Review on Immersion Vaccines for Fish: An Update 2019
Abstract
:1. Introduction
2. Mucosal Immune Response
3. Atlantic Cod
Vibriosis
4. Atlantic Salmon/Chinook Salmon/Coho Salmon Yersiniosis (Enteric Redmouth Disease) and Flavobacteriosis
5. Rainbow Trout
5.1. ERM in Rainbow Trout
5.2. Vibriosis
5.3. Viral Hemorrhagic Septicemia (VHS)
5.4. Rainbow Trout Fry Syndrome/Bacterial Cold-Water Disease (RTFS/BCWD)
5.5. Streptococcosis
5.6. Furunculosis
6. Ayu
Bacterial Cold-Water Disease (BCWD)
7. Barramundi
Vibriosis
8. Channel/Hybrid/Striped/Vietnamese Catfish
8.1. Edwardsiellosis
8.2. Columnaris Disease
8.3. Motile Aeromonas Septicemia (MAS)
9. European Eel
Vibriosis
10. Japanese/Olive Flounder
10.1. Edwardsiellosis
10.2. Vibriosis
10.3. Viral Hemorrhagic Septicemia (VHS)
11. Grouper/Sevenband Grouper
11.1. Viral Nervous Necrosis (VNN)
11.2. Iridovirus
12. Guppy, Gourami
Viral Nervous Necrosis/Viral Encephalopathy and Retinopathy Virus
13. Koi/Common/Grass carp
Koi Herpes Virus
14. Sea Bass
14.1. Vibriosis and Pasteurellosis
14.2. Viral Nervous Necrosis (VNN)/Viral Encephalopathy and Retinopathy Virus (VER)
15. Hybrid Striped Bass
Streptococcosis
16. Gilthead Sea Bream
Pasteurellosis
17. Nile/Red Hybrid Tilapia
17.1. Streptococcosis, Lactococcosis, Enterococcosis
17.2. Columnaris
17.3. Francisellosis
18. Mandarin Fish
Infectious Spleen and Kidney Necrosis Virus
19. Common Carp/Grass Carp
19.1. Koi Herpes Virus
19.2. Spring Viremia of Carp
19.3. Flavobacteriosis
20. Turbot
20.1. Enterococcosis
20.2. Edwardsielllosis
21. Senegalese Sole
22. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Munang’andu, H.M.; Mutoloki, S.; Evensen, O. An overview of challenges limiting the design of protective mucosal vaccines for finfish. Front. Immunol. 2015, 6. [Google Scholar] [CrossRef]
- Nakanishi, T.; Ototake, M. Antigen uptake and immune responses after immersion vaccination. Dev. Biol. 1997, 90, 59–68. [Google Scholar]
- Moore, J.D.; Ototake, M.; Nakanishi, T. Particulate antigen uptake during immersion immunisation of fish: The effectiveness of prolonged exposure and the roles of skin and gill. Fish Shellfish Immun. 1998, 8, 393–407. [Google Scholar] [CrossRef]
- Ji, J.; Torrealba, D.; Thwaite, R.; Gomez, A.C.; Parra, D.; Roher, N. Nanostructured TNF alpha protein targets the zebrafish (Danio rerio) immune system through mucosal surfaces and improves the survival after Mycobacterium marinum lethal infection. Aquaculture 2019, 510, 138–149. [Google Scholar] [CrossRef]
- Kole, S.; Qadiri, S.S.N.; Shin, S.M.; Kim, W.S.; Lee, J.; Jung, S.J. PLGA encapsulated inactivated-viral vaccine: Formulation and evaluation of its protective efficacy against viral haemorrhagic septicaemia virus (VHSV) infection in olive flounder (Paralichthys olivaceus) vaccinated by mucosal delivery routes. Vaccine 2019, 37, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Skov, J.; Chettri, J.K.; Jaafar, R.M.; Kania, P.W.; Dalsgaard, I.; Buchmann, K. Effects of soluble immunostimulants on mucosal immune responses in rainbow trout immersion-vaccinated against Yersinia ruckeri. Aquaculture 2018, 492, 237–246. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kwon, M.G.; Kim, Y.J.; Jung, S.H.; Park, M.A.; Son, M.H. Montanide IMS 1312 VG adjuvant enhances the efficacy of immersion vaccine of inactivated viral hemorrhagic septicemia virus (VHSV) in olive flounder, Paralichthys olivaceus. Fish Shellfish Immun. 2017, 60, 420–425. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wang, X.H.; Huang, J.; Li, J. Adjuvant Effect of Quillaja saponaria Saponin (QSS) on Protective Efficacy and IgM Generation in Turbot (Scophthalmus maximus) upon Immersion Vaccination. Int. J. Mol. Sci. 2016, 17, 325. [Google Scholar] [CrossRef]
- Labarca, C.C.; Makhutu, M.; Lumsdon, A.E.; Thompson, K.D.; Jung, R.; Kloas, W.; Knopf, K. The adjuvant effect of low frequency ultrasound when applied with an inactivated Aeromonas salmonicida vaccine to rainbow trout (Oncorhynchus mykiss). Vaccine 2015, 33, 1369–1374. [Google Scholar] [CrossRef]
- Soto, E.; Brown, N.; Gardenfors, Z.O.; Yount, S.; Revan, F.; Francis, S.; Kearney, M.T.; Camus, A. Effect of size and temperature at vaccination on immunization and protection conferred by a live attenuated Francisella noatunensis immersion vaccine in red hybrid tilapia. Fish Shellfish Immun. 2014, 41, 593–599. [Google Scholar] [CrossRef]
- Glenney, G.W.; Petrie-Hanson, L. Fate of fluorescent microspheres in developing Ictalurus punctatus following prolonged immersion. Fish Shellfish Immun. 2006, 20, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Kiryu, I.; Ototake, M. Development of a new vaccine delivery method for fish: Percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine 2002, 20, 3764–3769. [Google Scholar] [CrossRef]
- Yun, S.; Giri, S.S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; Oh, W.T.; Chi, C.; et al. Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach. Fish Shellfish Immun. 2019, 91, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. The influence of concentration of inactivated Edwardsiella tarda bacterin and immersion time on antigen uptake and expression of immune-related genes in Japanese flounder (Paralichthys olivaceus). Microb. Pathog. 2017, 103, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Huising, M.O.; Guichelaar, T.; Hoek, C.; Verburg-van Kemenade, B.M.L.; Flik, G.; Savelkoul, H.F.J.; Rombout, J.H.W.M. Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment. Vaccine 2003, 21, 4178–4193. [Google Scholar] [CrossRef]
- Gao, Y.; Tang, X.; Sheng, X.; Xing, J.; Zhan, W. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment. Fish Shellfish Immun. 2016, 55, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Kitiyodom, S.; Kaewmalun, S.; Nittayasut, N.; Suktham, K.; Surassmo, S.; Namdee, K.; Rodkhum, C.; Pirarat, N.; Yata, T. The potential of mucoadhesive polymer in enhancing efficacy of direct immersion vaccination against Flavobacterium columnare infection in tilapia. Fish Shellfish Immun. 2019, 86, 635–640. [Google Scholar] [CrossRef]
- Ji, J.; Merino, S.; Tomas, J.M.; Roher, N. Nanoliposomes encapsulating immunostimulants modulate the innate immune system and elicit protection in zebrafish larvae. Fish Shellfish Immun. 2019, 92, 421–429. [Google Scholar] [CrossRef]
- Cao, Z.W.; Liu, S.J.; Nan, H.; Zhao, K.X.; Xu, X.D.; Wang, G.X.; Ji, H.; Chen, H.Y. Immersion immunization with recombinant baculoviruses displaying cyprinid herpesvirus 2 membrane proteins induced protective immunity in gibel carp. Fish Shellfish Immun. 2019, 93, 879–887. [Google Scholar] [CrossRef]
- Li, S.H.; Xie, H.X.; Yan, Z.Q.; Li, B.Y.; Wu, P.C.; Qian, X.; Zhang, X.L.; Wu, J.T.; Liu, J.X.; Zhao, X.X. Development of a live vector vaccine against infectious hematopoietic necrosis virus in rainbow trout. Fish Shellfish Immun. 2019, 89, 516–524. [Google Scholar] [CrossRef]
- Triet, T.H.; Tinh, B.T.T.; Hau, L.V.; Huong, T.V.; Binh, N.Q. Development and potential use of an Edwardsiella ictaluri wzz mutant as a live attenuated vaccine against enteric septicemia in Pangasius hypophthalmus (Tra catfish). Fish Shellfish Immun. 2019, 87, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Schroder, L.; Klafack, S.; Bergmann, S.M.; Fichtner, D.; Jin, Y.; Lee, P.Y.; Hoper, D.; Mettenleiter, T.C.; Fuchs, W. Generation of a potential koi herpesvirus live vaccine by simultaneous deletion of the viral thymidine kinase and dUTPase genes. J. Gen. Virol. 2019, 100, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, C.A.; Klesius, P.H.; Evans, J.J.; Arias, C.R. Use of Modified Live Vaccines in Aquaculture. J. World Aquacult. Soc. 2009, 40, 573–585. [Google Scholar] [CrossRef]
- Ji, J.; Torrealba, D.; Ruyra, A.; Roher, N. Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology 2015, 4, 664–696. [Google Scholar] [CrossRef] [PubMed]
- Mutoloki, S.; Munang’andu, H.M.; Evensen, O. Oral Vaccination of Fish—Antigen Preparations, Uptake, and Immune Induction. Front. Immunol. 2015, 6, 519. [Google Scholar] [CrossRef]
- Embregts, C.W.E.; Forlenza, M. Oral vaccination of fish: Lessons from humans and veterinary species. Dev. Comp. Immunol. 2016, 64, 118–137. [Google Scholar] [CrossRef]
- Galindo-Villegas, J.; Mulero, I.; Garcia-Alcazar, A.; Munoz, I.; Penalver-Mellado, M.; Streitenberger, S.; Scapigliati, G.; Meseguer, J.; Mulero, V. Recombinant TNFalpha as oral vaccine adjuvant protects European sea bass against vibriosis: Insights into the role of the CCL25/CCR9 axis. Fish Shellfish Immun. 2013, 35, 1260–1271. [Google Scholar] [CrossRef]
- Kelly, C.; Salinas, I. Under Pressure: Interactions between Commensal Microbiota and the Teleost Immune System. Front. Immunol. 2017, 8, 559. [Google Scholar] [CrossRef]
- Rombout, J.H.W.M.; Abelli, L.; Picchietti, S.; Scapigliati, G.; Kiron, V. Teleost intestinal immunology. Fish Shellfish Immun. 2011, 31, 616–626. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Kong, W.-G.; Xu, H.-Y.; Huang, Z.-Y.; Zhang, X.-T.; Ding, L.-G.; Dong, S.; Yin, G.-M.; Dong, F.; Yu, W.; et al. Convergent Evolution of Mucosal Immune Responses at the Buccal Cavity of Teleost Fish. iScience 2019, 19, 821–835. [Google Scholar] [CrossRef]
- Soleto, I.; Granja, A.G.; Simon, R.; Morel, E.; Diaz-Rosales, P.; Tafalla, C. Identification of CD8alpha+ dendritic cells in rainbow trout (Oncorhynchus mykiss) intestine. Fish Shellfish Immun. 2019, 89, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-Y.; Kong, W.; Yin, Y.-X.; Dong, F.; Huang, Z.-Y.; Yin, G.-M.; Dong, S.; Salinas, I.; Zhang, Y.-A.; Xu, Z. Mucosal immunoglobulins protect the olfactory organ of teleost fish against parasitic infection. PLoS Pathog. 2018, 14, e1007251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, G.; Miyazawa, H.; Nakayama, Y.; Ikari, Y.; Kondo, H.; Yamaguchi, T.; Sano, M.; Fischer, U. A Novel Antigen-Sampling Cell in the Teleost Gill Epithelium With the Potential for Direct Antigen Presentation in Mucosal Tissue. Front. Immunol. 2018, 9, 2116. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja, I.; Fernandez-Alacid, L.; Ordonez-Grande, B.; Sanchez-Nuno, S.; Ramos, A.; Araujo, R.M.; Ibarz, A. Comparison of several non-specific skin mucus immune defences in three piscine species of aquaculture interest. Fish Shellfish Immun. 2019, 89, 428–436. [Google Scholar] [CrossRef]
- Rajan, B.; Lokesh, J.; Kiron, V.; Brinchmann, M.F. Differentially expressed proteins in the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio anguillarum. BMC Vet. Res. 2013, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Parida, S.; Mohapatra, A.; Kar, B.; Mohanty, J.; Sahoo, P.K. Transcriptional analysis of immune-relevant genes in the mucus of Labeo rohita, experimentally infected with Argulus siamensis. Acta Parasitol. 2018, 63, 125–133. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Dong, Z.-X.; Luo, Z.-W.; Jiao, Y.-J.; Guo, J.; Deng, X.-Y.; Wang, F.; Chen, J.-Y.; Lin, L.-B. MicroRNA profile of immune response in gills of zebrafish (Danio rerio) upon Staphylococcus aureus infection. Fish Shellfish Immun. 2019, 87, 307–314. [Google Scholar] [CrossRef]
- Wang, H.; Tang, W.; Zhang, R.; Ding, S. Analysis of enzyme activity, antibacterial activity, antiparasitic activity and physico-chemical stability of skin mucus derived from Amphiprion clarkii. Fish Shellfish Immun. 2019, 86, 653–661. [Google Scholar] [CrossRef]
- Van Doan, H.; Hoseinifar, S.H.; Tapingkae, W.; Seel-Audom, M.; Jaturasitha, S.; Dawood, M.A.O.; Wongmaneeprateep, S.; Thu, T.T.N.; Esteban, M.A. Boosted Growth Performance, Mucosal and Serum Immunity, and Disease Resistance Nile Tilapia (Oreochromis niloticus) Fingerlings Using Corncob-Derived Xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiot. Antimicrob. Proteins 2019. [Google Scholar] [CrossRef]
- Saleh, M.; Kumar, G.; Abdel-Baki, A.-A.S.; Dkhil, M.A.; El-Matbouli, M.; Al-Quraishy, S. Quantitative proteomic profiling of immune responses to Ichthyophthirius multifiliis in common carp skin mucus. Fish Shellfish Immun. 2019, 84, 834–842. [Google Scholar] [CrossRef]
- Munoz-Atienza, E.; Aquilino, C.; Syahputra, K.; Al-Jubury, A.; Araujo, C.; Skov, J.; Kania, P.W.; Hernandez, P.E.; Buchmann, K.; Cintas, L.M.; et al. CK11, a Teleost Chemokine with a Potent Antimicrobial Activity. J. Immunol. 2019, 202, 857–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaresan, V.; Pasupuleti, M.; Paray, B.A.; Al-Sadoon, M.K.; Arockiaraj, J. Gene profiling of antimicrobial peptides, complement factors and MHC molecules from the skin transcriptome of Channa striatus and its expression pattern during Aeromonas hydrophila infection. Fish Shellfish Immun. 2019, 84, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, S.; Chu, W. The effects of dietary Bacillus cereus QSI-1 on skin mucus proteins profile and immune response in Crucian Carp (Carassius auratus gibelio). Fish Shellfish Immun. 2019, 89, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, J.; Ran, C.; Wang, A.; Xie, M.; Xie, Y.; Ding, Q.; Zhang, Z.; Yang, Y.; Duan, M.; et al. Dietary nucleotides can directly stimulate the immunity of zebrafish independent of the intestinal microbiota. Fish Shellfish Immun. 2019, 86, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, F.A.; Mabrok, M.; Machado, M.; Azeredo, R.; Afonso, A.; Esteban, M.A.; Costas, B. Mucosal and systemic immune responses in Senegalese sole (Solea senegalensis Kaup) bath challenged with Tenacibaculum maritimum: A time-course study. Fish Shellfish Immun. 2019, 87, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Sukumaran, V.; Park, S.C. Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. Fish Shellfish Immun. 2019, 92, 612–620. [Google Scholar] [CrossRef]
- Fernandez-Montero, A.; Torrecillas, S.; Izquierdo, M.; Caballero, M.J.; Milne, D.J.; Secombes, C.J.; Sweetman, J.; Da Silva, P.; Acosta, F.; Montero, D. Increased parasite resistance of greater amberjack (Seriola dumerili Risso 1810) juveniles fed a cMOS supplemented diet is associated with upregulation of a discrete set of immune genes in mucosal tissues. Fish Shellfish Immun. 2019, 86, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.A.O.; Koshio, S.; Zaineldin, A.I.; Van Doan, H.; Moustafa, E.M.; Abdel-Daim, M.M.; Angeles Esteban, M.; Hassaan, M.S. Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol. Biochem. 2019, 45, 219–230. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, Q.; Song, M.; Lai, J.; Sun, J.; Liu, Y. Identification and characterization of three novel antimicrobial peptides from Acipenser dabryanus. Fish Shellfish Immun. 2019, 88, 207–216. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, L.; Yu, Y.; Kong, W.; Yin, Y.; Huang, Z.; Zhang, X.; Xu, Z. The Change of Teleost Skin Commensal Microbiota Is Associated With Skin Mucosal Transcriptomic Responses During Parasitic Infection by Ichthyophthirius multifillis. Front. Immunol. 2018, 9, 2972. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.-L.; Li, X.-F.; Abasubong, K.P.; Xu, C.; Shi, H.-J.; Liu, W.-B.; Zhang, D.-D. Effects of dietary glucose and starch levels on the growth, apparent digestibility, and skin-associated mucosal non-specific immune parameters in juvenile blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immun. 2018, 79, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Khansari, A.R.; Balasch, J.C.; Vallejos-Vidal, E.; Parra, D.; Reyes-Lopez, F.E.; Tort, L. Comparative Immune- and Stress-Related Transcript Response Induced by Air Exposure and Vibrio anguillarum Bacterin in Rainbow Trout (Oncorhynchus mykiss) and Gilthead Seabream (Sparus aurata) Mucosal Surfaces. Front. Immunol. 2018, 9, 856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, N.; Kumar, R.; Kamilya, D. Modulation of systemic and mucosal immune responses of Catla catla (Hamilton, 1822) experimentally challenged with gill monogeneans. Fish Shellfish Immun. 2018, 74, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Das, S.K.; Samal, J.; Thatoi, H.N. Epidermal mucus, a major determinant in fish health: A review. Iran. J. Vet. Res. 2018, 19, 72–81. [Google Scholar] [PubMed]
- Parra, D.; Reyes-Lopez, F.E.; Tort, L. Mucosal immunity and B cells in teleosts: Effect of vaccination and stress. Front. Immunol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munang’andu, H.M.; Mutoloki, S.; Evensen, O. A review of the immunological mechanisms following mucosal vaccination of finfish. Front. Immunol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.A.; Salinas, I.; Li, J.; Parra, D.; Bjork, S.; Xu, Z.; LaPatra, S.E.; Bartholomew, J.; Sunyer, J.O. IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat. Immunol. 2010, 11, 827. [Google Scholar] [CrossRef]
- Hoare, R.; Ngo, T.P.H.; Bartie, K.L.; Adams, A. Efficacy of a polyvalent immersion vaccine against Flavobacterium psychrophilum and evaluation of immune response to vaccination in rainbow trout fry (Onchorynchus mykiss L.). Vet. Res. 2017, 48. [Google Scholar] [CrossRef]
- Piazzon, M.C.; Galindo-Villegas, J.; Pereiro, P.; Estensoro, I.; Calduch-Giner, J.A.; Gomez-Casado, E.; Novoa, B.; Mulero, V.; Sitja-Bobadilla, A.; Perez-Sanchez, J. Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary challenges in a Perciform Fish. Front. Immunol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Mashoof, S.; Criscitiello, M.F. Fish Immunoglobulins. Biology 2016, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Takizawa, F.; Parra, D.; Gomez, D.; Jorgensen, L.V.; LaPatra, S.E.; Sunyer, J.O. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Erkinharju, T.; Strandskog, G.; Vagnes, O.; Hordvik, I.; Dalmo, R.A.; Seternes, T. Intramuscular vaccination of Atlantic lumpfish (Cyclopterus lumpus L.) induces inflammatory reactions and local immunoglobulin M production at the vaccine administration site. J. Fish. Dis 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugarvoll, E.; Bjerkas, I.; Szabo, N.J.; Satoh, M.; Koppang, E.O. Manifestations of systemic autoimmunity in vaccinated salmon. Vaccine 2010, 28, 4961–4969. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.Z.; Chai, B.H.; Wang, Z.F.; Tang, X.Q.; Xing, J.; Zhan, W.B. Polymeric immunoglobulin receptor and mucosal IgM responses elicited by immersion and injection vaccination with inactivated Vibrio anguillarum in flounder (Paralichthys olivaceus). Aquaculture 2019, 505, 1–11. [Google Scholar] [CrossRef]
- Salinas, I.; Zhang, Y.-A.; Sunyer, J.O. Mucosal immunoglobulins and B cells of teleost fish. Dev. Comp. Immunol. 2011, 35, 1346–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchmann, K. Immune response to Ichthyophthirius multifiliis and role of IgT. Parasite Immunol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Yang, P.; Liu, L.; Luo, Y.; Sun, Y.; Wang, W.; Chen, N.; Zhao, J. Advances in Intestinal Mucosal Immunoglobulins of Teleost Fish. Isr. J. Aquacult. Bamid. 2019, 71. [Google Scholar]
- Kong, X.H.; Wang, L.; Pei, C.; Zhang, J.; Zhao, X.L.; Li, L. Comparison of polymeric immunoglobulin receptor between fish and mammals. Vet. Immunol. Immunop. 2018, 202, 63–69. [Google Scholar] [CrossRef]
- Patel, B.; Banerjee, R.; Samanta, M.; Das, S. Diversity of Immunoglobulin (Ig) Isotypes and the Role of Activation-Induced Cytidine Deaminase (AID) in Fish. Mol. Biotechnol. 2018, 60, 435–453. [Google Scholar] [CrossRef]
- Vendramin, N.; Alencar, A.L.F.; Iburg, T.M.; Dahle, M.K.; Wessel, O.; Olsen, A.B.; Rimstad, E.; Olesen, N.J. Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) protects against subsequent challenge with infectious hematopoietic necrosis virus (IHNV). Vet. Res. 2018, 49. [Google Scholar] [CrossRef] [Green Version]
- Magnadottir, B.; Kraev, I.; Gudmundsdottir, S.; Dodds, A.W.; Lange, S. Extracellular vesicles from cod (Gadus morhua L.) mucus contain innate immune factors and deiminated protein cargo. Dev. Comp. Immunol. 2019, 99, 103397. [Google Scholar] [CrossRef] [PubMed]
- Scapigliati, G.; Fausto, A.M.; Picchietti, S. Fish Lymphocytes: An Evolutionary Equivalent of Mammalian Innate-Like Lymphocytes? Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikkelsen, H.; Lund, V.; Larsen, R.; Seppola, M. Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immun. 2011, 30, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Schroder, M.B.; Mikkelsen, H.; Bordal, S.; Gravningen, K.; Lund, V. Early vaccination and protection juveniles against of Atlantic cod (Gadus morhua L.) juveniles against classical vibriosis. Aquaculture 2006, 254, 46–53. [Google Scholar] [CrossRef]
- Crosbie, P.B.B.; Nowak, B.F. Immune responses of barramundi, Lates calcarifer (Bloch), after administration of an experimental Vibrio harveyi bacterin by intraperitoneal injection, anal intubation and immersion. J. Fish Dis. 2004, 27, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Gassent, M.D.; Fouz, B.; Amaro, C. Efficacy of a bivalent vaccine against eel diseases caused by Vibrio vulnificus after its administration by four different routes. Fish Shellfish Immun. 2004, 16, 93–105. [Google Scholar] [CrossRef]
- Angelidis, P.; Karagiannis, D.; Crump, E.M. Efficacy of a Listonella anguillarum (syn. Vibrio anguillarum) vaccine for juvenile sea bass Dicentrarchus labrax. Dis. Aquat. Org. 2006, 71, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.; Qian, X.; Tang, X.; Xing, J.; Zhan, W. Polymeric Immunoglobulin Receptor Mediates Immune Excretion of Mucosal IgM-Antigen Complexes Across Intestinal Epithelium in Flounder (Paralichthys olivaceus). Front. Immunol. 2018, 9, 1562. [Google Scholar] [CrossRef]
- Akhlaghi, M. Passive immunisation of fish against vibriosis, comparison of intraperitoneal, oral and immersion routes. Aquaculture 1999, 180, 191–205. [Google Scholar] [CrossRef]
- Gravningen, K.; Thorarinsson, R.; Johansen, L.H.; Nissen, B.; Rikardsen, K.S.; Greger, E.; Vigneulle, M. Bivalent vaccines for sea bass (Dicentrachus labrax) against vibriosis and pasteurellosis. J. Appl. Ichthyol. 1998, 14, 159–162. [Google Scholar] [CrossRef]
- Galeottia, M.; Romano, N.; Volpatti, D.; Bulfon, C.; Brunetti, A.; Tiscar, P.G.; Mosca, F.; Bertoni, F.; Marchetti, M.G.; Abelli, L. Innovative vaccination protocol against vibriosis in Dicentrarchus labrax (L.) juveniles: Improvement of immune parameters and protection to challenge. Vaccine 2013, 31, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Bridle, A.R.; Koop, B.F.; Nowak, B.F. Identification of Surrogates of Protection against Yersiniosis in Immersion Vaccinated Atlantic Salmon. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Nguyen, T.D.; Crosbie, P.B.B.; Nowak, B.F.; Bridle, A.R. Oral vaccination of first-feeding Atlantic salmon, Salmo salar L., confers greater protection against yersiniosis than immersion vaccination. Vaccine 2016, 34, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Chettri, J.K.; Jaafar, R.M.; Skov, J.; Kania, P.W.; Dalsgaard, I.; Buchmann, K. Booster immersion vaccination using diluted Yersinia ruckeri bacterin confers protection against ERM in rainbow trout. Aquaculture 2015, 440, 1–5. [Google Scholar] [CrossRef]
- Deshmukh, S.; Raida, M.K.; Dalsgaard, I.; Chettri, J.K.; Kania, P.W.; Buchmann, K. Comparative protection of two different commercial vaccines against Yersinia ruckeri serotype O1 and biotype 2 in rainbow trout (Oncorhynchus mykiss). Vet. Immunol. Immunopathol. 2012, 145, 379–385. [Google Scholar] [CrossRef]
- Jaafar, R.M.; Al-Jubury, A.; Chettri, J.K.; Dalsgaard, I.; Kania, P.W.; Buchmann, K. Secondary immune response of rainbow trout following repeated immersion vaccination. J. Fish Dis. 2018, 41, 117–123. [Google Scholar] [CrossRef]
- Raida, M.K.; Nylen, J.; Holten-Andersen, L.; Buchmann, K. Association between Plasma Antibody Response and Protection in Rainbow Trout Oncorhynchus mykiss Immersion Vaccinated against Yersinia ruckeri. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Siwicki, A.K.; Morand, M.; Terech-Majewska, E.; Niemczuk, W.; Kazun, K.; Glabski, E. Influence of immunostimulants on the effectiveness of vaccines in fish: In vitro and in vivo study. J. Appl. Ichthyol. 1998, 14, 225–227. [Google Scholar] [CrossRef]
- Skov, J.; Kania, P.W.; Holten-Andersen, L.; Fouz, B.; Buchmann, K. Immunomodulatory effects of dietary beta-1,3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri. Fish Shellfish Immun. 2012, 33, 111–120. [Google Scholar] [CrossRef]
- Ispir, U.; Dorucu, M. Efficacy of lipopolysaccharide antigen of Yersinia ruckeri in rainbow trout by intraperitoneal and bath immersion administration. Res. Vet. Sci. 2014, 97, 271–273. [Google Scholar] [CrossRef]
- Bravo, S.; Midtlyng, P.J. The use of fish vaccines in the Chilean salmon industry 1999–2003. Aquaculture 2007, 270, 36–42. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Drennan, J.D.; Evans, J.J. Efficacy of a modified live Flavobacterium columnare vaccine in fish. Fish Shellfish Immun. 2011, 30, 304–308. [Google Scholar] [CrossRef]
- Li, N.Q.; Lin, Q.; Fu, X.Z.; Guo, H.Z.; Liu, L.H.; Wu, S.Q. Development and efficacy of a novel streptomycin-resistant Flavobacterium johnsoniae vaccine in grass carp (Ctenopharyngodon idella). Aquaculture 2015, 448, 93–97. [Google Scholar] [CrossRef]
- Nakayama, H.; Mori, M.; Takita, T.; Yasukawa, K.; Tanaka, K.; Hattori, S.; Aikawa, H.; Hasegawa, O.; Okamura, T.; Takegami, K.; et al. Development of immersion vaccine for bacterial cold-water disease in ayu Plecoglossus altivelis. Biosci. Biotechnol. Biochem. 2017, 81, 608–613. [Google Scholar] [CrossRef] [Green Version]
- Sudheesh, P.S.; Cain, K.D. Optimization of efficacy of a live attenuated Flavobacterium psychrophilum immersion vaccine. Fish Shellfish Immun. 2016, 56, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Bruce, T.J.; Sudheesh, P.S.; Knupp, C.; Loch, T.P.; Faisal, M.; Cain, K.D. Assessment of cross-protection to heterologous strains of Flavobacterium psychrophilum following vaccination with a live-attenuated coldwater disease immersion vaccine. J. Fish Dis. 2019, 42, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, E.; Brudeseth, B.E.; Wiklund, T.; Lorenzen, N. Immersion exposure of rainbow trout (Oncorhynchus mykiss) fry to wildtype Flavobacterium psychrophilum induces no mortality, but protects against later intraperitoneal challenge. Fish Shellfish Immun. 2010, 28, 440–444. [Google Scholar] [CrossRef]
- Grasso, V.; Padilla, D.; Bravo, J.; Roman, L.; Rosario, I.; Acosta, B.; Vega, B.; El Aamri, F.; Escuela, O.; Ramos-Vivas, J.; et al. Immunization of sea bream (Sparus aurata) juveniles against Photobacterium damselae subsp piscicida by short bath: Effect on some pro-inflammatory molecules and the Mx gene expression. Fish Shellfish Immun. 2015, 46, 292–296. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Mohammed, H.H.; Bader, T.J.; Peatman, E.; Beck, B.H. Immersion vaccination with an inactivated virulent Aeromonas hydrophila bacterin protects hybrid catfish (Ictalurus punctatus X Ictalurus furcatus) from motile Aeromonas septicemia. Fish Shellfish Immun. 2018, 82, 239–242. [Google Scholar] [CrossRef]
- Thornton, J.C.; Garduno, R.A.; Newman, S.G.; Kay, W.W. Surface-Disorganized, Attenuated Mutants of Aeromonas-Salmonicida as Furunculosis Live Vaccines. Microb. Pathog. 1991, 11, 85–99. [Google Scholar] [CrossRef]
- Thinh, N.H.; Kuo, T.Y.; Hung, L.T.; Loc, T.H.; Chen, S.C.; Evensen, O.; Schuurman, H.J. Combined immersion and oral vaccination of Vietnamese catfish (Pangasianodon hypophthalmus) confers protection against mortality caused by Edwardsiella ictaluri. Fish Shellfish Immun. 2009, 27, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Tang, X.Q.; Sheng, X.Z.; Xing, J.; Zhan, W.B. Immune response of flounder (Paralichthys olivaceus) was associated with the concentration of inactivated Edwardsiella tarda and immersion time. Vet. Immunol. Immunop. 2015, 167, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, T.; Liu, B.; Yang, W.; Wang, Q.; Qu, J.; Zhang, Y. Edwardsiella tarda mutant disrupted in type III secretion system and chorismic acid synthesis and cured of a plasmid as a live attenuated vaccine in turbot. Fish Shellfish Immun. 2013, 35, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.B.; Vicknair, M.R.; Ostland, V.E.; Nizet, V.; Buchanan, J.T. Evaluation of Streptococcus iniae killed bacterin and live attenuated vaccines in hybrid striped bass through injection and bath immersion. Dis. Aquat. Org. 2010, 89, 117–123. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine 2004, 22, 3769–3773. [Google Scholar] [CrossRef]
- Munang’andu, H.M.; Paul, J.; Evensen, O. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus). Vaccines 2016, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Abu-Elala, N.M.; Samir, A.; Wasfy, M.; Elsayed, M. Efficacy of Injectable and Immersion Polyvalent Vaccine against Streptococcal Infections in Broodstock and Offspring of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immun. 2019, 88, 293–300. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.; Choi, G.E.; Lee, J.H.; Kang, J.H.; Evensen, O.; Lee, W.J. Stability and efficacy of the 3′-UTR A4G-G5A variant of viral hemorrhagic septicemia virus (VHSV) as a live attenuated immersion VHSV vaccine in olive flounder (Paralichthys olivaceus). Vaccine 2016, 34, 1097–1102. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Rocha, A.; Coll, J.M. DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicaemia virus. Vaccine 2001, 19, 3067–3075. [Google Scholar] [CrossRef]
- Lorenzen, N.; Lorenzen, E.; Rasmussen, J.S.; Kjaer, T.E.; Einer-Jensen, K. Use of DNA vaccination to analyse temperature effects on protective immunity to VHS in rainbow trout. Fish Shellfish Immun. 2016, 53, 66. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, Y.-Y.; Gong, Y.-M.; Zhao, Z.; Guo, Z.-R.; Jia, Y.-J.; Wang, G.-X.; Zhu, B. Evaluation of immune response and protection against spring viremia of carp virus induced by a single-walled carbon nanotubes-based immersion DNA vaccine. Virology 2019, 537, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Kai, Y.H.; Chi, S.C. Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization. Vaccine 2008, 26, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Takami, I.; Yoshimizu, M.; Oh, M.J. Required dose of fish nervous necrosis virus (NNV) for Poly(I:C) immunization of sevenband grouper Epinephelus septemfasciatus. Aquaculture 2011, 311, 100–104. [Google Scholar] [CrossRef]
- Nishizawa, T.; Gye, H.J.; Takami, I.; Oh, M.J. Potentiality of a live vaccine with nervous necrosis virus (NNV) for sevenband grouper Epinephelus septemfasciatus at a low rearing temperature. Vaccine 2012, 30, 1056–1063. [Google Scholar] [CrossRef]
- Hegde, A.; Lam, T.J.; Sin, Y.M. Immune response of freshwater fish, guppy, Poicelia reticulata and gouramy, Trichogaster trichopterus to recombinant coat protein of Epinephelus tauvina nervous necrosis virus. Aquaculture 2005, 249, 77–84. [Google Scholar] [CrossRef]
- Aonullah, A.A.; Nuryati, S.; Alimuddin; Murtini, S. Efficacy of koi herpesvirus DNA vaccine administration by immersion method on Cyprinus carpio field scale culture. Aquac. Res. 2017, 48, 2655–2662. [Google Scholar] [CrossRef]
- Liang, H.J.; Peng, R.H.; Chiou, P.P. Development of immersion subunit vaccine against grouper iridovirus (GIV). Fish Shellfish Immun. 2016, 53, 104. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, C.; Jia, Y.J.; Qiu, D.K.; Lin, Q.; Li, N.Q.; Huang, Z.B.; Fu, X.Z.; Wang, G.X.; Zhu, B. Immersion vaccination of Mandarin fish Siniperca chuatsi against infectious spleen and kidney necrosis virus with a SWCNTs-based subunit vaccine. Fish Shellfish Immun. 2019, 92, 133–140. [Google Scholar] [CrossRef]
- Salinas, I.; LaPatra, S.E.; Erhardt, E.B. Nasal vaccination of young rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis and enteric red mouth disease. Dev. Comp. Immunol. 2015, 53, 105–111. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Klesius, P.H.; Evans, J.J. Immunization of eyed channel catfish, Ictalurus punctatus, eggs with monovalent Flavobacterium columnare vaccine and bivalent F-columnare and Edwardsiella ictaluri vaccine. Vaccine 2007, 25, 1126–1131. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.H.; Tan, S.X.; Jin, Y.L.; Yang, Y.J.; Shi, H.T.; Wang, W.W.; Niu, D.H.; Gao, L.; Jiang, W.S.; et al. A Review of Molecular Responses of Catfish to Bacterial Diseases and Abiotic Stresses. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouz, B.; Larsen, J.L.; Amaro, C. Vibrio vulnificus serovar A: An emerging pathogen in European anguilliculture. J. Fish Dis. 2006, 29, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Fouz, B.; Esteve-Gassent, M.D.; Barrera, R.; Larsen, J.L.; Nielsen, M.E.; Amaro, C. Field testing of a vaccine against eel diseases caused by Vibrio vulnificus. Dis. Aquat. Organ. 2001, 45, 183–189. [Google Scholar] [CrossRef]
- Nishizawa, T.; Takami, I.; Kokawa, Y.; Yoshimizu, M. Fish immunization using a synthetic double-stranded RNA Poly(I:C), an interferon inducer, offers protection against RGNNV, a fish nodavirus. Dis. Aquat. Org. 2009, 83, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafalla, C.; Bogwald, J.; Dalmo, R.A. Adjuvants and immunostimulants in fish vaccines: Current knowledge and future perspectives. Fish Shellfish Immun. 2013, 35, 1740–1750. [Google Scholar] [CrossRef] [Green Version]
- Toranzo, A.E.; Magarinos, B.; Romalde, J.L. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 2005, 246, 37–61. [Google Scholar] [CrossRef]
- Nunez-Ortiz, N.; Pascoli, F.; Picchietti, S.; Buonocore, F.; Bernini, C.; Toson, M.; Scapigliati, G.; Toffan, A. A formalin-inactivated immunogen against viral encephalopathy and retinopathy (VER) disease in European sea bass (Dicentrarchus labrax): Immunological and protection effects. Vet. Res. 2016, 47. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, F.; Nunez-Ortiz, N.; Picchietti, S.; Randelli, E.; Stocchi, V.; Guerra, L.; Toffan, A.; Pascoli, F.; Fausto, A.M.; Mazzini, M.; et al. Vaccination and immune responses of European sea bass (Dicentrarchus labrax L.) against betanodavirus. Fish Shellfish Immun. 2019, 85, 78–84. [Google Scholar] [CrossRef]
- Locke, J.B.; Aziz, R.K.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae M-Like Protein Contributes to Virulence in Fish and Is a Target for Live Attenuated Vaccine Development. PLoS ONE 2008, 3. [Google Scholar] [CrossRef] [Green Version]
- Locke, J.B.; Colvin, K.M.; Datta, A.K.; Patel, S.K.; Naidu, N.N.; Neely, M.N.; Nizet, V.; Buchanan, J.T. Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J. Bacteriol. 2007, 189, 1279–1287. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, J.T.; Stannard, J.A.; Lauth, X.; Ostland, V.E.; Powell, H.C.; Westerman, M.E.; Nizet, V. Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect. Immun. 2005, 73, 6935–6944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magarinos, B.; Romalde, J.L.; Santos, Y.; Casal, J.F.; Barja, J.L.; Toranzo, A.E. Vaccination Trials on Gilthead Seabream (Sparus-Aurata) against Pasteurella-Piscicida. Aquaculture 1994, 120, 201–208. [Google Scholar] [CrossRef]
- Jansen, M.D.; Dong, H.T.; Mohan, C.V. Tilapia lake virus: A threat to the global tilapia industry? Rev. Aquacult. 2019, 11, 725–739. [Google Scholar] [CrossRef]
- Chiew, I.K.M.; Salter, A.M.; Lim, Y.S. The Significance of Major Viral and Bacterial Diseases in Malaysian Aquaculture Industry. Pertanika J. Trop. Agric. Sci. 2019, 42, 1023–1047. [Google Scholar]
- Machimbirike, V.I.; Jansen, M.D.; Senapin, S.; Khunrae, P.; Rattanarojpong, T.; Dong, H.T. Viral infections in tilapines: More than just tilapia lake virus. Aquaculture 2019, 503, 508–518. [Google Scholar] [CrossRef]
- Lamers, C.H.J.; Dehaas, M.J.H.; Vanmuiswinkel, W.B. The Reaction of the Immune System of Fish to Vaccination—Development of Immunological Memory in Carp, Cyprinus-Carpio L, Following Direct Immersion in Aeromonas-Hydrophila Bacterin. J. Fish Dis. 1985, 8, 253–262. [Google Scholar] [CrossRef]
- Smith, C.J.; Shaw, B.J.; Handy, R.D. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol. 2007, 82, 94–109. [Google Scholar] [CrossRef]
- Toranzo, A.E.; Devesa, S.; Romalde, J.L.; Lamas, J.; Riaza, A.; Leiro, J.; Barja, J.L. Efficacy of Intraperitoneal and Immersion Vaccination against Enterococcus sp., Infection in Turbot. Aquaculture 1995, 134, 17–27. [Google Scholar] [CrossRef]
- Santos, Y.; Garcia-Marquez, S.; Pereira, P.G.; Pazos, F.; Riaza, A.; Silva, R.; El Morabit, A.; Ubeira, F.M. Efficacy of furunculosis vaccines in turbot, Scophthalmus maximus (L.): Evaluation of immersion, oral and injection delivery. J. Fish Dis. 2005, 28, 165–172. [Google Scholar] [CrossRef]
- Nunez-Diaz, J.A.; Garcia de la Banda, I.; Lobo, C.; Morinigo, M.A.; Balebona, M.C. Transcription of immune related genes in Solea senegalensis vaccinated against Photobacterium damselae subsp. piscicida. Identification of surrogates of protection. Fish Shellfish Immun. 2017, 66, 455–465. [Google Scholar] [CrossRef]
Pathogen | Disease | Fish species | Vaccine | Reference |
---|---|---|---|---|
Vibrio harveyi | Vibriosis | Barramundi/Lates calcarifer | Inactivated | [75] |
Vibrio vulnificus | Vibriosis | European eel/Anguilla anguilla | Inactivated | [76] |
V. anguillarum | Vibriosis | Sea bass/Dicentrarchus labrax | Inactivated | [77] |
V. anguillarum | Vibriosis | Flounder/ | Inactivated | [78] |
V. anguillarum | Vibriosis | Atlantic cod/Gadus morhua | Inactivated | [73] |
V. anguillarum | Vibriosis | Rainbow trout/Oncorhynchus mykiss | Inactivated | [79] |
V. anguillarum Pasteurella piscicida | Vibriosis Pasteurellosis | Sea bass/Dicentrarchus labrax | Inactivated | [80] |
L. anguillarum | Vibriosis | Sea bass | Inactivated | [81] |
Yersinia ruckeri | Yersiniosis | Atlantic salmon/Salmo salar | Inactivated | [82] |
Y. ruckeri | Yersiniosis | Atlantic salmon | Inactivated | [83] |
Y. ruckeri | Yersiniosis | Rainbow trout/Oncorhynchus mykiss. mykiss | Inactivated | [84] |
Y. ruckeri | Yersiniosis | Rainbow trout | Inactivated | [85] |
Y. ruckeri | Yersiniosis | Rainbow trout | Inactivated | [86] |
Y. ruckeri | Yersiniosis | Rainbow trout | Inactivated | [87] |
Y. ruckeri | Yersiniosis | Rainbow trout | Inactivated | [88] |
Y. ruckeri | Yersiniosis | Rainbow trout | Inactivated | [89] |
Y. ruckeri | Yersiniosis | Rainbow trout | Inactivated | [6] |
Y. ruckeri | Yersiniosis | Rainbow trout | Lipopolysaccharide | [90] |
Y. ruckeri Flavobacterium columnare | Yersiniosis/Enteric Redmouth Disease/ERM Columnaris | Atlantic salmon/S. salar Coho salmon/Oncorhynchus kisutch Rainbow trout/O. mykiss | Inactivated | [91] |
F. columnare | Columnaris | Channel catfish/Ictalurus punctatus | Attenuated | [92] |
F. columnare | Columnaris | Oreochromis spp. | Inactivated | [17] |
F. johnsoniae | Columnaris | Grass carp/Ctenopharyngodon idella | Attenuated | [93] |
Flavobacterium psychrophilum | Bacterial Coldwater Disease (BCWD) | Ayu/Plecoglossus altivelis | Inactivated | [94] |
F. psychrophilum | Bacterial Coldwater Disease (BCWD) | Rainbow trout | Attenuated | [95] |
F. psychrophilum | Rainbow trout fry syndrome | Rainbow trout | Live attenuated | [96] |
F. psychrophilum | Rainbow trout fry syndrome | Rainbow trout | Live non-attenuated | [97] |
Photobacterium. damselae | Pseudotuberculosis | Sea bream/Sparus aurata | Inactivated | [98] |
Aeromonas hydrophila | Motile Aeromonas septicemia (MAS) | Hybrid catfish/Ictalurus furcatus x Ictalurus punctatus | Inactivated | [99] |
Aeromonas salmonicida | Furunculosis | Salmonids | Live | [100] |
Edwardsiella ictaluri | Edwardsiellosis | Channel catfish/I. punctatus | Outer membrane proteins | [11] |
E. ictaluri | Edwardsiellosis | Vietnamese catfish/Pangasanodon hypophthalmus | Inactivated | [101] |
Edwardsiella tarda | Edwardsiellosis | Japanese/Olive flounder/Paralichthys olivaceus | Inactivated | [102] |
E. tarda | Edwardsiellosis | Japanese flounder | Inactivated | [14] |
E. tarda | Edwardsiellosis | Flounder/P. olivaceus | Inactivated | [16] |
E. tarda | Edwardsiellosis | Pangasius hypophthalmus | Live attenuated | [21] |
E. tarda | Edwardsiellosis | Turbot/Scophthalmus maximus | Live attenuated | [103] |
Streptococcus iniae | Streptococcosis | Hybrid striped bass/Morone chrysops x Morone saxatilis | Attenuated | [104] |
S. iniae | Streptococcosis | Rainbow trout/O. mykiss | Inactivated | [12] |
Streptococcus agalactiae | Streptococcosis | Tilapia/Oreochromis niloticus | Inactivated | [105] |
S. agalactiae | Streptococcosis | Tilapia | Attenuated | [106] |
S. agalactiae S. iniae Lactococcus garviae Enterococcus faecalis | Streptococcosis Lactococcosis Enterococcosis | Tilapia | Inactivated | [107] |
Francisella noatunensis subsp. Orientalis, syn: Francisella asiatica | Francisellosis | Hybrid tilapia/O. niloticus × Oreochromis mossambicus | Inactivated | [10] |
VHSV | Viral hemorrhagic septicemia | Flounder/P. olivaceus | Inactivated | [7] |
VHSV | Viral hemorrhagic septicemia | Flounder | Recombinant attenuated | [108] |
VHSV | Viral hemorrhagic septicemia | Rainbow trout | DNA vaccine | [109] |
VHSV | Viral hemorrhagic septicemia | Rainbow trout | DNA vaccine | [110] |
SVCV | Spring viremia of carp | Common carp/Cyrpinus carpio | DNA | [111] |
VNNV | Viral nervous necrosis (VNN) | Orange-spotted grouper/Epinephelus coioides | Inactivated | [112] |
Red-spotted grouper NNV (RGNNV) | Viral nervous necrosis | Sevenband grouper/Epinephelus septemfasciatus | Live | [113] |
NNV | Viral nervous necrosis | Sevenband grouper | Live | [114] |
Epinephelus tauvina nervous necrosis virus (ETNNV) | Viral nervous necrosis | Guppy/Poicelia reticulate Gourami/Trichogaster tricopterus | Inactivated/recombinant coat protein | [115] |
Koi herpes virus | Common carp/C. carpio | DNA vaccine | [116] | |
Iridovirus | Grouper/Epinephelus sp. | Subunit | [117] | |
ISKNV | Infectious spleen and kidney necrosis | Mandarin fish/Siniperca chuatsi | Subunit | [118] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bøgwald, J.; Dalmo, R.A. Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019, 7, 627. https://doi.org/10.3390/microorganisms7120627
Bøgwald J, Dalmo RA. Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms. 2019; 7(12):627. https://doi.org/10.3390/microorganisms7120627
Chicago/Turabian StyleBøgwald, Jarl, and Roy A. Dalmo. 2019. "Review on Immersion Vaccines for Fish: An Update 2019" Microorganisms 7, no. 12: 627. https://doi.org/10.3390/microorganisms7120627
APA StyleBøgwald, J., & Dalmo, R. A. (2019). Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms, 7(12), 627. https://doi.org/10.3390/microorganisms7120627