PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Generation of Mutant and Complemented Mutant Strains
2.3. Oxidative Stress Formation
2.4. Gene Expression Analysis
2.5. Homotypic Biofilm Formation and Coaggregation Assay
2.6. Proteolytic Activity Assay
2.7. Cell Culture and Infection Assay
2.8. Plasmid Construction, Overexpression, and Purification of Recombinant PgRsp Protein
2.9. Protein–Heme Complex Formation
2.10. Electrophoretic Mobility Shift Assay
2.11. Phylogenetic Analyses
2.12. Statistical Analysis
3. Results
3.1. PgRsp—a Heme-Binding Member of a Novel Family of Crp/Fnr Superfamily Transcription Regulators
3.2. Pgrsp Gene Expression is Iron/Heme- and PgFur-Dependent
3.3. PgRsp Plays a Role in Regulation of P. gingivalis Virulence
3.4. PgRsp is Involved in the Response to Oxidative Stress
3.5. PgRsp Regulates Hmu Operon, Bcp Genes and its own Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- How, K.Y.; Song, K.P.; Chan, K.G. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front. Microbiol. 2016, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Bostanci, N.; Belibasakis, G.N. Porphyromonas gingivalis: An invasive and evasive opportunistic oral pathogen. FEMS Microbiol. Lett. 2012, 333, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Darveau, R.P.; Hajishengallis, G.; Curtis, M.A. Porphyromonas gingivalis as a potential community activist for disease. J. Dent. Res. 2012, 91, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Immune evasion strategies of Porphyromonas gingivalis. J. Oral Biosci. 2011, 53, 233–240. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Links between atherosclerotic and periodontal disease. Exp. Mol. Pathol. 2016, 100, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Seymour, G.J.; Ford, P.J.; Cullinan, M.P.; Leishman, S.; Yamazaki, K. Relationship between periodontal infections and systemic disease. Clin. Microbiol. Infect. 2007, 13, 3–10. [Google Scholar] [CrossRef]
- Blasco-Baque, V.; Garidou, L.; Pomié, C.; Escoula, Q.; Loubieres, P.; Le Gall-David, S.; Lemaitre, M.; Nicolas, S.; Klopp, P.; Waget, A.; et al. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 2017, 66, 872–885. [Google Scholar] [CrossRef]
- Mesia, R.; Gholami, F.; Huang, H.; Clare-Salzler, M.; Aukhil, I.; Wallet, S.M.; Shaddox, L.M. Systemic inflammatory responses in patients with type 2 diabetes with chronic periodontitis. BMJ Open Diabetes Res. Care 2016, 8. [Google Scholar] [CrossRef]
- Dominy, S.S.; Lynch, C.; Ermini, F.; Benedyk, M.; Marczyk, A.; Konradi, A.; Nguyen, M.; Haditsch, U.; Raha, D.; Griffin, C.; et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef]
- Patini, R.; Gallenzi, P.; Spagnuolo, G.; Cordaro, M.; Cantiani, M.; Amalfitano, A.; Arcovito, A.; Callà, C.; Mingrone, G.; Nocca, G. Correlation between metabolic syndrome, periodontitis and reactive oxygen species production. A pilot study. Open Dent. J. 2017, 12, 621–627. [Google Scholar] [CrossRef]
- Patini, R.; Staderini, E.; Lajolo, C.; Lopetuso, L.; Mohammed, H.; Rimondini, L.; Rocchetti, V.; Franceschi, F.; Cordaro, M.; Gallenzi, P. Relationship between oral microbiota and periodontal disease: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5775–5788. [Google Scholar] [CrossRef] [PubMed]
- Smalley, J.W.; Olczak, T. Heme acquisition mechanisms of Porphyromonas gingivalis-strategies used in a polymicrobial community in a heme-limited host environment. Mol. Oral Microbiol. 2017, 32, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ciuraszkiewicz, J.; Śmiga, M.; Mackiewicz, P.; Gmiterek, A.; Bielecki, M.; Olczak, M.; Olczak, T. Fur homolog regulates Porphyromonas gingivalis virulence under low-iron/heme conditions through a complex regulatory network. Mol. Oral Microbiol. 2014, 29, 333–353. [Google Scholar] [CrossRef] [PubMed]
- Lam, R.S.; O’Brien-Simpson, N.M.; Holden, J.A.; Lenzo, J.C.; Fong, S.B.; Reynolds, E.C. Unprimed, M1 and M2 macrophages differentially interact with Porphyromonas gingivalis. PLoS ONE 2016, 6. [Google Scholar] [CrossRef]
- Olczak, T.; Sosicka, P.; Olczak, M. HmuY is an important virulence factor for Porphyromonas gingivalis growth in the heme-limited host environment and infection of macrophages. Biochem. Biophys. Res. Commun. 2015, 467, 748–753. [Google Scholar] [CrossRef]
- Śmiga, M.; Stępien, P.; Olczak, M.; Olczak, T. PgFur participates differentially in expression of virulence factors in more virulent A7436 and less virulent ATCC 33277 Porphyromonas gingivalis strains. BMC Microbiol. 2019, 19, 127. [Google Scholar] [CrossRef]
- Potempa, J.; Sroka, A.; Imamura, T.; Travis, J. Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: Structure, function and assembly of multidomain protein complexes. Curr. Protein Pept. Sci. 2003, 4, 397–407. [Google Scholar] [CrossRef]
- Guo, Y.; Nguyen, K.A.; Potempa, J. Dichotomy of gingipains action as virulence factors: From cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol. 2000 2010, 54, 15–44. [Google Scholar] [CrossRef]
- Li, N.; Collyer, C.A. Gingipains from Porphyromonas gingivalis-Complex domain structures confer diverse functions. Eur. J. Microbiol. Immunol. 2011, 1, 41–58. [Google Scholar] [CrossRef]
- Bielecki, M.; Antonyuk, S.; Strange, R.W.; Smalley, J.W.; Mackiewicz, P.; Śmiga, M.; Stępień, P.; Olczak, M.; Olczak, T. Tannerella forsythia Tfo belongs to Porphyromonas gingivalis HmuY-like family of proteins but differs in heme-binding properties. Biosci. Rep. 2018, 22, 38. [Google Scholar] [CrossRef]
- Enersen, M.; Nakano, K.; Amano, A. Porphyromonas gingivalis fimbriae. J. Oral Microbiol. 2013, 5, 58. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Simionato, M.R.; Sekiya, K.; Murakami, Y.; James, D.; Chen, W.; Hackett, M.; Yoshimura, F.; Demuth, D.R.; Lamont, R.J. Short fimbriae of Porphyromonas gingivalis and their role in coadhesion with Streptococcus gordonii. Infect. Immun. 2005, 73, 3983–3989. [Google Scholar] [CrossRef] [PubMed]
- Ohara, N.; Kikuchi, Y.; Shoji, M.; Naito, M.; Nakayama, K. Superoxide dismutase-encoding gene of the obligate anaerobe Porphyromonas gingivalis is regulated by the redox-sensing transcription activator OxyR. Microbiology 2006, 152, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Strand, K.R.; Sun, C.; Li, T.; Jenney, F.E.J.; Schut, G.J.; Adams, M.W. Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species. Arch. Microbiol. 2010, 192, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Slauch, J.M. How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol. Microbiol. 2011, 80, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef]
- Reniere, M.L. Reduce, Induce, Thrive: Bacterial redox sensing during pathogenesis. J. Bacteriol. 2018, 10, 200. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, C.; Jang, H.J.; Kim, B.O.; Bae, H.W.; Chung, I.Y.; Kim, E.S.; Cho, Y.H. Antibacterial strategies inspired by the oxidative stress and response networks. J. Microbiol. 2019, 57, 203–212. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, D.G.; Lee, K.Y.; Koo, J.S.; Lee, B.J. Regulatory mechanisms of thiol-based redox sensors: Lessons learned from structural studies on prokaryotic redox sensors. Arch. Pharm. Res. 2018, 41, 583–593. [Google Scholar] [CrossRef]
- Diaz, P.I.; Slakeski, N.; Reynolds, E.C.; Morona, R.; Rogers, A.H.; Kolenbrander, P.E. Role of OxyR in the oral anaerobe Porphyromonas gingivalis. J. Bacteriol. 2006, 188, 2454–2462. [Google Scholar] [CrossRef]
- Körner, H.; Sofia, H.J.; Zumft, W.G. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: Exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. 2003, 27, 559–592. [Google Scholar] [CrossRef] [Green Version]
- Lanzilotta, W.N.; Schuller, D.J.; Thorsteinsson, M.V.; Kerby, R.L.; Roberts, G.P.; Poulos, T.L. Structure of the CO sensing transcription activator CooA. Nat. Struct. Biol. 2000, 7, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Belvin, B.R.; Musayev, F.N.; Burgner, J.; Scarsdale, J.N.; Escalante, C.R.; Lewis, J.P. Nitrosative stress sensing in Porphyromonas gingivalis: Structure of and heme binding by the transcriptional regulator HcpR. Acta Crystallogr. D Struct. Biol. 2019, 75, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Chen, Y.I.; Zane, G.M.; He, Z.; Hemme, C.L.; Joachimiak, M.P.; Baumohl, J.K.; He, Q.; Fields, M.W.; Arkin, A.P.; et al. Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough. Appl. Environ. Microbiol. 2012, 78, 1168–1177. [Google Scholar] [CrossRef] [Green Version]
- Genco, C.A.; Cutler, C.W.; Kapczynski, D.; Maloney, K.; Arnold, R.R. A novel mouse model to study the virulence of and host response to Porphyromonas (Bacteroides) gingivalis. Infect. Immun. 1991, 59, 1255–1263. [Google Scholar]
- Olczak, T.; Sroka, A.; Potempa, J.; Olczak, M. Porphyromonas gingivalis HmuY and HmuR: Further characterization of a novel mechanism of heme utilization. Arch. Microbiol. 2008, 189, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Śmiga, M.; Bielecki, M.; Olczak, M.; Smalley, J.W.; Olczak, T. Anti-HmuY antibodies specifically recognize Porphyromonas gingivalis HmuY protein but not homologous proteins in other periodontopathogens. PLoS ONE 2015, 6. [Google Scholar] [CrossRef]
- Tagawa, J.; Inoue, T.; Naito, M.; Sato, K.; Kuwahara, T.; Nakayama, M.; Nakayama, K.; Yamashiro, T.; Ohara, N. Development of a novel plasmid vector pTIO-1 adapted for electrotransformation of Porphyromonas gingivalis. J. Microbiol. Methods 2014, 105, 174–179. [Google Scholar] [CrossRef]
- Simpson, W.; Olczak, T.; Genco, C.A. Characterization and expression of HmuR; a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J. Bacteriol. 2000, 182, 5737–5748. [Google Scholar] [CrossRef] [Green Version]
- Śmiga, M.; Bielecki, M.; Olczak, M.; Olczak, T. Porphyromonas gingivalis PgFur is a member of a novel Fur subfamily with non-canonical function. Front. Cell. Infect Microbiol. 2019, 1, 233. [Google Scholar] [CrossRef]
- Olczak, T.; Wójtowicz, H.; Ciuraszkiewicz, J.; Olczak, M. Species specificity. surface exposure. protein expression, immunogenicity, and participation in biofilm formation of Porphyromonas gingivalis HmuY. BMC Microbiol. 2010, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryksin, A.V.; Matsumura, I. Overlap extension PCR cloning: A simple and reliable way to create recombinant plasmids. Biotechniques 2010, 48, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Eakanunkul, S.; Lukat-Rodgers, G.S.; Sumithran, S.; Ghosh, A.; Rodgers, K.R.; Dawson, J.H.; Wilks, A. Characterization of the periplasmic heme-binding protein shut from the heme uptake system of Shigella dysenteriae. Biochemistry 2005, 44, 13179–13191. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W. EvolView, an online tool for visualizing; annotating and managing phylogenetic trees. Nucleic Acids Res. 2012, 40, 569–572. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Gao, S.; Lercher, M.J.; Chen, W.; Hu, S. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016, 8, 236–241. [Google Scholar] [CrossRef]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization; annotation; and management of phylogenetic trees. Nucleic Acids Res. 2019, 2, 270–275. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling. prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Chastain-Gross, R.P.; Xie, G.; Belanger, M.; Kumar, D.; Whitlock, J.A.; Liu, L.; Farmerie, W.G.; Daligault, H.E.; Han, C.S.; Brettin, T.S.; et al. Genome sequence of Porphyromonas gingivalis strain A7436. Genome Announc. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Giardina, G.; Castiglione, N.; Caruso, M.; Cutruzzolà, F.; Rinaldo, S. The Pseudomonas aeruginosa DNR transcription factor: Light and shade of nitric oxide-sensing mechanisms. Biochem. Soc. Trans. 2011, 39, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Shelver, D.; Kerby, R.L.; He, Y.; Roberts, G.P. CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Proc. Natl. Acad. Sci. USA 1997, 94, 11216–11220. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.; Aono, S. A model theoretical study on ligand exchange reactions of CooA. Phys. Chem. Chem. Phys. 2013, 15, 6139–6148. [Google Scholar] [CrossRef]
- Hines, J.P.; Dent, M.R.; Stevens, D.J.; Burstyn, J.N. Site-directed spin label electron paramagnetic resonance spectroscopy as a probe of conformational dynamics in the Fe(III) “locked-off” state of the CO-sensing transcription factor CooA. Protein Sci. 2018, 27, 1670–1679. [Google Scholar] [CrossRef]
- Kamaguchi, A.; Nakayama, K.; Ohyama, T.; Watanabe, T.; Okamoto, M.; Baba, H. Coaggregation of Porphyromonas gingivalis and Prevotella intermedia. Microbiol. Immunol. 2001, 45, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, H.; Wojaczyński, J.; Olczak, M.; Króliczewski, J.; Latos-Grazyński, L.; Olczak, T. Heme environment in HmuY. the heme-binding protein of Porphyromonas gingivalis. Biochem. Biophys. Res. Commun. 2009, 383, 178–182. [Google Scholar] [CrossRef]
- Szafranski, S.P.; Deng, Z.L.; Tomasch, J.; Jarek, M.; Bhuju, S.; Meisinger, C.; Kühnisch, J.; Sztajer, H.; Wagner-Döbler, I. Functional biomarkers for chronic periodontitis and insights into the roles of Prevotella nigrescens and Fusobacterium nucleatum; a metatranscriptome analysis. NPJ Biofilms Microbiomes 2015, 1, 15017. [Google Scholar] [CrossRef]
- Deng, Z.L.; Sztajer, H.; Jarek, M.; Bhuju, S.; Wagner-Döbler, I. Worlds apart-transcriptome profiles of key oral microbes in the periodontal pocket compared to single laboratory culture reflect synergistic interactions. Front. Microbiol. 2018, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Lamont, R.J.; Jenkinson, H.F. Life below the gum line: Pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev. 1998, 62, 1244–1263. [Google Scholar]
- Sevilla, E.; Bes, M.T.; Gonzalez, A.; Peleato, M.L.; Fillat, M.F. Redox-based transcriptional regulation in Prokaryotes: Revisiting model mechanisms. Antioxid. Redox Signal. 2019, 30, 1651–1696. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, C. OxyR activation in Porphyromonas gingivalis in response to a hemin-limited environment. Infect. Immun. 2012, 80, 3471–3480. [Google Scholar] [CrossRef] [Green Version]
- Romero-Lastra, P.; Sánchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz, M. Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm. PLoS ONE 2019, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuboniwa, M.; Hendrickson, E.L.; Xia, Q.; Wang, T.; Xie, H.; Hackett, M.; Lamont, R.J. Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol. 2009, 9, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smalley, J.W.; Silver, J.; Marsh, P.J.; Birss, A.J. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the µ-oxo dimeric form: An oxidative buffer and possible pathogenic mechanism. Biochem. J. 1998, 331, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Smalley, J.W.; Birss, A.J.; Silver, J. The periodontal pathogen Porphyromonas gingivalis harnesses the chemistry of the µ-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol. Lett. 2000, 183, 159–164. [Google Scholar] [CrossRef]
- Fu, H.; Yuan, J.; Gao, H. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria. Arch. Biochem. Biophys. 2015, 584, 28–35. [Google Scholar] [CrossRef]
- Henry, L.G.; McKenzie, R.M.; Robles, A.; Fletcher, H.M. Oxidative stress resistance in Porphyromonas gingivalis. Future Med. 2012, 7, 497–512. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K. Rapid viability loss on exposure to air in a superoxide dismutase-deficient mutant of Porphyromonas gingivalis. J. Bacteriol. 1994, 176, 1939–1943. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.A.; McKenzie, R.M.; Fletcher, H.M. The bcp gene in the bcp-recA-vimA-vimE-vimF operon is important in oxidative stress resistance in Porphyromonas gingivalis W83. Mol. Oral Microbiol. 2011, 26, 62–77. [Google Scholar] [CrossRef] [Green Version]
- Abaibou, H.; Chen, Z.; Olango, G.J.; Liu, Y.; Edwards, J.; Fletcher, H.M. vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect. Immun. 2001, 69, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, Y.; Ohara, N.; Sato, K.; Yoshimura, M.; Yukitake, H.; Sakai, E.; Shoji, M.; Naito, M.; Nakayama, K. Novel stationary-phase-upregulated protein of Porphyromonas gingivalis influences production of superoxide dismutase; thiol peroxidase and thioredoxin. Microbiology 2005, 151, 841–853. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.P.; Yanamandra, S.S.; Anaya-Bergman, C. HcpR of Porphyromonas gingivalis is required for growth under nitrosative stress and survival within host cells. Infect. Immun. 2012, 80, 3319–3331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.W.; Youn, H.; Lee, A.J.; Roberts, G.P.; Burstyn, J.N. DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state. J. Biol. Inorg. Chem. 2007, 12, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Poulos, T.L. Testing the N-terminal velcro model of CooA carbon monoxide activation. Biochemistry 2018, 57, 3059–3064. [Google Scholar] [CrossRef] [PubMed]
- Pinochet-Barros, A.; Helmann, J.D. Redox sensing by Fe2+ in bacterial Fur family metalloregulators. Antioxid. Redox Signal. 2018, 29, 1858–1871. [Google Scholar] [CrossRef] [PubMed]
- Farhana, A.; Saini, V.; Kumar, A.; Lancaster, J.R., Jr.; Steyn, A.J. Environmental heme-based sensor proteins: Implications for understanding bacterial pathogenesis. Antioxid. Redox Signal. 2012, 17, 1232–1245. [Google Scholar] [CrossRef] [Green Version]
Gene | Hm | DIP | ||||
---|---|---|---|---|---|---|
4 h | 10 h | 24 h | 4 h | 10 h | 24 h | |
hmuY | −1.41 ± 0.24 | 1.51 ± 0.33 * | 1.35 ± 0.35 | 1.04 ± 0.05 | 1.28 ± 0.27 | −1.06 ± 0.16 |
rgpB | −1.52 ± 0.10 * | −1.16 ± 0.23 | 1.75 ± 0.35 * | −1.80 ± 0.05 * | 1.12 ± 0.24 | −1.05 ± 0.22 |
kgp | 1.62 ± 0.14 * | 1.80 ± 0.35 * | 4.10 ± 0.77 * | 1.14 ± 0.11 | 2.48 ± 0.52 * | 2.77 ± 0.33 * |
rgpA | −1.53 ± 0.10 * | −1.57 ± 0.32 * | 1.50 ± 0.27 * | −2.83 ± 0.17 * | −1.51 ± 0.32 * | −1.47 ± 0.22 |
PGA7_00013810 | −1.33 ± 0.11 | −1.61 ± 0.30 * | −1.87 ± 0.26 * | −2.22 ± 0.52 * | −1.48 ± 0.36 | −1.09 ± 0.14 |
fimA | −1.57 ± 0.21 | −1.03 ± 0.25 | −2.22 ± 0.84 * | 1.72 ± 0.09 * | −1.34 ± 0.19 | −1.69 ± 0.32 * |
sod | −1.09 ± 0.17 | 3.04 ± 0.52 * | 1.56 ± 0.57 * | −1.50 ± 0.06 | 2.11 ± 0.33 * | 1.02 ± 0.20 |
bcp | 1.60 ± 0.60 * | 1.13 ± 2.00 | 1.59 ± 0.13 * | 2.29 ± 0.12 * | 1.95 ± 0.22 * | 2.17 ± 0.11 * |
pgdps | −1.07 ± 0.18 | −1.29 ± 3.00 | 1.38 ± 0.40 | 1.49 ± 0.60 | 1.22 ± 0.70 | 1.15 ± 0.10 |
ahpC | −1.14 ± 0.50 | −1.30 ± 0.13 | 1.80 ± 0.40 * | 1.05 ± 0.21 | 2.66 ± 0.90 * | 1.05 ± 0.12 |
rbr | 1.47 ± 0.11 | 1.56 ± 0.15 | 1.31 ± 0.60 | 2.18 ± 0.16 * | 1.61 ± 0.14 | 1.93 ± 0.23 * |
tpx | 1.69 ± 0.13 * | 1.31 ± 0.40 | 2.62 ± 0.50 * | 4.88 ± 0.27 * | 3.90 ± 0.29 * | 1.81 ± 0.10 * |
oxyR | 1.64 ± 0.23 * | 1.11 ± 0.13 | −1.05 ± 0.42 | 1.08 ± 0.10 | 1.64 ± 0.14 * | 1.56 ± 0.15 * |
pgfur | 1.14 ± 0.05 | 1.18 ± 0.16 | 1.12 ± 0.25 | −1.05 ± 0.24 | 1.33 ± 0.33 | 1.60 ± 0.15 * |
ustA | 3.52 ± 2.49 | −1.23 ± 0.59 | 2.69 ± 0.82* | 1.11 ± 0.41 | 4.52 ± 1.27* | 2.88 ± 2.24* |
Gene | BM + Cys + Hm | BM−Cys + Hm | BM−Cys + Hm + 0.25 mM H2O2 |
---|---|---|---|
hmuY | −1.76 ± 0.59 * | −14.03 ± 12.69 * | 4.44 ± 3.41 * |
rgpB | 1.28 ± 0.52 | −4.16 ± 2.25 * | 5.62 ± 3.61 * |
kgp | −1.09 ± 0.31 | −4.29 ± 2.71 * | 1.40 ± 1.64 |
rgpA | −1.47 ± 0.17 | −3.05 ± 0.88 * | −1.20 ± 0.32 |
PGA7_00013810 | 1.03 ± 0.35 | −4.40 ± 2.64 * | −3.36 ± 2.50 * |
fimA | −1.54 ± 0.34 | −3.00 ± 2.98 * | −3.44 ± 1.82 * |
sod | 2.74 ± 0.62 * | −15.72 ± 14.21 * | 1.04 ± 0.84 |
bcp | 1.21 ± 0.12 | −2.86 ± 1.58 * | −5.49 ± 3.71 * |
pgdps | 1.01 ± 0.80 | 1.29 ± 0.32 | −4.38 ± 2.78 * |
ahpC | 1.73 ± 0.19 * | −1.53 ± 0.44 * | −1.70 ± 0.96 |
rbr | −1.07 ± 0.08 | −1.27 ± 0.15 | 2.60 ± 1.61 * |
tpx | 2.72 ± 0.79 * | −5.40 ± 4.91 * | 1.99 ± 0.85 * |
oxyR | −1.16 ± 0.21 | −1.52 ± 0.49 | 7.39 ± 6.10 * |
pgfur | −1.20 ± 0.24 | −3.24 ± 1.69 * | 1.07 ± 0.57 |
ustA | −1.22 ± 0.49 | 2.16 ± 0.90 * | −1.83 ± 0.70 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmiga, M.; Olczak, T. PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence. Microorganisms 2019, 7, 623. https://doi.org/10.3390/microorganisms7120623
Śmiga M, Olczak T. PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence. Microorganisms. 2019; 7(12):623. https://doi.org/10.3390/microorganisms7120623
Chicago/Turabian StyleŚmiga, Michał, and Teresa Olczak. 2019. "PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence" Microorganisms 7, no. 12: 623. https://doi.org/10.3390/microorganisms7120623
APA StyleŚmiga, M., & Olczak, T. (2019). PgRsp Is a Novel Redox-Sensing Transcription Regulator Essential for Porphyromonas gingivalis Virulence. Microorganisms, 7(12), 623. https://doi.org/10.3390/microorganisms7120623