Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Collection
2.2. Aflatoxin B1 in Food and Daily Intake
2.3. Aflatoxin M1 in Urine
2.4. Enumeration and Isolation of Lactic Acid Bacteria
2.5. Identification of Bacterial Isolates
2.6. Aflatoxin B1 Binding to the Isolated Lactobacillus Species
2.7. Statistical Analysis
2.8. Ethical Clearance
3. Results
3.1. Aflatoxin B1 Contamination in Food
3.2. Daily Intake of Aflatoxin B1
3.3. Aflatoxin M1 in Urine
3.4. Enumeration of Lactic Acid Bacteria
3.5. Isolation, Identification, and Aflatoxin B1 Binding Properties of Lactobacillus Species
3.6. Distribution of Lactobacillus Species in Stool Samples
3.7. Lactobacillus Inversely Correlates with Growth
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chang, W.; Xie, Q.; Zheng, A.; Zhang, S.; Chen, Z.; Wang, J.; Liu, G.; Cai, H. Effects of aflatoxins on growth performance and skeletal muscle of cherry valley meat male ducks. Anim. Nutr. 2016, 2, 186–191. [Google Scholar] [CrossRef]
- Feng, L.; Yang, D.; Li, H.; Tian, Y.; Zhao, T.; Zhang, R. Survey on pollution of aflatoxin b1 in foodstuffs. Parasitoses Infec. Dis. 2014, 3, 117–119. [Google Scholar]
- Wacoo, A.P.; Wendiro, D.; Vuzi, P.C.; Hawumba, J.F. Methods for detection of aflatoxins in agricultural food crops. J. Appl. Chem. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Cardwell, K.; Hounsa, A.; Egal, S.; Turner, P.C.; Hall, A.J.; Wild, C.P. Dietary aflatoxin exposure and impaired growth in young children from benin and togo: Cross sectional study. Br. Med. J. 2002, 325, 20–21. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, N.J.; Hsu, H.-H.; Chandyo, R.K.; Shrestha, B.; Bodhidatta, L.; Tu, Y.-K.; Gong, Y.-Y.; Egner, P.A.; Ulak, M.; Groopman, J.D. Aflatoxin exposure during the first 36 months of life was not associated with impaired growth in nepalese children: An extension of the mal-ed study. PLoS ONE 2017, 12, e0172124. [Google Scholar] [CrossRef]
- Bahey, N.G.; Elaziz, H.O.A.; Gadalla, K.K.E.S. Toxic effect of aflatoxin b1 and the role of recovery on the rat cerebral cortex and hippocampus. Tissue Cell 2015, 47, 559–566. [Google Scholar] [CrossRef] [PubMed]
- East Africa Standard. Milled Maize (Corn) Products—Specification; East Africa Community: Arusha, Tanzania, 2011; pp. 1–11. [Google Scholar]
- Codex Alimentarius Commission (CAC). Codex General Standard for Contaminants and Toxins in Food and Feed. Codex Standard 193–1995. 2014. Available online: http://www.codexalimentarius.net (accessed on 14 January 2020).
- European Communities. Setting maximum levels for certain contaminants in foodstuffs. Commission Regulation (EC) NO. 1881/2006 of 19 December 2006. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Matacic, C. Fungal toxins are poisoning africa’s children, says new report. Sci. News 2016, 18. [Google Scholar] [CrossRef]
- Wacoo, A.P.; Wendiro, D.; Nanyonga, S.; Hawumba, J.F.; Sybesma, W.; Kort, R. Feasibility of a novel on-site detection method for aflatoxin in maize flour from markets and selected households in Kampala, Uganda. Toxins 2018, 10, 1–12. [Google Scholar]
- Muzoora, S.; Khaitsa, M.L.; Bailey, H.; Vuzi, P. Status on aflatoxin levels in groundnuts in Uganda. Pan Afr. Med. J. 2017, 27, 11. [Google Scholar]
- Asiki, G.; Seeley, J.; Srey, C.; Baisley, K.; Lightfoot, T.; Archileo, K.; Agol, D.; Abaasa, A.; Wakeham, K.; Routledge, M.N. A pilot study to evaluate aflatoxin exposure in a rural ugandan population. Trop. Med. Int. Health 2014, 19, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Kikafunda, J.; Agaba, E.; Bambona, A. Malnutrition amidst plenty: An assessment of factors responsible for persistent high levels of childhood stunting in food secure western Uganda. Afr. J. Food Agric. Nutr. Dev. 2014, 14, 2088–2113. [Google Scholar]
- Watson, S.; Gong, Y.Y.; Routledge, M. Interventions targeting child undernutrition in developing countries may be undermined by dietary exposure to aflatoxin. Crit. Rev. Food Sci. Nutr. 2017, 57, 1963–1975. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S. Intestinal absorption and excretion of aflatoxin in rats. Toxicol. Appl. Pharmacol. 1989, 97, 88–97. [Google Scholar] [CrossRef]
- Liew, W.-P.-P.; Mohd-Redzwan, S. Mycotoxin: Its impact on gut health and microbiota. Front. Cell. Infec. Microbiol. 2018, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Tang, L.; Glenn, T.C.; Wang, J.-S. Aflatoxin b1 induced compositional changes in gut microbial communities of male f344 rats. Toxicol. Sci. 2015, 150, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Galarza-Seeber, R.; Latorre, J.D.; Bielke, L.R.; Kuttappan, V.A.; Wolfenden, A.D.; Hernandez-Velasco, X.; Merino-Guzman, R.; Vicente, J.L.; Donoghue, A.; Cross, D. Leaky gut and mycotoxins: Aflatoxin b1 does not increase gut permeability in broiler chickens. Front. Vet. Sci. 2016, 3, 10. [Google Scholar] [CrossRef]
- Ihekweazu, F.D.; Versalovic, J. Development of the pediatric gut microbiome: Impact on health and disease. Am. J. Med. Sci. 2018, 356, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Guarner, F.; Malagelada, J.-R. Gut flora in health and disease. The Lancet 2003, 361, 512–519. [Google Scholar] [CrossRef]
- Li, J.; Sung, C.Y.J.; Lee, N.; Ni, Y.; Pihlajamäki, J.; Panagiotou, G.; El-Nezami, H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc. Natl. Acad. Sci. USA 2016, 113, E1306–E1315. [Google Scholar] [CrossRef] [Green Version]
- El-Nezami, H.S.; Polychronaki, N.N.; Ma, J.; Zhu, H.; Ling, W.; Salminen, E.K.; Juvonen, R.O.; Salminen, S.J.; Poussa, T.; Mykkänen, H.M. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from southern china. Am. J. Clin. Nutr. 2006, 83, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Redzwan, S.M.; Mutalib, M.S.A.; Wang, J.-S.; Ahmad, Z.; Kang, M.-S.; Nasrabadi, E.N.; Jamaluddin, R. Effect of supplementation of fermented milk drink containing probiotic lactobacillus casei shirota on the concentrations of aflatoxin biomarkers among employees of universiti putra malaysia: A randomised, double-blind, cross-over, placebo-controlled study. Br. J. Nutr. 2016, 115, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin b1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef]
- Lili, Z.; Junyan, W.; Hongfei, Z.; Baoqing, Z.; Bolin, Z. Detoxification of cancerogenic compounds by lactic acid bacteria strains. Crit. Rev. Food Sci. Nutr. 2018, 58, 2727–2742. [Google Scholar] [CrossRef]
- Stepman, F. Scaling-up the impact of aflatoxin research in Africa. The role of social sciences. Toxins 2018, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Wacoo, P.A.; Ocheng, M.; Wendiro, D.; Vuzi, P.C.; Hawumba, F.J. Development and characterization of an electroless plated silver/cysteine sensor platform for the electrochemical determination of aflatoxin B1. J. Sens. 2016, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wacoo, A.P.; Mukisa, I.M.; Meeme, R.; Byakika, S.; Wendiro, D.; Sybesma, W.; Kort, R. Probiotic enrichment and reduction of aflatoxins in a traditional African maize-based fermented food. Nutrients 2019, 11, 265. [Google Scholar] [CrossRef] [Green Version]
- Muhoozi, G.K.; Atukunda, P.; Diep, L.M.; Mwadime, R.; Kaaya, A.N.; Skaare, A.B.; Willumsen, T.; Westerberg, A.C.; Iversen, P.O. Nutrition, hygiene, and stimulation education to improve growth, cognitive, language, and motor development among infants in uganda: A cluster-randomized trial. Matern. Child Nutr. 2018, 14, e12527. [Google Scholar] [CrossRef] [Green Version]
- Atukunda, P.; Muhoozi, G.K.; van den Broek, T.J.; Kort, R.; Diep, L.M.; Kaaya, A.N.; Iversen, P.O.; Westerberg, A.C. Child development, growth and microbiota: Follow-up of a randomized education trial in Uganda. J. Glob. Health 2019, 9, 1–11. [Google Scholar] [CrossRef]
- WHO Multicentre Growth Reference Study Group. Who child growth standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76. [Google Scholar]
- Obade, M.I.; Andang’o, P.; Obonyo, C.; Lusweti, F. Exposure of children 4 to 6 months of age to aflatoxin in Kisumu county, Kenya. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9949–9963. [Google Scholar]
- Dary, O.; Jariseta, Z.R. Validation of dietary applications of household consumption and expenditures surveys (hces) against a 24-hour recall method in Uganda. Food Nutr. Bull. 2012, 33, S190–S198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Conference on Harmonization, Guideline. In Validation of analytical procedures: Text and methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 8–13 November 2005; pp. 11–12. [Google Scholar]
- Vasiliades, J. Reaction of alkaline sodium picrate with creatinine: I. Kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin. Chem. 1976, 22, 1664–1671. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Neubert, A.; Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 2002, 75, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Du, C.; Lin, L.; Chen, W.; Tan, L.; Shen, J.; Pearce, E.N.; Zhang, Y.; Gao, M.; Bian, J. Anthropometry-based 24-h urinary creatinine excretion reference for Chinese children. PLoS ONE 2018, 13, e0197672. [Google Scholar] [CrossRef] [PubMed]
- Felske, A.; Wolterink, A.; Van Lis, R.; Akkermans, A.D. Phylogeny of the main bacterial 16S rRNA sequences in Drentsche Aa grassland soils (The Netherlands). Appl. Environ. Microbiol. 1998, 64, 871–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Molecul. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Flach, J.; Ribeiro, C.d.S.; van der Waal, M.B.; van der Waal, R.X.; Claassen, E.; van de Burgwal, L.H. The nagoya protocol on access to genetic resources and benefit sharing: Best practices for users of lactic acid bacteria. Pharma Nutr. 2019, 100158, 1–6. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Simpson, G.; Solymos, P.; Stevens, M.; Wagner, H. Vegan: Community ecology package version 2.3–2. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 1 September 2019).
- Siwela, A.H.; Siwela, M.; Matindi, G.; Dube, S.; Nziramasanga, N. Decontamination of aflatoxin-contaminated maize by dehulling. J. Sci. Food Agric. 2005, 85, 2535–2538. [Google Scholar] [CrossRef]
- Okoth, S. Improving the evidence base on aflatoxin contamination and exposure in africa; CTA: Chicago, IL, USA, 2016. [Google Scholar]
- Liu, Y.; Wu, F. Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ. Health Perspect. 2010, 118, 818. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.H.; Jamaluddin, R.; Sabran, M.R. Association between urinary aflatoxin (AFM1) and dietary intake among adults in hulu langat district, selangor, malaysia. Nutrients 2018, 10, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltonen, K.; El-Nezami, H.; Haskard, C.; Ahokas, J.; Salminen, S. Aflatoxin b1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci. 2001, 84, 2152–2156. [Google Scholar] [CrossRef]
- Fazeli, M.R.; Hajimohammadali, M.; Moshkani, A.; Samadi, N.; Jamalifar, H.; Khoshayand, M.R.; Vaghari, E.; Pouragahi, S. Aflatoxin b1 binding capacity of autochthonous strains of lactic acid bacteria. J. Food Prot. 2009, 72, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.; Onsongo, M.; Njapau, H.; Schurz-Rogers, H.; Luber, G.; Kieszak, S.; Nyamongo, J.; Backer, L.; Dahiye, A.M.; Misore, A. Aflatoxin contamination of commercial maize products during an outbreak of acute aflatoxicosis in eastern and central Kenya. Environ. Health Perspect. 2005, 113, 1763–1767. [Google Scholar] [CrossRef]
- Haskard, C.A.; El-Nezami, H.S.; Kankaanpää, P.E.; Salminen, S.; Ahokas, J.T. Surface binding of aflatoxin b1 by lactic acid bacteria. Appl. Environ. Microbiol. 2001, 67, 3086–3091. [Google Scholar] [CrossRef] [Green Version]
- Winnie-Pui-Pui Liew, Z.N.; Adilah, L.T.; Sabran, M.-R. The binding efficiency and interaction of lactobacillus casei shirota toward aflatoxin b1. Front. Microbiol. 2018, 9, 1–12. [Google Scholar]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Palacio, S.D.; Montes, S.A.; Mancabelli, L. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.A.; Taligoola, H.K.; Nakamya, R. Mycobiota associated with baby food products imported into uganda with special reference to aflatoxigenic aspergilli and aflatoxins. Czech Mycol. 2008, 60, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Kitya, D.; Bbosa, G.; Mulogo, E. Aflatoxin levels in common foods of south western uganda: A risk factor to hepatocellular carcinoma. Eur. J. Cancer Care 2010, 19, 516–521. [Google Scholar] [CrossRef]
- Liew, W.-P.-P.; Mohd-Redzwan, S.; Than, L.T.L. Gut microbiota profiling of aflatoxin b1-induced rats treated with lactobacillus casei shirota. Toxins 2019, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Saran, S.; Gopalan, S.; Krishna, T.P. Use of fermented foods to combat stunting and failure to thrive. Nutrition 2002, 18, 393–396. [Google Scholar] [CrossRef]
- Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef]
- Lindsay, B.; Oundo, J.; Hossain, M.A.; Antonio, M.; Tamboura, B.; Walker, A.W.; Paulson, J.N.; Parkhill, J.; Omore, R.; Faruque, A.S. Microbiota that affect risk for shigellosis in children in low-income countries. Emerg. Infect. Dis. 2015, 21, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Jiang, L.; Zhang, M.; Zhao, L.; Hao, Y.; Guo, H.; Sang, Y.; Zhang, H.; Ren, F. The adhesion of Lactobacillus salivarius REN to a human intestinal epithelial cell line requires s-layer proteins. Sci. Rep. 2017, 7, 44029. [Google Scholar] [CrossRef] [PubMed]
- Peles, F.; Sipos, P.; Győri, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse effects, transformation and channeling of aflatoxins into food raw materials in livestock. Front. Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratz, S.; Mykkänen, H.; Ouwehand, A.; Juvonen, R.; Salminen, S.; El-Nezami, H. Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin b1 in vitro. Appl. Environ. Microbiol. 2004, 70, 6306–6308. [Google Scholar] [CrossRef] [Green Version]
- Sybesma, W.; Kort, R.; Lee, Y.-K. Locally sourced probiotics, the next opportunity for developing countries? Trends Biotechnol. 2015, 33, 197–200. [Google Scholar] [CrossRef]
Subject ID | District | Subcounty | Sex (M/F) | Stunted | HAZ | Weight (kg) | Height (cm) | LAB in Stool (cfu g−1) | AFM1 (pg mg−1) | AFB1 (ng kg−1 day−1) |
---|---|---|---|---|---|---|---|---|---|---|
1634 | Kabale | Ruhija | M | YES | −4.24 | 12.8 | 90.6 | 8.9 × 106 | 102 | 52.9 |
2288 | Kisoro | Nyakabande | M | NO | −0.17 | 19.5 | 109 | 5.9 × 107 | 96.1 | 79.4 |
1553 | Kabale | Muko | F | YES | −2.64 | 17.0 | 96.2 | 7.4 × 107 | 146 | 80.3 |
2213 | Kisoro | Nyakabande | M | YES | −4.72 | 13.4 | 92.5 | 2.8 × 107 | 58.7 | 18.5 |
2439 | Kisoro | Nyarusiza | M | YES | −4.15 | 14.1 | 89.9 | 1.1 ×108 | 14.8 | 1.1 |
2112 | Kisoro | Muramba | F | NO | −0.64 | 17.9 | 106 | 3.8 × 107 | 81.2 | 26.6 |
2172 | Kisoro | Muramba | F | NO | −1.42 | 17.7 | 102 | 4.7 ×107 | 168 | 88.6 |
1317 | Kabale | Kamwganguzi | M | NO | −0.98 | 17.5 | 105 | 1.9 × 108 | 110 | 77.0 |
1161 | Kabale | Butanda | F | YES | −4.01 | 15.0 | 90.0 | 1.2 × 108 | 51.2 | 2.3 |
1434 | Kabale | Kamweesi | F | NO | 0.50 | 18.8 | 112 | 2.9 × 107 | 99.1 | 73.8 |
Subject ID | Identity * (%) | Isolate ** | Bound Aflatoxin B1 (%) | Abundance (%) *** | Prevalence (%) *** | ||
---|---|---|---|---|---|---|---|
20–24 Months | 36 Months | 20–24 Months | 36 Months | ||||
1634 | 100 | L. plantarumAPW1634 | 34.3 ± 6.7 | 0.003 | 0.7 | 15 | 45 |
2288 | 99 | L. fermentum APW2288 | 25.1 ± 0.4 | 0.03 | 0.2 | 22.9 | 34.3 |
2288 | 99 | L. rhamnosus APW2288B | 13.7 ± 0 | 0 | 0.007 | 0 | 2.1 |
2288 | 99 | L. casei APW2288E | 59.6 ± 6.3 | 0.0005 | 0.1 | 3.6 | 17.9 |
1553 | 99 | L. plantarum APW1553A | 19.2 ± 0 | 0.003 | 0.7 | 15 | 45 |
1553 | 99 | L. brevis APW1553 | 45.9 ± 3.1 | 0.003 | 0.7 | 7.9 | 30 |
2213 | 99 | L. casei APW2213 | 62.6 ± 4.8 | 0.0005 | 0.1 | 3.6 | 17.9 |
2213 | 99 | L. buchneri APW2213E | 42.1 ± 8.2 | 0.0002 | 0.1 | 2.1 | 16.4 |
2439 | 99 | L. casei APW2439C | 37.9 ± 11.1 | 0.0005 | 0.1 | 3.6 | 17.9 |
2439 | 96 | L. casei APW2439A | 35.4 ± 5.5 | 0.0005 | 0.1 | 3.6 | 17.9 |
2112 | 99 | L. plantarum APW2112A | 0.9 ± 1.3 | 0.003 | 0.7 | 15 | 45 |
2112 | 99 | L. brevis APW2112 | 31.8 ± 0.7 | 0.003 | 0.7 | 7.9 | 30 |
2112 | 99 | L. casei APW2112D | 46.9 ± 1.5 | 0.0005 | 0.1 | 3.6 | 17.9 |
2172 | 99 | L. casei APW2172A | 20.1 ± 0 | 0.0005 | 0.1 | 3.6 | 17.9 |
2172 | 99 | L. casei APW2172C | 49.1 ± 3.9 | 0.0005 | 0.1 | 3.6 | 17.9 |
1317 | 99 | L. plantarum APW1317A | 49.4 ± 14.7 | 0.003 | 0.7 | 15 | 45 |
1317 | 99 | L. fermentum APW1317 | 76.1 ± 12.9 | 0.03 | 0.2 | 22.9 | 34.3 |
1161 | 99 | L. casei APW1161 | 54.5 ± 2.8 | 0.0005 | 0.1 | 3.6 | 17.9 |
1161 | 99 | L. pantheris APW1161C | 57.6 ± 1.7 | 0 | 0.003 | 0 | 4.3 |
1161 | 99 | L. paracasei APW1161D | 46.7 ± 17.7 | 0.0005 | 0.1 | 3.6 | 17.9 |
1434 | 99 | L. plantarum APW1434B | 10.7 ± 0 | 0.003 | 0.7 | 15 | 45 |
1434 | 99 | L. fermentum APW1434 | 45.9 ± 9.3 | 0.03 | 0.2 | 22.9 | 34.3 |
1434 | 99 | L. casei APW1434D | 25.9 ± 0.7 | 0.0005 | 0.1 | 3.6 | 17.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wacoo, A.P.; Atukunda, P.; Muhoozi, G.; Braster, M.; Wagner, M.; van den Broek, T.J.; Sybesma, W.; Westerberg, A.C.; Iversen, P.O.; Kort, R. Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children. Microorganisms 2020, 8, 347. https://doi.org/10.3390/microorganisms8030347
Wacoo AP, Atukunda P, Muhoozi G, Braster M, Wagner M, van den Broek TJ, Sybesma W, Westerberg AC, Iversen PO, Kort R. Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children. Microorganisms. 2020; 8(3):347. https://doi.org/10.3390/microorganisms8030347
Chicago/Turabian StyleWacoo, Alex Paul, Prudence Atukunda, Grace Muhoozi, Martin Braster, Marijke Wagner, Tim J van den Broek, Wilbert Sybesma, Ane C. Westerberg, Per Ole Iversen, and Remco Kort. 2020. "Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children" Microorganisms 8, no. 3: 347. https://doi.org/10.3390/microorganisms8030347
APA StyleWacoo, A. P., Atukunda, P., Muhoozi, G., Braster, M., Wagner, M., van den Broek, T. J., Sybesma, W., Westerberg, A. C., Iversen, P. O., & Kort, R. (2020). Aflatoxins: Occurrence, Exposure, and Binding to Lactobacillus Species from the Gut Microbiota of Rural Ugandan Children. Microorganisms, 8(3), 347. https://doi.org/10.3390/microorganisms8030347