek hospital from 2011 to 2013. J. Med. Microbiol. 2015, 64, 993–997. [Google Scholar] [CrossRef]
- Tsakris, A.; Ikonomidis, A.; Pournaras, S.; Tzouvelekis, L.S.; Sofianou, D.; Legakis, N.J.; Maniatis, A.N. VIM-1 metallo-beta-lactamase in Acinetobacter baumannii. Emerg. Infect. Dis. 2006, 12, 981–983. [Google Scholar] [CrossRef] [PubMed]
- Loli, A.; Tzouvelekis, L.S.; Gianneli, D.; Tzelepi, E.; Miriagou, V. Outbreak of Acinetobacter baumannii with chromosomally encoded VIM-1 undetectable by imipenem-EDTA synergy tests. Antimicrob. Agents Chemother. 2008, 52, 1894–1896. [Google Scholar] [CrossRef]
- Tsakris, A.; Ikonomidis, A.; Poulou, A.; Spanakis, N.; Vrizas, D.; Diomidous, M.; Pournaras, S.; Markou, F. Clusters of imipenem-resistant Acinetobacter baumannii clones producing different carbapenemases in an intensive care unit. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008, 14, 588–594. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Bell, J.M.; Hofmeyr, A.; Wiese, P. Inter-country transfer of Gram-negative organisms carrying the VIM-4 and OXA-58 carbapenem-hydrolysing enzymes. J. Antimicrob. Chemother. 2006, 57, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Yum, J.H.; Yi, K.; Lee, H.; Yong, D.; Lee, K.; Kim, J.M.; Rossolini, G.M.; Chong, Y. Molecular characterization of metallo-beta-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: Identification of two new integrons carrying the bla(VIM-2) gene cassettes. J. Antimicrob. Chemother. 2002, 49, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.J.; Lee, S.; Park, Y.J.; Park, J.J.; Park, K.; Kim, S.I.; Kang, M.W.; Kim, B.K. Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-beta-lactamase. J. Microbiol. Methods 2003, 54, 411–418. [Google Scholar] [CrossRef]
- Castanheira, M.; Costello, S.E.; Woosley, L.N.; Deshpande, L.M.; Davies, T.A.; Jones, R.N. Evaluation of clonality and carbapenem resistance mechanisms among Acinetobacter baumannii-Acinetobacter calcoaceticus complex and Enterobacteriaceae isolates collected in European and Mediterranean countries and detection of two novel beta-lactamases, GES-22 and VIM-35. Antimicrob. Agents Chemother. 2014, 58, 7358–7366. [Google Scholar] [CrossRef]
- Sung, J.Y.; Kwon, K.C.; Park, J.W.; Kim, Y.S.; Kim, J.M.; Shin, K.S.; Kim, J.W.; Ko, C.S.; Shin, S.Y.; Song, J.H.; et al. Dissemination of IMP-1 and OXA type beta-lactamase in carbapenem-resistant Acinetobacter baumannii. Korean J. Lab. Med. 2008, 28, 16–23. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.S.; Lee, J.M.; Yoon, S.S.; Yong, D. Rapid detection of Pseudomonas aeruginosa and Acinetobacter baumannii Harboring bla(VIM-2), bla(IMP-1) and bla(OXA-23) genes by using loop-mediated isothermal amplification methods. Ann. Lab. Med. 2016, 36, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, S.; Boroumand, M.A.; Sepehriseresht, S.; Pourgholi, L. Detection of VIM- and IMP-type Metallo-Beta-Lactamase Genes in Acinetobacter baumannii Isolates from Patients in Two Hospitals in Tehran. Iran. J. Biotechnol. 2015, 13, 63–67. [Google Scholar] [CrossRef]
- Massik, A.; Hibaoui, L.; Benboubker, M.; Yahyaoui, G.; Oumokhtar, B.; Mahmoud, M. Acinetobacter baumannii Carbapenemase Producers in Morocco: Genetic Diversity. Cureus 2023, 15, e43629. [Google Scholar] [CrossRef]
- Massik, A.; Hibaoui, L.; Moussa, B.; Yahyaoui, G.; Oumokhtar, B.; Mahmoud, M. First report of SPM metallo-beta-lactamases producing Acinetobacter baumannii isolates in Morocco. Iran. J. Microbiol. 2022, 14, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Ferjani, S.; Kanzari, L.; Maamar, E.; Hamzaoui, Z.; Rehaiem, A.; Ferjani, A.; Boutiba-Ben Boubaker, I. Extensively drug-resistant Acinetobacter baumannii co-producing VIM-2 and OXA-23 in intensive care units: Results of a one-day point prevalence in a Tunisian hospital. Infect. Dis. Now. 2022, 52, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Guan, R.; Yang, Y.; Chen, L.; Fu, J.; Deng, Q.; Xie, Y.; Huang, Y.; Wang, J.; Wang, D.; et al. Identification of New Delhi metallo-beta-lactamase gene (NDM-1) from a clinical isolate of Acinetobacter junii in China. Can. J. Microbiol. 2012, 58, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Ghazawi, A.; Sonnevend, A.; Bonnin, R.A.; Poirel, L.; Nordmann, P.; Hashmey, R.; Rizvi, T.A.; M, B.H.; Pal, T. NDM-2 carbapenemase-producing Acinetobacter baumannii in the United Arab Emirates. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, E34–E36. [Google Scholar] [CrossRef]
- Revathi, G.; Siu, L.K.; Lu, P.L.; Huang, L.Y. First report of NDM-1-producing Acinetobacter baumannii in East Africa. Int. J. Infect. Dis. 2013, 17, e1255–e1258. [Google Scholar] [CrossRef]
- Decousser, J.W.; Jansen, C.; Nordmann, P.; Emirian, A.; Bonnin, R.A.; Anais, L.; Merle, J.C.; Poirel, L. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Eurosurveillance 2013, 18, 20547. [Google Scholar] [CrossRef]
- Travi, G.; Peracchi, F.; Merli, M.; Lo Re, N.; Matarazzo, E.; Tartaglione, L.; Bielli, A.; Casalicchio, G.; Crippa, F.; Vismara, C.S.; et al. Cefiderocol-Based Regimen for Acinetobacter NDM-1 Outbreak. Antibiotics 2024, 13, 770. [Google Scholar] [CrossRef]
- Voulgari, E.; Politi, L.; Pitiriga, V.; Dendrinos, J.; Poulou, A.; Georgiadis, G.; Tsakris, A. First report of an NDM-1 metallo-beta-lactamase-producing Acinetobacter baumannii clinical isolate in Greece. Int. J. Antimicrob. Agents 2016, 48, 761–762. [Google Scholar] [CrossRef]
- Chatterjee, S.; Datta, S.; Roy, S.; Ramanan, L.; Saha, A.; Viswanathan, R.; Som, T.; Basu, S. Carbapenem Resistance in Acinetobacter baumannii and Other Acinetobacter spp. Causing Neonatal Sepsis: Focus on NDM-1 and Its Linkage to ISAba125. Front. Microbiol. 2016, 7, 1126. [Google Scholar] [CrossRef]
- Xanthopoulou, K.; Urrutikoetxea-Gutierrez, M.; Vidal-Garcia, M.; Diaz de Tuesta Del Arco, J.L.; Sanchez-Urtaza, S.; Wille, J.; Seifert, H.; Higgins, P.G.; Gallego, L. First Report of New Delhi Metallo-beta-Lactamase-6 (NDM-6) in a Clinical Acinetobacter baumannii Isolate From Northern Spain. Front. Microbiol. 2020, 11, 589253. [Google Scholar] [CrossRef]
- Gaillot, S.; Oueslati, S.; Vuillemenot, J.B.; Bour, M.; Iorga, B.I.; Triponney, P.; Plesiat, P.; Bonnin, R.A.; Naas, T.; Jeannot, K.; et al. Genomic characterization of an NDM-9-producing Acinetobacter baumannii clinical isolate and role of Glu152Lys substitution in the enhanced cefiderocol hydrolysis of NDM-9. Front. Microbiol. 2023, 14, 1253160. [Google Scholar] [CrossRef]
- Kitti, T.; Manrueang, S.; Leungtongkam, U.; Khongfak, S.; Thummeepak, R.; Wannalerdsakun, S.; Jindayok, T.; Sitthisak, S. Genomic relatedness and dissemination of bla (NDM-5) among Acinetobacter baumannii isolated from hospital environments and clinical specimens in Thailand. PeerJ 2023, 11, e14831. [Google Scholar] [CrossRef]
- Gutierrez, K.; Vasquez-Mendoza, A.; Rodriguez, C. An outbreak of severe or lethal infections by a multidrug-resistant Acinetobacter baumannii ST126 strain carrying a plasmid with bla(NDM-1) and bla(OXA-58) carbapenemases. Diagn. Microbiol. Infect. Dis. 2024, 110, 116428. [Google Scholar] [CrossRef]
- Joshi, P.R.; Acharya, M.; Kakshapati, T.; Leungtongkam, U.; Thummeepak, R.; Sitthisak, S. Co-existence of bla(OXA-23) and bla(NDM-1) genes of Acinetobacter baumannii isolated from Nepal: Antimicrobial resistance and clinical significance. Antimicrob. Resist. Infect. Control 2017, 6, 21. [Google Scholar] [CrossRef]
- Lukovic, B.; Gajic, I.; Dimkic, I.; Kekic, D.; Zornic, S.; Pozder, T.; Radisavljevic, S.; Opavski, N.; Kojic, M.; Ranin, L. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: Emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrob. Resist. Infect. Control 2020, 9, 101. [Google Scholar] [CrossRef]
- Martins-Goncalves, T.; Pimenta, J.S.; Fontana, H.; Esposito, F.; Melocco, G.; Dantas, K.; Vasquez-Ponce, F.; Carrara, F.E.; Vespero, E.C.; Lincopan, N. Acinetobacter baumannii international clone 2 co-producing OXA-23, NDM-1, and ArmA emerging in South America. Antimicrob. Agents Chemother. 2024, 68, e0029824. [Google Scholar] [CrossRef]
- Hidalgo, E.; Sotelo, J.; Perez-Vazquez, M.; Iniesta, A.; Canada-Garcia, J.E.; Valiente, O.; Aracil, B.; Arana, D.M.; Oteo-Iglesias, J. Emergence of NDM-1- and OXA-23-Co-Producing Acinetobacter baumannii ST1 Isolates from a Burn Unit in Spain. Microorganisms 2025, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Castilho, P.O.S.; Takahashi, F.M.; Onca Moreira, M.J.; Martins-Goncalves, T.; Carrara, F.E.; Lincopan, N.; Vespero, E.C. Outbreak and persistence of dual carbapenemase (OXA-23 and NDM-1)-producing Acinetobacter baumannii international clone 2 (ST2) in a tertiary hospital intensive care unit in Brazil. J. Hosp. Infect. 2025, 160, 121–124. [Google Scholar] [CrossRef]
- Robledo, I.E.; Aquino, E.E.; Sante, M.I.; Santana, J.L.; Otero, D.M.; Leon, C.F.; Vazquez, G.J. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob. Agents Chemother. 2010, 54, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Escandon-Vargas, K.; Reyes, S.; Gutierrez, S.; Villegas, M.V. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev. Anti-Infect. Ther. 2017, 15, 277–297. [Google Scholar] [CrossRef] [PubMed]
- Caneiras, C.; Calisto, F.; Jorge da Silva, G.; Lito, L.; Melo-Cristino, J.; Duarte, A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics 2018, 7, 96. [Google Scholar] [CrossRef] [PubMed]
- Miniaoui, D.; Dziri, O.; Ben Lamine, Y.; El Salabi, A.A.; Omar, E.O.; Slimene, K.; Dziri, R.; Bouhalila-Besbes, S.; Hadjadj, L.; Mabrouk, A.; et al. Prevalence of carbapenemases among Gram-negative bacteria in Tunisia: First report of KPC-2 producing Acinetobacter baumannii. J. Infect. Dev. Ctries. 2023, 17, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Gaiarsa, S.; Batisti Biffignandi, G.; Esposito, E.P.; Castelli, M.; Jolley, K.A.; Brisse, S.; Sassera, D.; Zarrilli, R. Comparative analysis of the two Acinetobacter baumannii multilocus sequence typing (MLST) schemes. Front. Microbiol. 2019, 10, 930. [Google Scholar] [CrossRef]
- Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.-S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.-H. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg. Infect. Dis. 2014, 20, 1812. [Google Scholar] [CrossRef] [PubMed]
- Bartual, S.G.; Seifert, H.; Hippler, C.; Luzon, M.A.D.n.; Wisplinghoff, H.; Rodríguez-Valera, F. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J. Clin. Microbiol. 2005, 43, 4382–4390. [Google Scholar] [CrossRef]
- Wisplinghoff, H.; Hippler, C.; Bartual, S.; Haefs, C.; Stefanik, D.; Higgins, P.; Seifert, H. Molecular epidemiology of clinical Acinetobacter baumannii and Acinetobacter genomic species 13TU isolates using a multilocus sequencing typing scheme. Clin. Microbiol. Infect. 2008, 14, 708–715. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Nemec, A.; Dijkshoorn, L.; Brisse, S. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 2010, 5, e10034. [Google Scholar] [CrossRef]
- Da Silva, G.; Van Der Reijden, T.; Domingues, S.; Mendonça, N.; Petersen, K.; Dijkshoorn, L. Characterization of a novel international clonal complex (CC32) of Acinetobacter baumannii with epidemic potential. Epidemiol. Infect. 2014, 142, 1554–1558. [Google Scholar] [CrossRef]
- Sahl, J.W.; Del Franco, M.; Pournaras, S.; Colman, R.E.; Karah, N.; Dijkshoorn, L.; Zarrilli, R. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci. Rep. 2015, 5, 15188. [Google Scholar] [CrossRef]
- Ou, H.-Y.; Kuang, S.N.; He, X.; Molgora, B.M.; Ewing, P.J.; Deng, Z.; Osby, M.; Chen, W.; Xu, H.H. Complete genome sequence of hypervirulent and outbreak-associated Acinetobacter baumannii strain LAC-4: Epidemiology, resistance genetic determinants and potential virulence factors. Sci. Rep. 2015, 5, 8643. [Google Scholar] [CrossRef]
- Feng, Y.; Ruan, Z.; Shu, J.; Chen, C.-L.; Chiu, C.-H. A glimpse into evolution and dissemination of multidrug-resistant Acinetobacter baumannii isolates in East Asia: A comparative genomics study. Sci. Rep. 2016, 6, 24342. [Google Scholar] [CrossRef]
- Tomaschek, F.; Higgins, P.G.; Stefanik, D.; Wisplinghoff, H.; Seifert, H. Head-to-head comparison of two multi-locus sequence typing (MLST) schemes for characterization of Acinetobacter baumannii outbreak and sporadic isolates. PLoS ONE 2016, 11, e0153014. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, M.; Nigro, S.J.; Hall, R.M. Problems with the Oxford multilocus sequence typing scheme for Acinetobacter baumannii: Do sequence type 92 (ST92) and ST109 exist? J. Clin. Microbiol. 2017, 55, 2287–2289. [Google Scholar] [CrossRef] [PubMed]
- Hamouda, A.; Evans, B.A.; Towner, K.J.; Amyes, S.G. Characterization of epidemiologically unrelated Acinetobacter baumannii isolates from four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, and sequence-based typing of bla OXA-51-like genes. J. Clin. Microbiol. 2010, 48, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Gogou, V.; Pournaras, S.; Giannouli, M.; Voulgari, E.; Piperaki, E.T.; Zarrilli, R.; Tsakris, A. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages: A 10 year study in Greece (2000-09). J. Antimicrob. Chemother. 2011, 66, 2767–2772. [Google Scholar] [CrossRef]
- Li, S.; Jiang, G.; Wang, S.; Wang, M.; Wu, Y.; Zhang, J.; Liu, X.; Zhong, L.; Zhou, M.; Xie, S.; et al. Emergence and global spread of a dominant multidrug-resistant clade within Acinetobacter baumannii. Nat. Commun. 2025, 16, 2787. [Google Scholar] [CrossRef]
- Rodgers, D.; Pasteran, F.; Calderon, M.; Jaber, S.; Traglia, G.M.; Albornoz, E.; Corso, A.; Vila, A.J.; Bonomo, R.A.; Adams, M.D.; et al. Characterisation of ST25 NDM-1-producing Acinetobacter spp. strains leading the increase in NDM-1 emergence in Argentina. J. Glob. Antimicrob. Resist. 2020, 23, 108–110. [Google Scholar] [CrossRef]
- Aung, M.S.; Hlaing, M.S.; San, N.; Aung, M.T.; Mar, T.T.; Kobayashi, N. Clonal diversity of Acinetobacter baumannii clinical isolates in Myanmar: Identification of novel ST1407 harbouring blaNDM-1. New Microbes New Infect. 2021, 40, 100847. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, W.; Gong, L.; Yang, X.; Ye, H.; Lou, Z.; Yang, J.; Jiang, X.; Li, W.; Tao, F.; et al. Genomic and phenotypic insights into ST164 bla(NDM-1)-positive Acinetobacter baumannii from intestinal colonization in China. BMC Microbiol. 2025, 25, 272. [Google Scholar] [CrossRef]
- Heydari, F.; Mammina, C.; Koksal, F. NDM-1-producing Acinetobacter baumannii ST85 now in Turkey, including one isolate from a Syrian refugee. J. Med. Microbiol. 2015, 64, 1027–1029. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Cuzon, G.; Poirel, L.; Nordmann, P. Multidrug-resistant Acinetobacter baumannii clone, France. Emerg. Infect. Dis. 2013, 19, 822–823. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.L.; Martin, M.J.; Kovalchuk, V.; Kondratiuk, V.; Trapaidze, N.; Metreveli, M.; Hulseberg, C.E.; Dao, H.D.; Kwak, Y.I.; Maybank, R.; et al. Detection of carbapenemase producing Acinetobacter baumannii ST19 from Georgia and Ukraine carrying bla (OXA-23), bla (OXA-72), and/or bla (NDM-5), December 2019 to June 2023. Eurosurveillance 2024, 29, 2400259. [Google Scholar] [CrossRef] [PubMed]
- Nawfal Dagher, T.; Hadjadj, L.; Bittar, F.; Fenianos, F.; Abdo, E.; Rolain, J.M.; Al-Bayssari, C. Clonal dissemination of an NDM-2-producing Acinetobacter baumannii ST103 clone resulting in an outbreak in an intensive care unit of a Lebanese tertiary care hospital. J. Glob. Antimicrob. Resist. 2025, 40, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Bax, H.I.; Verkaik, N.J.; van Westreenen, M. An Update on Eight “New” Antibiotics against Multidrug-Resistant Gram-Negative Bacteria. J. Clin. Med. 2021, 10, 1068. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tangden, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti-Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef]
- PubChem Compound Summary for CID 44144393. Colistin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Colistine (accessed on 27 June 2025).
- Knox, C.; Wilson, M.; Klinger, C.M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, S.A. DrugBank 6.0: The DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef]
- PubChem Compound Summary for CID 18541918. Ampicillin-Sulbactam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ampicillin-sulbactam (accessed on 27 June 2025).
- PubChem Compound Summary for CID 54686904. Tigecycline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tigecycline (accessed on 27 June 2025).
- PubChem Compound Summary for CID 446987. Fosfomycin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fosfomycin (accessed on 27 June 2025).
- PubChem Compound Summary for CID 42613186. Plazomicin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Plazomicin (accessed on 27 June 2025).
- PubChem Compound Summary for CID 54726192. Eravacycline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tp-434 (accessed on 27 June 2025).
- PubChem Compound Summary for CID 77843966. Cefiderocol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cefiderocol (accessed on 27 June 2025).
- PubChem Compound Summary for CID 171758. Temocillin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Temocillin (accessed on 27 June 2025).
- PubChem Compound Summary for CID 172973390. Ceftolozane-Tazobactam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ceftolozane-tazobactam (accessed on 27 June 2025).
- PubChem Compound Summary for CID 86298703. Meropenem; Vaborbactam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/86298703 (accessed on 27 June 2025).
- PubChem Compound Summary for CID 90643431. Avycaz. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Avycaz (accessed on 27 June 2025).
- Cassir, N.; Rolain, J.M.; Brouqui, P. A new strategy to fight antimicrobial resistance: The revival of old antibiotics. Front. Microbiol. 2014, 5, 551. [Google Scholar] [CrossRef]
- Akajagbor, D.S.; Wilson, S.L.; Shere-Wolfe, K.D.; Dakum, P.; Charurat, M.E.; Gilliam, B.L. Higher incidence of acute kidney injury with intravenous colistimethate sodium compared with polymyxin B in critically ill patients at a tertiary care medical center. Clin. Infect. Dis. 2013, 57, 1300–1303. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Athanassaki, F.; Pitiriga, V.; Falagas, M.E. Clinical relevance of in vitro synergistic activity of antibiotics for multidrug-resistant Gram-negative infections: A systematic review. J. Glob. Antimicrob. Resist. 2019, 17, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
- Dickstein, Y.; Lellouche, J.; Ben Dalak Amar, M.; Schwartz, D.; Nutman, A.; Daitch, V.; Yahav, D.; Leibovici, L.; Skiada, A.; Antoniadou, A. Treatment outcomes of colistin-and carbapenem-resistant Acinetobacter baumannii infections: An exploratory subgroup analysis of a randomized clinical trial. Clin. Infect. Dis. 2019, 69, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Betrosian, A.P.; Frantzeskaki, F.; Xanthaki, A.; Douzinas, E.E. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J. Infect. 2008, 56, 432–436. [Google Scholar] [CrossRef]
- Zalts, R.; Neuberger, A.; Hussein, K.; Raz-Pasteur, A.; Geffen, Y.; Mashiach, T.; Finkelstein, R. Treatment of Carbapenem-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia: Retrospective Comparison Between Intravenous Colistin and Intravenous Ampicillin-Sulbactam. Am. J. Ther. 2016, 23, e78–e85. [Google Scholar] [CrossRef]
- Mosaed, R.; Haghighi, M.; Kouchak, M.; Miri, M.M.; Salarian, S.; Shojaei, S.; Javadi, A.; Taheri, S.; Nazirzadeh, P.; Foroumand, M.; et al. Interim Study: Comparison Of Safety And Efficacy of Levofloxacin Plus Colistin Regimen With Levofloxacin Plus High Dose Ampicillin/Sulbactam Infusion In Treatment of Ventilator-Associated Pneumonia Due To Multi Drug Resistant Acinetobacter. Iran. J. Pharm. Res. 2018, 17, 206–213. [Google Scholar]
- Safarika, A.; Galani, I.; Pistiki, A.; Giamarellos-Bourboulis, E.J. Time-kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: Synergism with imipenem and colistin. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 317–323. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, E.S. Optimizing Treatment for Carbapenem-Resistant Acinetobacter baumannii Complex Infections: A Review of Current Evidence. Infect. Chemother. 2024, 56, 171–187. [Google Scholar] [CrossRef]
- Lawandi, A.; Yek, C.; Kadri, S.S. IDSA guidance and ESCMID guidelines: Complementary approaches toward a care standard for MDR Gram-negative infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2022, 28, 465–469. [Google Scholar] [CrossRef]
- Kubin, C.J.; Garzia, C.; Uhlemann, A.-C. Acinetobacter baumannii treatment strategies: A review of therapeutic challenges and considerations. Antimicrob. Agents Chemother. 2025, 69, e01063-24. [Google Scholar] [CrossRef]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating available treatment options for carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections. Clin. Infect. Dis. 2023, 76, S179–S193. [Google Scholar] [CrossRef]
- Karruli, A.; Migliaccio, A.; Pournaras, S.; Durante-Mangoni, E.; Zarrilli, R. Cefiderocol and sulbactam-durlobactam against carbapenem-resistant Acinetobacter baumannii. Antibiotics 2023, 12, 1729. [Google Scholar] [CrossRef]
- Keam, S.J. Sulbactam/durlobactam: First approval. Drugs 2023, 83, 1245–1252. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii–calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [PubMed]
- Seifert, H.; Müller, C.; Stefanik, D.; Higgins, P.G.; Miller, A.; Kresken, M. In vitro activity of sulbactam/durlobactam against global isolates of carbapenem-resistant Acinetobacter baumannii. J. Antimicrob. Chemother. 2020, 75, 2616–2621. [Google Scholar] [CrossRef]
- Entenza, J.M.; Moreillon, P. Tigecycline in combination with other antimicrobials: A review of in vitro, animal and case report studies. Int. J. Antimicrob. Agents 2009, 34, 8.e1–8.e9. [Google Scholar] [CrossRef]
- Karageorgopoulos, D.E.; Kelesidis, T.; Kelesidis, I.; Falagas, M.E. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: A review of the scientific evidence. J. Antimicrob. Chemother. 2008, 62, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Cheng, C.Y.; Sheng, W.H.; Sun, H.Y.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Effectiveness of tigecycline-based versus colistin- based therapy for treatment of pneumonia caused by multidrug-resistant Acinetobacter baumannii in a critical setting: A matched cohort analysis. BMC Infect. Dis. 2014, 14, 102. [Google Scholar] [CrossRef]
- Kim, W.Y.; Moon, J.Y.; Huh, J.W.; Choi, S.H.; Lim, C.M.; Koh, Y.; Chong, Y.P.; Hong, S.B. Comparable Efficacy of Tigecycline versus Colistin Therapy for Multidrug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients. PLoS ONE 2016, 11, e0150642. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Ahn, H.L.; Han, O.Y.; La, H.O. Efficacy and safety profile comparison of colistin and tigecycline on the extensively drug resistant Acinetobacter baumannii. Biol. Pharm. Bull. 2014, 37, 340–346. [Google Scholar] [CrossRef]
- Ku, K.; Pogue, J.M.; Moshos, J.; Bheemreddy, S.; Wang, Y.; Bhargava, A.; Campbell, M.; Khandker, N.; Lephart, P.R.; Chopra, T.; et al. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am. J. Infect. Control 2012, 40, 983–987. [Google Scholar] [CrossRef]
- Ye, J.J.; Lin, H.S.; Yeh, C.F.; Wu, Y.M.; Huang, P.Y.; Yang, C.C.; Huang, C.T.; Lee, M.H. Tigecycline-based versus sulbactam-based treatment for pneumonia involving multidrug-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii complex. BMC Infect. Dis. 2016, 16, 374. [Google Scholar] [CrossRef]
- Niu, T.; Luo, Q.; Li, Y.; Zhou, Y.; Yu, W.; Xiao, Y. Comparison of Tigecycline or Cefoperazone/Sulbactam therapy for bloodstream infection due to Carbapenem-resistant Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2019, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Mezzatesta, M.L.; La Rosa, G.; Maugeri, G.; Zingali, T.; Caio, C.; Novelli, A.; Stefani, S. In vitro activity of fosfomycin trometamol and other oral antibiotics against multidrug-resistant uropathogens. Int. J. Antimicrob. Agents 2017, 49, 763–766. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, P.; Garcia-Perdomo, H.A.; Autran Gomez, A.M.; Pinheiro, M.; Sarshar, M. Editorial: Uropathogens, urinary tract infections, the host-pathogen interactions and treatment. Front. Microbiol. 2023, 14, 1183236. [Google Scholar] [CrossRef]
- Issakhanian, L.; Behzadi, P. Antimicrobial Agents and Urinary Tract Infections. Curr. Pharm. Des. 2019, 25, 1409–1423. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
- Russo, A.; Gulli, S.P.; D’Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multi-centre clinical experience. Int. J. Antimicrob. Agents 2024, 64, 107190. [Google Scholar] [CrossRef]
- Garcia-Salguero, C.; Rodriguez-Avial, I.; Picazo, J.J.; Culebras, E. Can Plazomicin Alone or in Combination Be a Therapeutic Option against Carbapenem-Resistant Acinetobacter baumannii? Antimicrob. Agents Chemother. 2015, 59, 5959–5966. [Google Scholar] [CrossRef]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A Novel Aminoglycoside for the Treatment of Resistant Gram-Negative Bacterial Infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.N.W.; Wei, W.; Mang, N.S.; Prokesch, B.C.; Ortwine, J.K. Combination eravacycline therapy for ventilator-associated pneumonia due to carbapenem-resistant Acinetobacter baumannii in patients with COVID-19: A case series. Pharmacotherapy 2024, 44, 301–307. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Mensa, J. Mechanism of action of cefiderocol. Rev. Esp. Quim. 2022, 35 (Suppl. S2), 16–19. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Nicastro, M.; Leonildi, A.; Vecchione, A.; Casella, C.; Forfori, F.; Malacarne, P.; Guarracino, F.; Barnini, S.; et al. Cefiderocol as Rescue Therapy for Acinetobacter baumannii and Other Carbapenem-resistant Gram-negative Infections in Intensive Care Unit Patients. Clin. Infect. Dis. 2021, 72, 2021–2024. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Desmoulin, A.; Sababadichetty, L.; Kamus, L.; Daniel, M.; Feletti, L.; Allou, N.; Potron, A.; Leroy, A.G.; Jaffar-Bandjee, M.C.; Belmonte, O.; et al. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024, 10, e30365. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Tulkens, P.M. Temocillin revived. J. Antimicrob. Chemother. 2009, 63, 243–245. [Google Scholar] [CrossRef]
- Shafiekhani, M.; Fatemi, S.A.; Hosseini, P.; Marhemati, F.; Mohammadi, S.; Sharifi, F.; Moorkani Kurde Esfahani Pour, A.; Sadeghi Habibabad, F.; Saad Abadi, N.; Shorafa, E.; et al. Pharmacokinetic and Pharmacodynamic Considerations of Novel Antibiotic Agents for Pediatric Infections: A Narrative Review. Surg. Infect. 2023, 24, 703–715. [Google Scholar] [CrossRef]
- Jun, S.H.; Lee, D.E.; Hwang, H.R.; Kim, N.; Kim, H.J.; Lee, Y.C.; Kim, Y.K.; Lee, J.C. Clonal change of carbapenem-resistant Acinetobacter baumannii isolates in a Korean hospital. Infect. Genet. Evol. 2021, 93, 104935. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.G.; Lee, H.J.; Yim, H.S.; Lee, M.G.; Sohn, J.W.; Yoon, Y.K. In vitro synergistic antimicrobial activity of a combination of meropenem, colistin, tigecycline, rifampin, and ceftolozane/tazobactam against carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2022, 12, 7541. [Google Scholar] [CrossRef]
- Mansour, H.; Ouweini, A.E.L.; Chahine, E.B.; Karaoui, L.R. Imipenem/cilastatin/relebactam: A new carbapenem beta-lactamase inhibitor combination. Am. J. Health Syst. Pharm. 2021, 78, 674–683. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New beta-Lactam-beta-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagace-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-beta-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Mouktaroudi, M.; Kotsaki, A.; Giamarellos-Bourboulis, E.J. Meropenem-vaborbactam: A critical positioning for the management of infections by Carbapenem-resistant Enterobacteriaceae. Expert Rev. Anti-Infect. Ther. 2022, 20, 809–818. [Google Scholar] [CrossRef]
- Castanheira, M.; Doyle, T.B.; Kantro, V.; Mendes, R.E.; Shortridge, D. Meropenem-Vaborbactam Activity against Carbapenem-Resistant Enterobacterales Isolates Collected in U.S. Hospitals during 2016 to 2018. Antimicrob. Agents Chemother. 2020, 64, e01951-19. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagace-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/beta-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Mawal, Y.; Critchley, I.A.; Riccobene, T.A.; Talley, A.K. Ceftazidime-avibactam for the treatment of complicated urinary tract infections and complicated intra-abdominal infections. Expert Rev. Clin. Pharmacol. 2015, 8, 691–707. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.A. Ceftazidime with beta-lactamase inhibitor approved for complicated infections. Am. J. Health Syst. Pharm. 2015, 72, 511. [Google Scholar] [CrossRef]
- Stein, G.E.; Smith, C.L.; Scharmen, A.; Kidd, J.M.; Cooper, C.; Kuti, J.; Mitra, S.; Nicolau, D.P.; Havlichek, D.H. Pharmacokinetic and Pharmacodynamic Analysis of Ceftazidime/Avibactam in Critically Ill Patients. Surg. Infect. 2019, 20, 55–61. [Google Scholar] [CrossRef]
- Torres, A.; Rank, D.; Melnick, D.; Rekeda, L.; Chen, X.; Riccobene, T.; Critchley, I.A.; Lakkis, H.D.; Taylor, D.; Talley, A.K. Randomized Trial of Ceftazidime-Avibactam vs Meropenem for Treatment of Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia (REPROVE): Analyses per US FDA-Specified End Points. Open Forum Infect. Dis. 2019, 6, ofz149. [Google Scholar] [CrossRef]
- Pouya, N.; Smith, J.E.; Hudson, C.S.; Teran, N.S.; Tam, V.H. In vitro evaluation of using ceftazidime/avibactam against carbapenem-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2024, 38, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Ransom, E.; Bhatnagar, A.; Patel, J.B.; Machado, M.J.; Boyd, S.; Reese, N.; Lutgring, J.D.; Lonsway, D.; Anderson, K.; Brown, A.C.; et al. Validation of Aztreonam-Avibactam Susceptibility Testing Using Digitally Dispensed Custom Panels. J. Clin. Microbiol. 2020, 58, e01944-19. [Google Scholar] [CrossRef] [PubMed]
- Al Musawa, M.; Bleick, C.R.; Herbin, S.R.; Caniff, K.E.; Van Helden, S.R.; Rybak, M.J. Aztreonam-avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2024, 44, 927–938. [Google Scholar] [CrossRef]
- Sader, H.S.; Kimbrough, J.H.; Doyle, T.B.; Winkler, M.L.; Castanheira, M. Frequency, Antimicrobial Susceptibility, and Molecular Characterization of Carbapenem-Resistant Enterobacterales Stratified by United States Census Divisions: Results From the INFORM Program (2018–2022). Open Forum Infect. Dis. 2025, 12, ofaf005. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Zhang, G.; Li, J.; Wang, T.; Kang, W.; Zhang, J.; Sun, H.; Liu, Y.; Xu, Y. In-vitro activities of essential antimicrobial agents including aztreonam/avibactam, eravacycline, colistin and other comparators against carbapenem-resistant bacteria with different carbapenemase genes: A multi-centre study in China, 2021. Int. J. Antimicrob. Agents 2024, 64, 107341. [Google Scholar] [CrossRef] [PubMed]
- Dumbleton, J.T.; Shah, A.P.; Ho, B.M.; Singh, N.; de Souza, H.; Smith, N.M. Pharmacodynamics of aztreonam/ceftazidime/avibactam and polymyxin B versus New Delhi MBL-producing Acinetobacter baumannii. JAC-Antimicrob. Resist. 2025, 7, dlaf068. [Google Scholar] [CrossRef] [PubMed]
- Coppola, N.; Maraolo, A.E.; Onorato, L.; Scotto, R.; Calò, F.; Atripaldi, L.; Borrelli, A.; Corcione, A.; De Cristofaro, M.G.; Durante-Mangoni, E. Epidemiology, mechanisms of resistance and treatment algorithm for infections due to carbapenem-resistant gram-negative bacteria: An expert panel opinion. Antibiotics 2022, 11, 1263. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America guidance on the treatment of AmpC β-lactamase–producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I. International consensus guidelines for the optimal use of the polymyxins: Endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti-infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 10–39. [Google Scholar]
- Rafailidis, P.; Panagopoulos, P.; Koutserimpas, C.; Samonis, G. Current therapeutic approaches for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infections. Antibiotics 2024, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum beta-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options. Microorganisms 2025, 13, 1983. https://doi.org/10.3390/microorganisms13091983
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options. Microorganisms. 2025; 13(9):1983. https://doi.org/10.3390/microorganisms13091983
Chicago/Turabian StyleKarampatakis, Theodoros, Katerina Tsergouli, and Payam Behzadi. 2025. "Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options" Microorganisms 13, no. 9: 1983. https://doi.org/10.3390/microorganisms13091983
APA StyleKarampatakis, T., Tsergouli, K., & Behzadi, P. (2025). Carbapenem-Resistant Acinetobacter baumannii: Virulence Factors, Molecular Epidemiology, and Latest Updates in Treatment Options. Microorganisms, 13(9), 1983. https://doi.org/10.3390/microorganisms13091983