Evaluation of Filamentous Fungi and Yeasts for the Biodegradation of Sugarcane Distillery Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material and Growth Conditions
2.2. Physico-Chemical Analysis
2.3. Chemometrics
3. Results and Discussion
3.1. Effect of Aerobic Treatment on Chemical Oxygen Demand (COD)
3.2. Effect of Aerobic Treatment on Colour
3.3. Effect of Aerobic Treatment on pH
3.4. Biomass Production and Mineral Content of DSW after Aerobic Treatment
3.5. Statistical Relationships between Physico-Chemical Parameters
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
PC1 | PC2 | PC3 | PC4 | PC5 | |
---|---|---|---|---|---|
Eigen value | 2.28 | 1.31 | 0.69 | 0.49 | 0.23 |
Variability (%) | 45.62 | 26.23 | 13.81 | 9.72 | 4.61 |
Cumulative variability (%) | 45.62 | 71.85 | 85.66 | 95.39 | 100.00 |
Parameters | PC1 | PC2 | PC3 |
---|---|---|---|
Reduction of COD (%) | 0.509 | 0.351 | −0.281 |
Effect on OD at 475 nm (%) | 0.457 | −0.516 | −0.021 |
Reduction of minerals content (%) | 0.468 | −0.181 | 0.766 |
Final pH | 0.250 | 0.754 | 0.234 |
Biomass production (g·L−1) | 0.501 | −0.094 | −0.528 |
Biomass Production (g·L−1) | Reduction of COD (%) | Reduction of Minerals Content (%) | Final pH | Effect on OD at 475 nm | ||
---|---|---|---|---|---|---|
All data | Min. | 0.75 | 23.51 | 20.75 | 6.17 | 190.91 |
Max. | 29.4 | 76.53 | 77.57 | 9.05 | 57.94 | |
Aver. | 15.85 | 57.5 | 45.07 | 8.02 | 105.24 | |
S.D. | 7.69 | 13.24 | 16.25 | 0.81 | 33.39 | |
Cluster 1 | Min. | 19.77 | 65.98 | 39.05 | 7.79 | 110.14 |
Max. | 29.4 | 76.53 | 77.57 | 9.05 | 42.46 | |
Aver. | 24.24 | 72.17 | 57.35 | 8.35 | 70.77 | |
S.D. | 3.3 | 3.1 | 18.36 | 0.54 | 16.13 | |
Cluster 2 | Min. | 2.36 | 48.13 | 28.35 | 6.66 | 139.73 |
Max. | 28.56 | 69.7 | 61.46 | 8.74 | 75.65 | |
Aver. | 15.94 | 59.38 | 44.55 | 8.02 | 104.13 | |
S.D. | 7.55 | 5.97 | 11.12 | 0.72 | 16.6 | |
Cluster 3 | Min. | 0.75 | 40.91 | 20.75 | 7.54 | 190.91 |
Max. | 15.21 | 62.09 | 49.05 | 9.03 | 130.64 | |
Aver. | 10.63 | 51.87 | 34.05 | 8.39 | 147.26 | |
S.D. | 4.17 | 6.46 | 10.26 | 0.45 | 18.83 | |
Cluster 4 | Min. | 4.04 | 23.51 | 20.78 | 6.17 | 114.14 |
Max. | 17 | 49.52 | 70.49 | 7.01 | 74.2 | |
Aver. | 9.30 | 34.87 | 43.83 | 6.57 | 92.8 | |
S.D. | 6.22 | 9.84 | 18.94 | 0.33 | 17.68 |
References
- GRFA Industry Issues. Available online: http://globalrfa.org/industry-issues/ (accessed on 11 February 2015).
- UNICA and ApexBrasil Ethanol. Sugarcane Products. Available online: http://sugarcane.org/sugarcane-products/ethanol (accessed on 11 February 2015).
- European Parliament and Council Directive. The Promotion of the USE of Energy from Renewable Sources and Amending and Subsequently Repealing Directives; 2009/28/EC, 2001/77/EC and 2003/30/EC; European Parliament and Council Directive: Strasbourg, France, 23 April 2009. [Google Scholar]
- DAAF de la Réunion Présentation: Production, Superficies, Marché, Cadre Structurel…. Available online: http://daaf.reunion.agriculture.gouv.fr/Presentation-production#entete (accessed on 10 September 2020).
- Patient, G.; Doligé, E. Le Renouvellement du Régime Fiscal Applicable au Rhum Traditionnel des Départements D’outre-mer. [The Renewal of the tax Regime Applicable to the Traditional Rum of the Overseas Departments.] (No. 754); French Senate: Pair, France, 2012. [Google Scholar]
- Rajagopal, V.; Paramjit, S.M.; Suresh, K.P.; Yogeswar, S.; Nageshwar, R.D.V.K.; Avinash, N. Significance of vinasses waste management in agriculture and environmental quality—Review. Afr. J. Agric. Res. 2014, 9, 2862–2873. [Google Scholar] [CrossRef] [Green Version]
- Hoarau, J.; Caro, Y.; Grondin, I.; Petit, T. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review. J. Water Process Eng. 2018, 24, 11–25. [Google Scholar] [CrossRef]
- Rodrigues Reis, C.E.; Hu, B. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Front. Energy Res. 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Arimi, M.; Zhang, Y.; Götz, G.; Kiriamiti, K.; Geißen, S.-U. Antimicrobial colorants in molasses distillery wastewater and their removal technologies. Int. Biodeterior. Biodegrad. 2014, 87, 34–43. [Google Scholar] [CrossRef]
- Francisca Kalavathi, L.; Uma, L.; Subrumanian, G. Degradation and metabolization of the pigment—Melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzym. Microb. Technol. 2001, 29, 246–251. [Google Scholar] [CrossRef]
- Hoarau, J.; Grondin, I.; Caro, Y.; Petit, T. Sugarcane distillery spent wash, a new resource for third-generation biodiesel production. Water 2018, 10, 1623. [Google Scholar] [CrossRef] [Green Version]
- Martins, S.I.F.S.; Van Boekel, M.A.J.S. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem. 2005, 90, 257–269. [Google Scholar] [CrossRef]
- Rivero-Pérez, M.D.; Pérez-Magariño, S.; González-San José, M.L. Role of melanoidins in sweet wines. Anal. Chim. Acta 2002, 458, 169–175. [Google Scholar] [CrossRef]
- González, T.; Terron, M.C.; Yagüe, S.; Zapico, E.; Galetti, G.C.; González, A.E. Pyrolysis/gas chromatography/mass spectrometry monitoring of fungal-biotreated distillery wastewater using Trametes sp. I-62 (CECT 20197). Rapid Commun. Mass Spectrom. 2000, 14, 1417–1424. [Google Scholar]
- Godshall, M.A. Removal of colorants and polysaccharides and the quality of white sugar. In Proceedings of the Association Andrew Van Hook, Reims, France, 29 December 1992; pp. 28–35. [Google Scholar]
- España-Gamboa, E.I.; Mijangos-Cortés, J.O.; Hernández-Zárate, G.; Maldonado, J.A.D.; Alzate-Gaviria, L.M. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnol. Biofuels 2012, 5, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.F.R.; Aguiar, M.M.; Messias, T.G.; Pompeu, G.B.; Lopez, A.M.Q.; Silva, D.P.; Monteiro, R.T. Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators. Ecotoxicol. Environ. Saf. 2011, 74, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Hoarau, J.; Petit, T.; Grondin, I.; Marty, A.; Caro, Y. Phosphate as a limiting factor for the improvement of single cell oil production from Yarrowia lipolytica MUCL 30108 grown on pre-treated distillery spent wash. J. Water Process Eng. 2020, 37, 101392. [Google Scholar] [CrossRef]
- Tiwari, S.; Gaur, R.; Singh, R. Decolorization of a recalcitrant organic compound (Melanoidin) by a novel thermotolerant yeast, Candida tropicalis RG-9. BMC Biotechnol. 2012, 12, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, D.; Adholeya, A. Biological approaches for treatment of distillery wastewater: A review. Bioresour. Technol. 2007, 98, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Le Ministère Français de l’Ecologie, du Développement Durable et de l’Energie. Arrêté du 21 Juillet 2015 Relatif aux Systèmes D’assainissement Collectif et aux Installations D’assainissement non Collectif, à L’exception des Installations D’assainissement non Collectif Recevant une Charge Brute de Pollution Organique Inférieure ou Egale à 1,2 kg/j de DBO5; DEVL1519953N; The French Ministry of Ecology, Sustainable Development and Energy: Paris, France, 2015.
- De Mattos, L.F.A.; Bastos, R.G. COD and nitrogen removal from sugarcane vinasse by heterotrophic green algae Desmodesmus sp. Desalin. Water Treat. 2016, 57, 9465–9473. [Google Scholar] [CrossRef]
- Alaki, M.; Takahashi, T.; Ishiguro, K. Studies on microbiolofical treatment and utilization of cane molasses distillery wastes (Part 1): Screening of useful yeast strains. Bull. Fac. Agric. Mie Univ. 1981, 62, 155–161. [Google Scholar]
- Kavanagh, K. Fungi—Biology and Applications; John Wiley & Sons Ltd.: West Sussex, UK, 2011. [Google Scholar]
- Sirianuntapiboon, S.; Somchai, P.; Ohmomo, S.; Atthasampunna, P. Screening of Filamentous Fungi Having the Ability to Decolorize Molasses Pigments. Agric. Biol. Chem. 1988, 52, 387–392. [Google Scholar]
- Santal, A.R.; Singh, N. Biodegradation of Melanoidin from Distillery Effluent: Role of Microbes and Their Potential Enzymes. In Biodegradation of Hazardous and Special Products; Chamy, R., Ed.; IntechOpen: London, UK, 2013; pp. 71–104. [Google Scholar]
- Rulli, M.M.; Villegas, L.B.; Colin, V.L. Treatment of sugarcane vinasse using an autochthonous fungus from the northwest of Argentina and its potential application in fertigation practices. J. Environ. Chem. Eng. 2020, 8, 104371. [Google Scholar] [CrossRef]
- Del Gobbo, L.M.; Villegas, L.B.; Colin, V.L. The potential application of an autochthonous fungus from the northwest of Argentina for treatment of sugarcane vinasse. J. Hazard. Mater. 2019, 365, 820–826. [Google Scholar] [CrossRef]
- Del Gobbo, L.M.; Colin, V.L. Fungal technology applied to distillery effluent treatment. In Approaches in Bioremediation. Nanotechnology in the Life Sciences; Prasad, R., Aranda, E., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Rolz, C.; Cabrera, S.; de Espinosa, R.; Maldonado, O.; Menchu, J.F. The growth of filamentous fungi on rum distilling slops. Ann. Technol. Agric. 1975, 24, 445–451. [Google Scholar]
- De Lamo, P.; De Menezes, T.J. Bioconversao da vinhaca para a producao de biomassa fungica [Bioconversion of vinasse for the production of fungal biomass]. Coletânea Inst. Technol. Aliment. 1978, 9, 281–312. [Google Scholar]
- Rosalem, P.; Tauk, S.; Santos, M.C. Efeito da temperatura, ph, tempo de cultivo e nutrientes no crescimento de fungos imperfeitos em vinhaca [Effects of temperature, pH, cultivation time and nutrients in the growth of fungi imperfecti in vinasse]. Rev. Microbiol. 1985, 16, 299–304. [Google Scholar]
- Araujo, N.; Visconti, A.; De Castro, H.; Barroso da Silva, H.; Ferraz, M.H.; Salles Filho, M. Producao de biomassa fungica de vinhoto [Fungal biomass production in vinasse]. Bras. Acucar. 1976, 88, 35–45. [Google Scholar]
- Garcia, I.G.; Venceslada, J.L.B.; Peña, P.R.J.; Gómez, E.R. Biodegradation of phenol compounds in vinasse using Aspergillus terreus and Geotrichum candidum. Water Res. 1997, 31, 2005–2011. [Google Scholar] [CrossRef]
- Chuppa-Tostain, G.; Hoarau, J.; Watson, M.; Adelard, L.; Shum Cheong Sing, A.; Caro, Y.; Grondin, I.; Bourven, I.; Francois, J.-M.; Girbal-Neuhauser, E.; et al. Production of Aspergillus niger biomass on sugarcane distillery wastewater: Physiological aspects and potential for biodiesel production. Fungal. Biol. Biotechnol. 2018, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Shoda, M. Decolorization of molasses and a dye by a newly isolated strain of the fungus Geotrichum candidum Dec 1. Biotechnol. Bioeng. 1999, 62, 114–119. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; No. NREL/TP-510-42622; National Renewable Energy Laboratory, U.S. Department of Energy: Golden, CO, USA, 2008. [Google Scholar]
- Jollife, I.T. Principal Component Analysis, Springer Series in Statistics; Springer: New York, NY, USA, 2002. [Google Scholar]
- Brown, C.E. Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Benito, G.G.; Miranda, M.P.; de los Santos, D.R. Decolorization of wastewater from an alcoholic fermentation process with Trametes Versicolor. Bioresour. Technol. 1997, 61, 33–37. [Google Scholar] [CrossRef]
- Nudel, B.C.; Wahener, R.S.; Fraile, E.R.; Giuletti, A.M. The use of single and mixed cultures for aerobic treatment of cane sugar stillage and SCP production. Biogolical Wastes 1987, 22, 67–73. [Google Scholar] [CrossRef]
- Kumar, V.; Wati, L.; Nigam, P.; Banat, I.M.; Yadav, B.S.; Singh, D.; Marchant, R. Decolorization and biodegradation of anaerobically digested sugarcane molasses spent wash effluent from biomethanation plants by white-rot fungi. Process Biochem. 1998, 33, 83–88. [Google Scholar] [CrossRef]
- Raghukumar, C.; Rivonkar, G. Decolorization of molasses spent wash by the white-rot fungus Flavodon flavus, isolated from a marine habitat. Appl. Microbiol. Biotechnol. 2001, 55, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Fahy, V.; Fitzgibbon, F.J.; McMullan, G.; Singh, D.; Marchant, R. Decolourisation of molasses spent wash by Phanerochaete chrysosporium. Biotechnol. Lett. 1997, 19, 97–99. [Google Scholar] [CrossRef]
- Angayarkanni, J.; Palaniswamy, M.; Swaminathan, K. Biotreatment of Distillery Effluent Using Aspergillus niveus. Bull. Environ. Contam. Toxicol. 2003, 70, 268–277. [Google Scholar] [CrossRef]
- Jiménez, A.M.; Borja, R.; Martin, A. Aerobic–anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. 2003, 38, 1275–1284. [Google Scholar] [CrossRef]
- Miranda, M.P.; Benito, G.G.; Cristobal, N.S.; Nieto, C.H. Color elimination from molasses wastewater by Aspergillus niger. Bioresour. Technol. 1996, 57, 229–235. [Google Scholar] [CrossRef]
- Mohammad, P.; Azamidokht, H.; Fatollah, M.; Mahboubeh, B. Application of response surface methodology for optimization of important parameters in decolorizing treated distillery wastewater using Aspergillus fumigatus UB2 60. Int. Biodeterior. Biodegrad. 2006, 57, 195–199. [Google Scholar] [CrossRef]
- Ohmomo, S.; Kaneko, Y.; Sirianuntapiboon, S.; Somchai, P.; Atthasampunna, P.; Nakamura, I. Decolorization of Molasses Waste Water by a Thermophilic Strain, Aspergillus fumigatus G-2-6. Agric. Biol. Chem. 1987, 51, 3339–3346. [Google Scholar]
- Shayegan, J.; Pazouki, M.; Afshari, A. Continuous decolorization of anaerobically digested distillery wastewater. Process Biochem. 2005, 40, 1323–1329. [Google Scholar] [CrossRef]
- Patil, P.U.; Kapadnis, D.P.; Dhamankar, V.S. Decolorisation of synthetic melanoidin and biogas effluent by immobilised fungal isolate of Aspergillus niger UM2. Int. Sugar J. 2003, 105, 10–13. [Google Scholar]
- FitzGibbon, F.; Singh, D.; McMullan, G.; Marchant, R. The effect of phenolic acids and molasses spent wash concentration on distillery wastewater remediation by fungi. Process Biochem. 1998, 33, 799–803. [Google Scholar] [CrossRef]
- Sirianuntapiboon, S.; Sihanonth, P.; Somchai, P.; Atthasampunna, P.; Hayashida, S. An absorption mechanism for the decolorization of melanoidin by Rhizoctonia sp. D-90. Biosci. Biotechnol. Biochem. 1995, 59, 1185–1189. [Google Scholar] [CrossRef]
- Seyis, I.; Subasioglu, T. Screening of different fungi for decolorization of molasses. Braz. J. Microbiol. 2009, 40, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adikane, H.V.; Dange, M.N.; Selvakumari, K. Optimization of anaerobically digested distillery molasses spent wash decolorization using soil as inoculum in the absence of additional carbon and nitrogen source. Bioresour. Technol. 2006, 97, 2131–2135. [Google Scholar] [CrossRef]
- Jiranuntipon, S.; Chareonpornwattana, S.; Damronglerd, S.; Albasi, C.; Delia, M.-L. Decolorization of synthetic melanoidins-containing wastewater by a bacterial consortium. J. Ind. Microbiol. Biotechnol. 2008, 35, 1313–1321. [Google Scholar] [CrossRef] [Green Version]
- Ramezani, A.; Darzi, G.N.; Mohammadi, M. Removal of melanoidin from molasses spent wash using fly ash-clay adsorbents. Korean J. Chem. Eng. 2011, 24, 1035–1041. [Google Scholar] [CrossRef]
- Hayase, F.; Kim, S.B.; Kato, H. Decolorization and degradation products of the melanoidins by hydrogen peroxide. Agric. Biol. Chem. 1984, 48, 2711–2717. [Google Scholar]
- Mohana, S.; Desai, C.; Madamwar, D. Biodegradation and decolourization of anaerobically treated distillery spent wash by a novel bacterial consortium. Bioresour. Technol. 2007, 98, 333–339. [Google Scholar] [CrossRef]
- Agarwal, R.; Lata, S.; Gupta, M.; Singh, P. Removal of melanoidin present in distillery effluent as a major colorant: A Review. J. Environ. Biol. 2010, 31, 521–528. [Google Scholar]
- Tian, Z.; Mohan, G.R.; Ingram, L.; Pullammanappalil, P. Anaerobic digestion for treatment of stillage from cellulosic bioethanol production. Bioresour. Technol. 2013, 144, 387–395. [Google Scholar] [CrossRef]
- Singh, H. Fungal treatment of distillery and brewery wastes. In Mycoremediation: Fungal Bioremediation; Wiley-Interscience: Hoboken, NJ, USA, 2006. [Google Scholar]
- Tauk, S.M. Culture of Candida in vinasse and molasses: Effect of acid and salt addition on biomass and raw protein production. Eur. J. Appl. Microbiol. Biotechnol. 1982, 16, 223–227. [Google Scholar] [CrossRef]
- Selim, M.H.; Elshafei, A.M.; El-Diwany, A.I. Production of single cell protein from yeast strains grown in Egyptian vinasse. Bioresour. Technol. 1991, 36, 157–160. [Google Scholar] [CrossRef]
- Cajo, L.; Nizama, L.; Carreño, C. Effect of inoculum and molasses concentration as supplement to vinasse of distillery for the production of biomass of native Candida utilis. Sci. Agropecu. 2011, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Bushell, M.E. Chemical requirements for growth. In Fungal Physiology, 2nd ed.; Wiley & Sons, Inc.: New York, NY, USA, 1994; pp. 130–157. [Google Scholar]
- Kavanagh, K. Introduction to fungal physiology. In Fungi—Biology and Applications; West Sussex: London, UK, 2011; pp. 1–34. [Google Scholar]
- Cattell, R.B. The scree test for the number of factors. In A History of Psychology in Autobiography; Lindzey, G., Ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1974; Volume VI, pp. 61–100. [Google Scholar]
Strain Number | Strains (Genera/Specie) | MUCL Reference Number | Reduction of COD 1 (%) | Effect on OD at 475 nm 2 (%) | Reduction of Minerals Content 3 (%) | Final pH 4 | Biomass Production 5 (g·L−1) |
---|---|---|---|---|---|---|---|
S1 | Arthroderma otae | MUCL 41713 | 59.22 | 98.26 | 36.99 | 6.91 | 18.11 |
S2 | Aspergillus alutaceus | MUCL 39539 | 69.23 | 58.12 | 73.49 | 7.91 | 21.7 |
S3 | Aspergillus flavus | MUCL 19006 | 70.86 | 80.00 | 20.88 | 8.72 | 19.77 |
S4 | Aspergillus itaconicus | MUCL 31306 | 73.23 | 64.64 | 40.94 | 7.64 | 21.41 |
S5 | Aspergillus niger | MUCL 19001 | 70.11 | 73.04 | 77.57 | 8.31 | 21.25 |
S6 | Aspergillus oryzae | MUCL 19009 | 65.98 | 77.97 | 66.62 | 8.86 | 24.35 |
S7 | Aspergillus parasiticus | MUCL 14491 | 74.6 | 57.54 | 53.66 | 8.46 | 24.48 |
S8 | Aspergillus terreus var africanus | MUCL 38960 | 76.53 | 110.14 | 66,00 | 9,00 | 29.19 |
S9 | Aspergillus terreus var terreus | MUCL 38640 | 73.5 | 61.16 | 72.4 | 9.05 | 24.90 |
S10 | Candida albicans | MUCL 30114 | 56.56 | 118.01 | 29.3 | 8.69 | 19.34 |
S11 | Candida dubliniensis | MUCL 41201 | 45.98 | 152.53 | 32.18 | 8.45 | 10.29 |
S12 | Candida glabatra | MUCL 29833 | 57.34 | 130.64 | 26.62 | 8.12 | 12.43 |
S13 | Candida tropicalis | MUCL 29893 | 50.41 | 138.72 | 20.75 | 8.42 | 15.21 |
S14 | Clavispora lusitanea | MUCL 29855 | 54.72 | 116.84 | 28.35 | 7.39 | 28.56 |
S15 | Colletotricum graminicola | MUCL 44764 | 57.75 | 92.17 | 39.23 | 7.94 | 11.79 |
S16 | Cryptococcus albidus | MUCL 30400 | 44.89 | 135.35 | 30.29 | 8.13 | 12.47 |
S17 | Fennellia flavipes | MUCL 38811 | 58.65 | 75.65 | 61.46 | 8.74 | 17.98 |
S18 | Flavodon flavus | MUCL 38427 | 28.99 | 77.10 | 37.48 | 6.17 | 14.98 |
S19 | Fusarium proliferatum | MUCL 43482 | 34.44 | 91.59 | 53.83 | 6.37 | 6.38 |
S20 | Fusarium sporotrichioides | MUCL 6133 | 55.13 | 140.00 | 43.81 | 8.25 | 8.6 |
S21 | Galactomyces geotrichum | MUCL 43077 | 56.95 | 104.64 | 46.39 | 8.26 | 6.79 |
S22 | Gibberella fujikuroi | MUCL 42883 | 37.89 | 106.96 | 36.58 | 6.76 | 4.12 |
S23 | Gibberella zeae | MUCL 42841 | 55.8 | 109.28 | 33.52 | 8.04 | 20.9 |
S24 | Issatchenkia orientalis | MUCL 29849 | 48.13 | 139.73 | 49.56 | 8.08 | 25.41 |
S25 | Komagatella pastoris | MUCL 31260 | 69.7 | 107.41 | 56.84 | 7.99 | 9.1 |
S26 | Penicillium rugulosum | MUCL 41583 | 62.48 | 86.38 | 56.28 | 8.72 | 2.36 |
S27 | Penicillium verrucosum | MUCL 28674 | 62.09 | 168.99 | 49.05 | 9.03 | 8 |
S28 | Phanerochaete chrysosporium | MUCL 38489 | 23.51 | 74.20 | 70.49 | 7.01 | 17 |
S29 | Pichia angusta | MUCL 27761 | 49.52 | 114.14 | 20.78 | 6.53 | 4.04 |
S30 | Pichia guilliermondii | MUCL 29837 | 54.78 | 138.38 | 28.21 | 7.54 | 12.23 |
S31 | Pichia jadinii | MUCL 30058 | 40.91 | 141.08 | 46.33 | 8.21 | 14.67 |
S32 | Pseudozyma antarctica | MUCL 47637 | 51.33 | 136.03 | 22.11 | 8.9 | 0.75 |
S33 | Rhizopus microsporus var oligosporus | MUCL 31005 | 67.32 | 95.94 | 52.04 | 8.85 | 14.66 |
S34 | Saccharomyces cerevisiae | MUCL 39449 | 55.84 | 190.91 | 41.17 | 8.88 | 11.64 |
S35 | Thanatephorus cucumeris | MUCL 43254 | 65.28 | 105.22 | 44.63 | 6.66 | 16.32 |
S36 | Trametes hirsuta | MUCL 40169 | 74.01 | 57.54 | 62.86 | 7.8 | 29.4 |
S37 | Trametes versicolor | MUCL 44890 | 73.64 | 67.54 | 39.05 | 7.79 | 25.96 |
Parameters | Reduction of COD (%) | Effect on OD at 475 nm (%) | Reduction of Minerals Content (%) | Final pH | Biomass Production (g·L−1) |
---|---|---|---|---|---|
Reduction of COD (%) | 1 | 0.344 | 0.289 | 0.508 | 0.466 |
Effect on OD at 475 nm (%) | 0.344 | 1 | 0.503 | −0.197 | 0.447 |
Reduction of minerals content (%) | 0.289 | 0.503 | 1 | 0.179 | 0.355 |
Final pH | 0.508 | −0.197 | 0.179 | 1 | 0.135 |
Biomass production (g·L−1) | 0.466 | 0.447 | 0.355 | 0.135 | 1 |
Parameters | PC1 | PC2 | PC3 |
---|---|---|---|
Reduction of COD (%) | 0.769 | 0.402 | −0.234 |
Effect on OD at 475 nm (%) | 0.690 | −0.591 | −0.017 |
Reduction of minerals content (%) | 0.707 | −0.207 | 0.637 |
Final pH | 0.377 | 0.864 | 0.195 |
Biomass production (g·L−1) | 0.756 | −0.107 | −0.439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuppa-Tostain, G.; Tan, M.; Adelard, L.; Shum-Cheong-Sing, A.; François, J.-M.; Caro, Y.; Petit, T. Evaluation of Filamentous Fungi and Yeasts for the Biodegradation of Sugarcane Distillery Wastewater. Microorganisms 2020, 8, 1588. https://doi.org/10.3390/microorganisms8101588
Chuppa-Tostain G, Tan M, Adelard L, Shum-Cheong-Sing A, François J-M, Caro Y, Petit T. Evaluation of Filamentous Fungi and Yeasts for the Biodegradation of Sugarcane Distillery Wastewater. Microorganisms. 2020; 8(10):1588. https://doi.org/10.3390/microorganisms8101588
Chicago/Turabian StyleChuppa-Tostain, Graziella, Melissa Tan, Laetitia Adelard, Alain Shum-Cheong-Sing, Jean-Marie François, Yanis Caro, and Thomas Petit. 2020. "Evaluation of Filamentous Fungi and Yeasts for the Biodegradation of Sugarcane Distillery Wastewater" Microorganisms 8, no. 10: 1588. https://doi.org/10.3390/microorganisms8101588
APA StyleChuppa-Tostain, G., Tan, M., Adelard, L., Shum-Cheong-Sing, A., François, J. -M., Caro, Y., & Petit, T. (2020). Evaluation of Filamentous Fungi and Yeasts for the Biodegradation of Sugarcane Distillery Wastewater. Microorganisms, 8(10), 1588. https://doi.org/10.3390/microorganisms8101588