Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance
Abstract
:1. Introduction
2. Globally Fermented Foods and Beverages and the Microbial Diversity Associated with
3. Artisanal Foods and Similar Categories: The Borders and Overlapping Concept
4. The “Artisanal” Concept Extended to Food Fermentations: Existing Instances of the Stakeholders
5. “Artisanal Fermentation” and the Safety Issues: Concrete Microbial-Related Risks
6. The Need for a Transdisciplinary Assessment: Towards a “Third Way” to Conciliate Actual Trends and Risks Avoidance
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozzi, V.; Spano, G. Food microbial biodiversity and “microbes of protected origin”. Front. Microbiol. 2011, 2, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, M.J. Starter cultures for cereal based foods. Food Microbiol. 2014, 37, 41–43. [Google Scholar] [CrossRef]
- Russo, P.; Spano, G.; Capozzi, V. Safety evaluation of starter cultures. In Starter Cultures in Food Production; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 101–128. ISBN 978-1-118-93379-4. [Google Scholar]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Hansen, E.B. STARTER CULTURES | Uses in the Food Industry. In Encyclopedia of Food Microbiology, 2nd ed.; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: Oxford, UK, 2014; pp. 529–534. ISBN 978-0-12-384733-1. [Google Scholar]
- Wuyts, S.; Beeck, W.V.; Oerlemans, E.F.M.; Wittouck, S.; Claes, I.J.J.; Boeck, I.D.; Weckx, S.; Lievens, B.; Vuyst, L.D.; Lebeer, S. Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2018, 84, e00134-18. [Google Scholar] [CrossRef] [Green Version]
- Farnworth, E.R.T. Handbook of Fermented Functional Foods; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-429-21454-7. [Google Scholar]
- Petruzzi, L.; Capozzi, V.; Berbegal, C.; Corbo, M.R.; Bevilacqua, A.; Spano, G.; Sinigaglia, M. Microbial Resources and Enological Significance: Opportunities and Benefits. Front. Microbiol. 2017, 8, 995. [Google Scholar] [CrossRef] [Green Version]
- Greppi, A.; Rantsiou, K.; Padonou, W.; Hounhouigan, J.; Jespersen, L.; Jakobsen, M.; Cocolin, L. Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and -independent methods. Int. J. Food Microbiol. 2013, 165, 84–88. [Google Scholar] [CrossRef]
- Meulen, V.D.; S, H. A normative definition method for origin food products. Anthropol. Food 2007, S2. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Spano, G. Microbial information regimen in EU geographical indications. World Pat. Inf. 2012, 34, 229–231. [Google Scholar] [CrossRef]
- Cirne, C.T.; Tunick, M.H.; Trout, R.E. The chemical and attitudinal differences between commercial and artisanal products. Npj Sci. Food 2019, 3, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Counihan, C.; Esterik, P.V. Food and Culture: A Reader; Routledge: New York, NY, USA, 2012; ISBN 978-0-203-07975-1. [Google Scholar]
- Johnson, A.J. Artisanal food microbiology. Nat. Microbiol. 2016, 1, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Cocolin, L.; Gobbetti, M.; Neviani, E.; Daffonchio, D. Ensuring safety in artisanal food microbiology. Nat. Microbiol. 2016, 1, 1. [Google Scholar] [CrossRef]
- Marshall, E.; Mejía-Loríio, D.J. (Eds.) Traditional Fermented Food and Beverages for Improved Livelihoods; FAO Diversification booklet; Rural Infrastructure and Agro-Industries Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-107074-1. [Google Scholar]
- Capozzi, V.; Fragasso, M.; Romaniello, R.; Berbegal, C.; Russo, P.; Spano, G. Spontaneous Food Fermentations and Potential Risks for Human Health. Fermentation 2017, 3, 49. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Toxins in Fermented Foods: Prevalence and Preventions—A Mini Review. Toxins 2019, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Sharma, N.; Kaushal, G.; Samurailatpam, S.; Sahoo, D.; Rai, A.K.; Singh, S.P. Metagenomic Insights Into the Taxonomic and Functional Features of Kinema, a Traditional Fermented Soybean Product of Sikkim Himalaya. Front. Microbiol. 2019, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.M.; Crispie, F.; Daari, K.; O’Sullivan, O.; Martin, J.C.; Arthur, C.T.; Claesson, M.J.; Scott, K.P.; Cotter, P.D. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks. Appl. Environ. Microbiol. 2017, 83, e01144-17. [Google Scholar] [CrossRef] [Green Version]
- Adekoya, I.; Njobeh, P.; Obadina, A.; Chilaka, C.; Okoth, S.; De Boevre, M.; De Saeger, S. Awareness and Prevalence of Mycotoxin Contamination in Selected Nigerian Fermented Foods. Toxins 2017, 9, 363. [Google Scholar] [CrossRef] [Green Version]
- Nout, M.J.R. Fermented foods and food safety. Food Res. Int. 1994, 27, 291–298. [Google Scholar] [CrossRef]
- Russo, P.; Fragasso, M.; Berbegal, C.; Grieco, F.; Spano, G.; Capozzi, V. Chapter 2:Microorganisms Able to Produce Biogenic Amines and Factors Affecting Their Activity. In Biogenic Amines in Food; RSC Publishing: Cambridge, UK, 2019; pp. 18–40. [Google Scholar]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019, 11, 1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimaglia, F.; Tristezza, M.; Saccomanno, A.; Rampino, P.; Perrotta, C.; Capozzi, V.; Spano, G.; Chiesa, M.; Mita, G.; Grieco, F. An innovative oligonucleotide microarray to detect spoilage microorganisms in wine. Food Control. 2018, 87, 169–179. [Google Scholar] [CrossRef]
- Wang, Y.; Salazar, J.K. Culture-Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Compr. Rev. Food Sci. Food Saf. 2016, 15, 183–205. [Google Scholar] [CrossRef]
- Valderrama, W.B.; Dudley, E.G.; Doores, S.; Cutter, C.N. Commercially Available Rapid Methods for Detection of Selected Food-borne Pathogens. Crit. Rev. Food Sci. Nutr. 2016, 56, 1519–1531. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Zhang, P.; Sun, C.; Wang, X.; Wang, X.; Yang, R.; Wang, C.; Zhou, L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Rossetti, L.; Carminati, D.; Zago, M.; Giraffa, G. A Qualified Presumption of Safety approach for the safety assessment of Grana Padano whey starters. Int. J. Food Microbiol. 2009, 130, 70–73. [Google Scholar] [CrossRef]
- Capozzi, V.; Spano, G.; Fiocco, D. Transdisciplinarity and Microbiology Education. J. Microbiol. Biol. Educ. JMBE 2012, 13, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Carayannis, E.G.; Campbell, D.F.J. Mode 3 Knowledge Production in Quadruple Helix Innovation Systems. In Mode 3 Knowledge Production in Quadruple Helix Innovation Systems: 21st-Century Democracy, Innovation, and Entrepreneurship for Development; Carayannis, E.G., Campbell, D.F.J., Eds.; SpringerBriefs in Business; Springer: New York, NY, USA, 2012; pp. 1–63. ISBN 978-1-4614-2062-0. [Google Scholar]
- Maqueda, M.; Pérez-Nevado, F.; Regodón, J.A.; Zamora, E.; Álvarez, M.L.; Rebollo, J.E.; Ramírez, M. A low-cost procedure for production of fresh autochthonous wine yeast. J. Ind. Microbiol. Biotechnol. 2011, 38, 459–469. [Google Scholar] [CrossRef]
- Vogel, R.F.; Hammes, W.P.; Habermeyer, M.; Engel, K.-H.; Knorr, D.; Eisenbrand, G. Microbial food cultures—Opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol. Nutr. Food Res. 2011, 55, 654–662. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Assessing Microbial Risks. Available online: https://www.who.int/activities/assessing-microbial-risks-in-food (accessed on 16 February 2020).
- Berbegal, C.; Garofalo, C.; Russo, P.; Pati, S.; Capozzi, V.; Spano, G. Use of Autochthonous Yeasts and Bacteria in Order to Control Brettanomyces bruxellensis in Wine. Fermentation 2017, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. Exploration of the Microbial Biodiversity Associated with North Apulian Sourdoughs and the Effect of the Increasing Number of Inoculated Lactic Acid Bacteria Strains on the Biocontrol against Fungal Spoilage. Fermentation 2019, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Russo, P.; Fares, C.; Longo, A.; Spano, G.; Capozzi, V. Lactobacillus plantarum with Broad Antifungal Activity as a Protective Starter Culture for Bread Production. Foods 2017, 6, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.; Capozzi, V.; Arena, M.P.; Spadaccino, G.; Dueñas, M.T.; López, P.; Fiocco, D.; Spano, G. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 2014, 98, 3691–3700. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; López, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef] [PubMed]
- Missaoui, J.; Saidane, D.; Mzoughi, R.; Minervini, F. Fermented Seeds (“Zgougou”) from Aleppo Pine as a Novel Source of Potentially Probiotic Lactic Acid Bacteria. Microorganisms 2019, 7, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pino, A.; Russo, N.; Van Hoorde, K.; De Angelis, M.; Sferrazzo, G.; Randazzo, C.L.; Caggia, C. Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms 2019, 7, 254. [Google Scholar] [CrossRef] [Green Version]
- Gerardi, C.; Tristezza, M.; Giordano, L.; Rampino, P.; Perrotta, C.; Baruzzi, F.; Capozzi, V.; Mita, G.; Grieco, F. Exploitation of Prunus mahaleb fruit by fermentation with selected strains of Lactobacillus plantarum and Saccharomyces cerevisiae. Food Microbiol. 2019, 84, 103262. [Google Scholar] [CrossRef]
- Capozzi, V.; Makhoul, S.; Aprea, E.; Romano, A.; Cappellin, L.; Sanchez Jimena, A.; Spano, G.; Gasperi, F.; Scampicchio, M.; Biasioli, F. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin. Molecules 2016, 21, 483. [Google Scholar] [CrossRef]
- Berbegal, C.; Fragasso, M.; Russo, P.; Bimbo, F.; Grieco, F.; Spano, G.; Capozzi, V. Climate Changes and Food Quality: The Potential of Microbial Activities as Mitigating Strategies in the Wine Sector. Fermentation 2019, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Bell, V.; Ferrão, J.; Pimentel, L.; Pintado, M.; Fernandes, T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Berbegal, C.; Borruso, L.; Fragasso, M.; Tufariello, M.; Russo, P.; Brusetti, L.; Spano, G.; Capozzi, V. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. Int. J. Mol. Sci. 2019, 20, 3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orrù, L.; Salvetti, E.; Cattivelli, L.; Lamontanara, A.; Michelotti, V.; Capozzi, V.; Spano, G.; Keller, D.; Cash, H.; Martina, A.; et al. Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain. Genome Announc. 2014, 2, e01080-14. [Google Scholar]
- Salvetti, E.; Orrù, L.; Capozzi, V.; Martina, A.; Lamontanara, A.; Keller, D.; Cash, H.; Felis, G.E.; Cattivelli, L.; Torriani, S.; et al. Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Appl. Microbiol. Biotechnol. 2016, 100, 4595–4605. [Google Scholar] [CrossRef] [PubMed]
- Alkema, W.; Boekhorst, J.; Wels, M.; van Hijum, S.A.F.T. Microbial bioinformatics for food safety and production. Brief. Bioinform. 2016, 17, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Major Groups of Globally Fermented Foods | Microorganisms Involved in the Fermentation Process |
---|---|
Fermented cereals | Lactococcus sp., Leuc. mesenteroides, Lb. delbrueckii, Lb. fermenti, Lb. coryniformis, Leuconostoc sp., Ped. acidilactis, Ped. cerevisae, Streptococcus sp., Ent. faecalis, Ent. cloacae, Weissela sp., Bacillus amyloliquefaciens, Klebsiella pneumoniae, Aerobacter sp., Candida cacaoi, Cand. fragicola, Cand. glabrata, Cand. kefyr, Cand. pseudotropicalis, Cand. sake, Cand. tropicalis, Debaryomyces hansenii, Deb. tamarii, Issatchenkia terricola, Kluyveromyces marxianus, Sacch. cerevisiae, Torulopsis candida, Tor. holmii, Monascus purpureus, Rhizopus sp., Cephalosporium sp., Mucor sp., Fusarium sp., Penicillum sp., Aspergillus sp., Endomycopsis sp., Hansenula sp. |
Fermented vegetables and bamboo shoots | Leuc. mesenteroides, Leuc. citreum, Leuc. gasicomitatum, Leuc. fallax, Leuc. kimchii, Leuc. inhae, W. koreensis, W. kimchii, W. cibaria, Lb. plantarum, Lb. sakei, Lb. delbrueckii, Lb. buchneri, Lb. brevis, Lb. fermentum, Ped. acidilactici, Ped. pentosaceus, Lc. lactis, Ent. durans, Tetragenococcus halophilus, Bacillus subtilis, B. lichniformis, B. coagulans, B. cereus, B. circulans, B. firmus, B. pumilus, B. sphaericus Candida sp., Halococcus sp., Haloterrigena sp., Kluyveromyces sp., Lodderomyces sp., Natrialba sp., Natronococcus sp., Pichia sp., Saccharomyces sp., Sporisorium sp., Trichosporon sp., Pseudomonas sp., Halorubrum orientalis, Halosarcina pallid, Sphingobium sp., Thalassomonas agarivorans |
Fermented legumes | Bacillus subtilis, B. brevis, B. circulans, B. coagulans, B. licheniformis, B. pumilus, B. sphaericus, Lysinibacillus fusiformis Rhiz. oligisporus, Rhiz. arrhizus, Rhiz. oryzae, Rhiz. stolonifer, Asp.niger, Citrobacter freundii, Enterobacter cloacae, K. pneumoniae, K. pneumoniae subsp. ozaenae, Pseudomas fluorescens, Lb. fermentum, Lb. lactis, Lb. plantarum, Lb. reuteri, Pantoea agglomerans, P. gaananatis, Enterococcus sp., Pseudomonas sp., Rhodococcus sp., Asp. oryzae, Asp. flavus, Asp. fumigatus, Asp. niger, Asp. retricus, Asp. spinosa, Asp. terreus, Asp. wentii, Botrytis cineara, Ped. halophilus, Staphylococcus sp. |
Fermented roots/tubers | Bacillus sp., Lb. plantarum, Leuc. mesenteroides, Lb. cellobiosus, Lb. brevis; Lb. coprophilus, Lc. lactis; Leuc. lactis, Lb. bulgaricus, Klebsiella sp., Leuconostoc sp., Corynebacterium sp., Candida sp., Micrococcus sp., Pseudomonas sp., Acinetobacter sp., Moraxella sp., Rhizopus sp. |
Fermented milk products | Lc. lactis subsp. cremoris, Lc. lactis subsp. lactis, Lb. alimentarius, Lb. biofermentans, Lb. brevis, Lb. delbrueckii subsp. delbrueckii, Lb. delbrueckii subsp. lactis, Lb. farciminis, Lb. helveticus, Lb. casei, Lb. plantarum, Lb. salivarius, Leuconostoc spp., Strep. thermophilus, Ent. durans, Ent.faecalis, Ent. faecium, Ped. pentosaceous, Ped. acidilactici, Bifidobacterium spp., Staphylococcus spp., Brevibacterium linens, Propionibacterium freudenreichii, Weissella confusa, Candida sp., Saccharomycopsis sp., Debaryomyces hansenii, Geotrichum candidum, Penicillium camemberti, P. roqueforti, Pichia kudriavzevii |
Fermented and preserved meat products | Lb. pentosus, Lb. plantarum, Lb. brevis, Lb. paracasei, Lb. fermentum, Lb. acidipiscis, Lb. farciminis, Lb. rossiae, Lb. fuchuensis, Lb. namurensis, Lc. lactis, Lb. sakei, Leuc. citreum, Leuc. fallax, Ped. acidilactici, Ped. pentosaceus, Ped. stilesii, W. cibaria, W. paramesenteroides, Ent. faecalis, Ent. faecium, Ent. hirae, Bacillus subtilis, B. mycoides, B. thuringiensis, Staphylococcus spp., Micrococcus sp. |
Fermented, dried, and smoked fish products | Lc. lactis, Lb. plantarum, Lb. pobuzihii, Lb. fructosus, Lb. amylophilus, Lb. coryniformis, Ent. faecium, Ent. faecalis, Bacillus subtilis, B. pumilus, B indicus, Micrococcus sp., Staphylococcus cohnii subsp. cohnii, S. carnosus, Strep. faecalis, Sarcina sp., Corynebacterium sp., Tetragenococcus halophilus subsp. flandriensis, Pseudomonas sp., Halococcus sp., Halobacterium salinarium, H. cutirubrum, Clostridium irregular, Azorhizobium caulinodans, Candida sp., Saccharomycopsis sp. |
Miscellaneous fermented products | Acetobacter aceti subsp. aceti, Acetobacter pasteurianus, Acetobacter polyxygenes, Acetobacter xylinum, Acetobacter malorum, Acetobacter pomorum, Candida lactis-condensi, Candida stellata, Hanseniaspora valbyensis, Hanseniaspora osmophila, Saccharomycodes ludwigii, Sacch. cerevisiae, Zygosaccharomyces bailii, Zygosaccharomyces bisporus, Zygosaccharomyces lentus, Zygosaccharomyces mellis, Zygosaccharomyces Pseudorouxii, Zygosaccharomyces rouxii |
Alcoholic beverages | Saccharomyces cerevisiae, Candida colliculosa, C. stellata, Hanseniaspora uvarum, Kloeckera apiculata, Kl. thermotolerans, Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia fermentans, Schizosaccharomyces pombe, Hanseniaspora uvarum, Oenococcus oeni, Lb. plantatum |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capozzi, V.; Fragasso, M.; Russo, P. Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms 2020, 8, 306. https://doi.org/10.3390/microorganisms8020306
Capozzi V, Fragasso M, Russo P. Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms. 2020; 8(2):306. https://doi.org/10.3390/microorganisms8020306
Chicago/Turabian StyleCapozzi, Vittorio, Mariagiovanna Fragasso, and Pasquale Russo. 2020. "Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance" Microorganisms 8, no. 2: 306. https://doi.org/10.3390/microorganisms8020306
APA StyleCapozzi, V., Fragasso, M., & Russo, P. (2020). Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms, 8(2), 306. https://doi.org/10.3390/microorganisms8020306