Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Surface Sterilization and Extraction of Total Community DNA
2.3. Amplification of the Fungal ITS Region
2.4. Processing of ITS Datasets
2.5. Diversity and Statistical Analyses
2.6. Functional Prediction
2.7. Nucleotide Sequence Accession Numbers
3. Results
3.1. Fungal Endophyte Communities Are Dominated by Ascomycota and Basidiomycota
3.2. Sampling Year is a Major Determinant of Fungal Endophyte Communities
3.3. Fungal Endophyte Diversity and Community Composition Is Influenced by Management Practices in a Grass Species-Specific Way
3.4. The Predominant Fungal Genera Differ in Their Relative Abundances with Respect to Grass Species and Management Regimes
3.5. Fungal Functionality Is Only Weakly Affected by Management Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Verma, S.K.; Gond, S.K.; Mishra, A.; Sharma, V.K.; Kumar, J.; Singh, D.K.; Kumar, A.; Kharwar, R.N. Fungal endophytes representing diverse habitats and their role in plant protection. In Developments in Fungal Biology and Applied Mycology; Satyanarayana, T., Deshmukh, S.K., Johri, B.N., Eds.; Springer: Singapore, 2017; pp. 135–157. [Google Scholar]
- Nair, D.N.; Padmavathy, S. Impact of endophytic microorganisms on plants, environment and humans. Sci. World J. 2014, 2014, 250693. [Google Scholar] [CrossRef] [PubMed]
- Anamika, R.; Joshi, S.; Sahgal, M.; Sahu, S.; Prakash, A. Fungal endophytes and their secondary metabolites: Role in sustainable agriculture. In Fungi and Their Role in Sustainable Development: Current Perspectives; Gehlot, P., Singh, J., Eds.; Springer: Singapore, 2018; pp. 121–146. [Google Scholar] [CrossRef]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Porras-Alfaro, A.; Bayman, P. Hidden fungi, emergent properties: Endophytes and microbiomes. Annu. Rev. Phytopathol. 2011, 49, 291–315. [Google Scholar] [CrossRef] [PubMed]
- Le Cocq, K.; Gurr, S.J.; Hirsch, P.R.; Mauchline, T.H. Exploitation of endophytes for sustainable agricultural intensification. Mol. Plant Pathol. 2016, 18, 469–473. [Google Scholar] [CrossRef] [PubMed]
- van Overbeek, L.S.; Saikkonen, K. Impact of bacterial–fungal interactions on the colonization of the endosphere. Trends Plant Sci. 2016, 21, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Redman, R.S.; Rodriguez, R.J. The symbiogenic tango: Achieving climate-resilient crops via mutualistic plant-fungal relationships. In Functional Importance of the Plant Microbiome: Implications for Agriculture, Forestry and Bioenergy; Doty, S.L., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 71–87. [Google Scholar]
- Ravel, C.; Courty, C.; Coudret, A.; Charmet, G. Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 1997, 17, 73–81. [Google Scholar] [CrossRef]
- Vidal, S.; Jaber, L.R. Entomopathogenic fungi as endophytes: Plant–endophyte–herbivore interactions and prospects for use in biological control. Curr. Sci. 2015, 108, 46–54. [Google Scholar]
- Lugtenberg, B.J.J.; Caradus, J.R.; Johnson, L.J. Fungal endophytes for sustainable crop production. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef]
- Pancher, M.; Ceol, M.; Corneo, P.E.; Longa, C.M.; Yousaf, S.; Pertot, I.; Campisano, A. Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl. Environ. Microbiol. 2012, 78, 4308–4317. [Google Scholar] [CrossRef]
- Wilberforce, E.; Boddy, L.; Griffiths, R.; Griffith, G.W. Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biol. Biochem. 2003, 35, 1143–1154. [Google Scholar] [CrossRef] [Green Version]
- König, J.; Guerreiro, M.A.; Peršoh, D.; Begerow, D.; Krauss, J. Knowing your neighbourhood—The effects of Epichloë endophytes on foliar fungal assemblages in perennial ryegrass in dependence of season and land-use intensity. PeerJ 2018, 6, e4660. [Google Scholar] [CrossRef] [PubMed]
- Seghers, D.; Wittebolle, L.; Top, E.M.; Verstraete, W.; Siciliano, S.D. Impact of agricultural practices on the Zea mays L. endophytic community. Appl. Environ. Microbiol. 2004, 70, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.L.; Skogen, M.J.; Heegaard, E.; Halvorsen, R.; Kauserud, H.; Ohlson, M. Host and tissue variations overshadow the response of boreal moss-associated fungal communities to increased nitrogen load. Mol. Ecol. 2017, 26, 571–588. [Google Scholar] [CrossRef] [PubMed]
- Dobrindt, L. Influence of Grassland Management on the Abundance of the Endophytic Fungi Neotyphodium. Ph.D. Thesis, Georg-August University of Göttingen, Göttingen, Germany, 2014. [Google Scholar]
- Binet, M.N.; Sage, L.; Malan, C.; Clément, J.C.; Redecker, D.; Wipf, D.; Geremia, R.A.; Lavorel, S.; Mouhamadou, B. Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands. Fungal Ecol. 2013, 6, 248–255. [Google Scholar] [CrossRef]
- Hernández-Agramonte, I.M.; Semmartin, M. The role of grazing intensity and preference on grass-fungal endophyte symbiosis in a Patagonian steppe. J. Arid Environ. 2016, 134, 122–124. [Google Scholar] [CrossRef]
- Wemheuer, F.; Wemheuer, B.; Kretzschmar, D.; Pfeiffer, B.; Herzog, S.; Daniel, R.; Vidal, S. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species. Lett. Appl. Microbiol. 2016, 62, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Wemheuer, F.; Kaiser, K.; Karlovsky, P.; Daniel, R.; Vidal, S.; Wemheuer, B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 2017, 7, 40914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierschke, H.; Briemle, G. Kulturgrasland; Eugen Ulmer: Stuttgart, Germany, 2002. [Google Scholar]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Petersen, U.; Wrage, N.; Köhler, L.; Leuschner, C.; Isselstein, J. Manipulating the species composition of permanent grasslands—A new approach to biodiversity experiments. Basic Appl. Ecol. 2012, 13, 1–9. [Google Scholar] [CrossRef]
- Granzow, S.; Kaiser, K.; Wemheuer, B.; Pfeiffer, B.; Daniel, R.; Vidal, S.; Wemheuer, F. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front. Microbiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Wemheuer, B.; Wemheuer, F. Assessing bacterial and fungal diversity in the plant endosphere. In Metagenomics: Methods and Protocols; Streit, W.R., Daniel, R., Eds.; Humana Press: New York, NY, USA; Springer: New York, NY, USA, 2017; pp. 75–84. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of Ascomycetes and Basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; Döring, M.; Schigel, D.; May, T.; Ryberg, M.; Abarenkov, K. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018, 90, 135–159. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.; Wagner, H. Vegan: Community Ecology Package, R Package Version 2.5-2; 2018. Available online: https://CRAN.R-project.org/package=vegan (accessed on 30 December 2018).
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [Green Version]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-response analysis using R. PLoS ONE 2016, 10, e0146021. [Google Scholar] [CrossRef]
- Crawley, M.J. The R Book; Wiley Publishing: Hoboken, NY, USA, 2007; 950p. [Google Scholar]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- De Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef] [PubMed]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Tichy, L.; Chytry, M. Statistical determination of diagnostic species for site groups of unequal size. J. Veg. Sci. 2006, 17, 809–818. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Bråthen, K.A.; Jahiri, X.; Jusdado, J.G.H.; Soininen, E.M.; Jensen, J.B. Fungal endophyte diversity in tundra grasses increases by grazing. Fungal Ecol. 2015, 17, 41–51. [Google Scholar] [CrossRef]
- Ofek-Lalzar, M.; Gur, Y.; Ben-Moshe, S.; Sharon, O.; Kosman, E.; Mochli, E.; Sharon, A. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol. Ecol. 2016, 92, fiw152. [Google Scholar] [CrossRef]
- Zhang, T.; Yao, Y.-F. Endophytic fungal communities associated with vascular plants in the high Arctic zone are highly diverse and host-plant specific. PLoS ONE 2015, 10, e0130051. [Google Scholar] [CrossRef]
- Miao, F.; Yang, R.; Chen, D.D.; Wang, Y.; Qin, B.F.; Yang, X.J.; Zhou, L. Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules 2012, 17, 14091–14908. [Google Scholar] [CrossRef]
- Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.P.; Di, D.L.; Crews, P.; Wu, Q.X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprospect. 2016, 6, 1–24. [Google Scholar] [CrossRef]
- Bensch, K.; Groenewald, J.Z.; Dijksterhuis, J.; Starink-Willemse, M.; Andersen, B.; Summerell, B.A.; Shin, H.D.; Dugan, F.M.; Schroers, H.J.; Braun, U.; et al. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud. Mycol. 2010, 67, 1–94. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K.; Groenewald, J.Z.; Braun, U.; Dijksterhuis, J.; Starink, M.; Hill, C.F.; Zalar, P.; De Hoog, G.S.; Crous, P.W. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud. Mycol. 2007, 58, 105–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Radwan, M.M.; Taráwneh, A.H.; Gao, J.; Wedge, D.E.; Rosa, L.H.; Cutler, H.G.; Cutler, S.J. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J. Agric. Food Chem. 2013, 61, 4551–4555. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, R.J.; White, J.F., Jr.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef] [PubMed]
- Coleman-Derr, D.; Desgarennes, D.; Fonseca-Garcia, C.; Gross, S.; Clingenpeel, S.; Woyke, T.; North, G.; Visel, A.; Partida-Martinez, L.P.; Tringe, S.G. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 2016, 209, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Johnston, P.R.; Park, D.; Smissen, R.D. Comparing diversity of fungi from living leaves using culturing and high-throughput environmental sequencing. Mycologia 2017, 109, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Wemheuer, F.; Wemheuer, B.; Daniel, R.; Vidal, S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci. Rep. 2019, in press. [Google Scholar]
- Higgins, K.L.; Arnold, A.E.; Coley, P.D.; Kursar, T.A. Communities of fungal endophytes in tropical forest grasses: Highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol. 2014, 8, 1–11. [Google Scholar] [CrossRef]
- Goodwin, S.B. The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza. Mycol. Res. 2002, 106, 645–654. [Google Scholar] [CrossRef]
- Menardo, F.; Wicker, T.; Keller, B. Reconstructing the evolutionary history of powdery mildew lineages (Blumeria graminis) at different evolutionary time scales with NGS data. Genome Biol. Evol. 2017, 9, 446–456. [Google Scholar] [CrossRef]
- Sprague, R.; Johnson, A.G. Ascochyta leaf spots of cereals and grasses in the United States. Mycologia 1950, 42, 523–553. [Google Scholar] [CrossRef]
- Photita, W.; Lumyong, S.; Lumyong, P.; McKenzie, E.; Hyde, K. Are some endophytes of Musa acuminata latent pathogens? Fungal Divers. 2004, 16, 131–140. [Google Scholar]
- Larran, S.; Perelló, A.; Simón, M.; Moreno, V. The endophytic fungi from wheat (Triticum aestivum L.). World J. Microbiol. Biotechnol. 2007, 23, 565–572. [Google Scholar] [CrossRef]
- Ernst, M.; Neubert, K.; Mendgen, K.W.; Wirsel, S.G.R. Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed. BMC Microbiol. 2011, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilber-Bodmer, M.; Schmid, M.; Ahrens, C.H.; Freimoser, F.M. Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi. BMC Microbiol. 2017, 17, 4. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; Redman, R.S.; Henson, J.M. Symbiotic lifestyle expression by fungal endophytes and the adaptation of plants to stress: Unraveling the complexities of intimacy. In The Fungal Community: Its Organization and Role in the Ecosystem, 3rd ed.; Dighton, J., White, J.F., Oudemans, P., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 683–695. [Google Scholar]
- Qin, Y.; Pan, X.; Yuan, Z. Seed endophytic microbiota in a coastal plant and phytobeneficial properties of the fungus Cladosporium cladosporioides. Fungal Ecol. 2016, 24, 53–60. [Google Scholar] [CrossRef]
- Hodgson, S.; Cates, C.; Hodgson, J.; Morley, N.J.; Sutton, B.C.; Gange, A.C. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 2014, 4, 1199–1208. [Google Scholar] [CrossRef] [Green Version]
- Galperin, M.; Graf, S.; Kenigsbuch, D. Seed treatment prevents vertical transmission of Fusarium moniliforme, making a significant contribution to disease control. Phytoparasitica 2003, 31, 344–352. [Google Scholar] [CrossRef]
- Stokholm, M.S.; Wulff, E.G.; Zida, E.P.; Thio, I.G.; Néya, J.B.; Soalla, R.W.; Głazowska, S.E.; Andresen, M.; Topbjerg, H.B.; Boelt, B.; et al. DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiol. Res. 2016, 191, 38–50. [Google Scholar] [CrossRef]
- Saikkonen, K.; Saari, S.; Helander, M. Defensive mutualism between plants and endophytic fungi? Fungal Divers. 2010, 41, 101–113. [Google Scholar] [CrossRef]
- Barnes, C.J.; Maldonado, C.; Frøslev, T.G.; Antonelli, A.; Rønsted, N. Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes. Front. Microbiol. 2016, 7, 1377. [Google Scholar] [CrossRef] [PubMed]
- Promputtha, I.; Lumyong, S.; Dhanasekaran, V.; McKenzie, E.H.C.; Hyde, K.D.; Jeewon, R.A. Phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 2007, 53, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Herre, E.A.; Van Bael, S.A.; Maynard, Z.; Robbins, N.; Bischoff, J.; Arnold, A.E.; Rojas, E.N.; Mejia, L.C.; Cordero, R.A.; Woodward, C.; et al. Tropical plants as chimera: Some implications of foliar endophytic fungi for the study of host plant defense, physiology, and genetics. In Biotic Interactions in the Tropics; Burslem, D., Pinard, M., Hartley, S., Eds.; Cambridge University Press: Cambridge, UK, 2005; Volume 1011, pp. 226–237. [Google Scholar]
Richness (Number of Observed zOTUs) | Diversity (Shannon Diversity Index H’) | Phylogenetic Diversity (Faith’s PD) | ||||
---|---|---|---|---|---|---|
2010 | 2011 | 2010 | 2011 | 2010 | 2011 | |
D. glomerata | 402 ± 219 | 499 ± 80 | 3.71 ± 1.66 | 4.63 ± 0.38 | 62.98 ± 28.96 | 70.44 ± 6.54 |
F. rubra | 531 ± 93 | 565 ± 112 | 4.66 ± 0.4 | 4.82 ± 0.46 | 75.79 ± 14.88 | 80 ± 15.98 |
L. perenne | 442 ± 224 | 541 ± 96 | 3.72 ± 1.69 | 4.86 ± 0.25 | 66.98 ± 21.92 | 79.59 ± 14.21 |
D. glomerata | ||||||
NPK- 1x | 309 ± 262 | 337 ± 66 | 3.44 ± 1.83 | 4.05 ± 0.36 | 26.55 ± 19.29 | 25.22 ± 0.68 |
NPK- 3x | 287 ± 230 | 423 ± 49 | 3.22 ± 2.21 | 4.41 ± 0.09 | 25.98 ± 17.15 | 27.16 ± 5 |
NPK+ 1x | 421 ± 44 | 392 ± 22 | 4.29 ± 0.15 | 4.4 ± 0.09 | 27.14 ± 6.57 | 24.4 ± 2.22 |
NPK+ 3x | 258 ± 160 | 444 ± 57 | 3.15 ± 1.93 | 4.49 ± 0.22 | 19.67 ± 6.91 | 27.51 ± 2.21 |
F. rubra | ||||||
NPK- 1x | 478 ± 90 | 512 ± 52 | 4.57 ± 0.5 | 4.85 ± 0.4 | 30.65 ± 5.43 | 34.97 ± 6.17 |
NPK- 3x | 363 ± 84 | 516 ± 122 | 4.18 ± 0.32 | 4.74 ± 0.44 | 26.03 ± 3.06 | 32.96 ± 6.36 |
NPK+ 1x | 469 ± 39 | 362 ± 53 | 4.58 ± 0.26 | 4.21 ± 0.28 | 32.59 ± 4.25 | 23.2 ± 1.33 |
NPK+ 3x | 463 ± 60 | 411 ± 71 | 4.43 ± 0.53 | 4.35 ± 0.4 | 34.63 ± 6.14 | 32.01 ± 9.22 |
L. perenne | ||||||
NPK- 1x | 121 ± 1 | 419 ± 117 | 1.08 ± 0.07 | 4.44 ± 0.4 | 17.2 ± 0.6 | 31.54 ± 5.09 |
NPK- 3x | 401 ± 260 | 484 ± 27 | 3.75 ± 1.86 | 4.76 ± 0.06 | 28.36 ± 15.66 | 32.67 ± 2.62 |
NPK+ 1x | 440 ± 73 | 434 ± 156 | 4.54 ± 0.19 | 4.58 ± 0.43 | 30.16 ± 5.69 | 32.16 ± 11.6 |
NPK+ 3x | 378 ± 154 | 454 ± 60 | 3.9 ± 0.99 | 4.71 ± 0.15 | 27.72 ± 6.71 | 32.24 ± 5.91 |
2010 | 2011 | |||||||
---|---|---|---|---|---|---|---|---|
Bray-Curtis | Weighted UniFrac | Bray-Curtis | Weighted UniFrac | |||||
All Grass Species | R2 (%) | P | R2 (%) | P | R2 (%) | P | R2 (%) | P |
Grass species (G) | 6.75 | 0.25 | 8.00 | 0.19 | 7.55 | 0.15 | 3.86 | 0.61 |
Mowing frequency (M) | 2.52 | 0.56 | 1.62 | 0.748 | 4.27 | 0.14 | 5.81 | 0.12 |
Fertilizer application (F) | 5.16 | 0.053 | 5.14 | 0.133 | 6.17 | 0.05 | 8.53 | 0.048 |
Fertilization * Mowing | 12.16 | 0.07 | 10.49 | 0.271 | 14.29 | 0.04 | 18.26 | 0.053 |
G * F * M | 36.69 | 0.11 | 36.89 | 0.22 | 35.96 | 0.15 | 34.05 | 0.37 |
D. glomerata | ||||||||
Mowing frequency | 5.07 | 0.86 | 1.77 | 0.92 | 7.95 | 0.37 | 6.83 | 0.43 |
Fertilizer application | 11.33 | 0.26 | 13.26 | 0.18 | 4.62 | 0.91 | 3.31 | 0.73 |
Fertilization * Mowing | 23.71 | 0.64 | 17.32 | 0.76 | 17.68 | 0.92 | 13.47 | 0.88 |
F. rubra | ||||||||
Mowing frequency | 6.36 | 0.73 | 2.98 | 0.92 | 6.36 | 0.64 | 4.58 | 0.60 |
Fertilizer application | 10.74 | 0.28 | 6.59 | 0.50 | 11.69 | 0.21 | 12.77 | 0.22 |
Fertilization * Mowing | 30.74 | 0.25 | 30.27 | 0.37 | 38.86 | 0.11 | 47.00 | 0.10 |
L. perenne | ||||||||
Mowing frequency | 16.23 | 0.08 | 14.89 | 0.14 | 10.36 | 0.26 | 12.65 | 0.23 |
Fertilizer application | 17.22 | 0.054 | 17.38 | 0.09 | 20.56 | 0.047 | 21.92 | 0.08 |
Fertilization * Mowing | 41.51 | 0.04 | 41.07 | 0.10 | 36.72 | 0.16 | 38.61 | 0.22 |
Relative Abundance (%) | |||
---|---|---|---|
Fungal Species | zOTU (OTU-ID) | Entire Dataset | Grass Species |
D. glomerata (n = 9) | |||
Rhynchosporium orthosporum | UNI153 | 0.10 | 0.31 |
UNI243 | 0.07 | 0.21 | |
Fungi sp. | UNI25 | 0.76 | 2.04 |
UNI41 | 0.48 | 0.48 | |
UNI68 | 0.35 | 0.90 | |
UNI92 | 0.23 | 0.65 | |
UNI136 | 0.17 | 0.42 | |
UNI240 | 0.08 | 0.20 | |
UNI967 | 0.09 | 0.22 | |
F. rubra (n = 21) | |||
Ascochyta sorghi | UNI32 | 0.54 | 1.53 |
UNI76 | 0.25 | 0.72 | |
UNI175 | 0.11 | 0.32 | |
Phragmocephala garethjonesii | UNI223 | 0.06 | 0.18 |
Blumeria graminis | UNI130 | 0.15 | 0.42 |
UNI231 | 0.07 | 0.21 | |
Myrmecridium sp | UNI187 | 0.16 | 0.34 |
Phomatospora dinemasporium | UNI145 | 0.09 | 0.18 |
Xylariales sp. | UNI128 | 0.14 | 0.23 |
UNI131 | 0.14 | 0.32 | |
UNI222 | 0.08 | 0.11 | |
UNI251 | 0.06 | 0.12 | |
Ascomycota sp. | UNI93 | 0.21 | 0.48 |
UNI114 | 0.12 | 0.30 | |
Fungi sp. | UNI13 | 1.11 | 2.34 |
UNI35 | 0.51 | 1.0 | |
UNI60 | 0.25 | 0.68 | |
UNI75 | 0.25 | 0.68 | |
UNI89 | 0.28 | 0.56 | |
UNI106 | 0.13 | 0.35 | |
UNI141 | 0.15 | 0.29 | |
L. perenne (n = 14) | |||
Pyrenochaetopsis sp | UNI44 | 0.34 | 0.60 |
UNI78 | 0.23 | 0.42 | |
UNI97 | 0.17 | 0.33 | |
Rodwayella citrinula | UNI69 | 0.20 | 0.58 |
UNI126 | 0.09 | 0.27 | |
Helotiales sp. | UNI203 | 0.07 | 0.15 |
Fungi sp. | UNI14 | 0.80 | 1.5 |
UNI24 | 0.53 | 1.07 | |
UNI39 | 0.27 | 0.5 | |
UNI72 | 0.18 | 0.36 | |
UNI149 | 0.24 | 0.45 | |
UNI167 | 0.15 | 0.3 | |
UNI173 | 0.15 | 0.28 | |
UNI236 | 0.08 | 0.2 |
D. glomerata | F. rubra | L. perenne | ||||
---|---|---|---|---|---|---|
2010 | 2011 | 2010 | 2011 | 2010 | 2011 | |
Richness (number of observed zOTUs) | ||||||
Mowing (M) | - | - | - | - | - | - |
Fertilization (F) | - | * | - | * | - | - |
F * M | - | - | - | - | - | - |
Diversity (Shannon diversity index H’) | ||||||
Mowing (M) | - | - | - | - | - | - |
Fertilization (F) | - | - | - | - | - | - |
F * M | - | - | - | - | - | - |
Phylogenetic diversity (Faith’s PD) | ||||||
Mowing (M) | - | + | - | - | - | - |
Fertilization (F) | - | - | - | - | - | - |
F * M | - | * | - | - | - | - |
Community composition (Bray-Curtis/ weighted UniFrac dissimilarities) | ||||||
Mowing (M) | -/- | -/- | -/- | -/- | */- | -/- |
Fertilization (F) | -/- | -/- | -/- | -/- | */* | +/* |
F * M | -/- | -/- | -/- | -/- | +/* | -/- |
Sequence richness | ||||||
F * M | - | - | - | * | - | +/* |
Saprotroph- Symbiotroph | Pathotroph/ Saprotroph | |||||
zOTU richness | ||||||
F * M | * | - | - | +/* | * | * |
Pathotroph/ Pathotroph- Saprotroph, Saprotroph, Saprotroph- Symbiotroph | Pathotroph- Symbiotroph |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wemheuer, B.; Thomas, T.; Wemheuer, F. Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes. Microorganisms 2019, 7, 37. https://doi.org/10.3390/microorganisms7020037
Wemheuer B, Thomas T, Wemheuer F. Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes. Microorganisms. 2019; 7(2):37. https://doi.org/10.3390/microorganisms7020037
Chicago/Turabian StyleWemheuer, Bernd, Torsten Thomas, and Franziska Wemheuer. 2019. "Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes" Microorganisms 7, no. 2: 37. https://doi.org/10.3390/microorganisms7020037
APA StyleWemheuer, B., Thomas, T., & Wemheuer, F. (2019). Fungal Endophyte Communities of Three Agricultural Important Grass Species Differ in Their Response Towards Management Regimes. Microorganisms, 7(2), 37. https://doi.org/10.3390/microorganisms7020037