Closely Located but Totally Distinct: Highly Contrasting Prokaryotic Diversity Patterns in Raised Bogs and Eutrophic Fens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Procedure
2.2. Chemical Analyses
2.3. DNA Extraction and Sequencing Procedure
2.4. Bioinformatic Analyses
2.5. Nucleotide Sequence Accession Number
3. Results
3.1. Peat Chemistry in Bogs and Fens
3.2. Sequencing Statistics and Alpha-Diversity Metrics
3.3. Microbial Diversity Patterns at the Phylum Level
3.4. Bacterial Groups Characteristic for Specific Types of Mires
3.5. Most Abundant Habitat-Specific OTUs
3.6. Correlation between Peat Properties and Abundance of Microbial Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramsar Convention on Wetlands. Global Wetland Outlook: State of the World’s Wetlands and their Services to People; Ramsar Convention Secretariat: Gland, Switzerland, 2018. [Google Scholar]
- Matthews, E.; Fung, I. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles 1987, 1, 61–86. [Google Scholar] [CrossRef]
- Aselmann, I.; Crutzen, P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem. 1989, 8, 307–358. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Roulet, N.; Rydin, H.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef] [Green Version]
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Juottonen, H.; Galand, P.E.; Tuittila, E.S.; Laine, J.; Fritze, H.; Yrjälä, K. Methanogen communities and Bacteria along an ecohydrological gradient in a northern raised bog complex. Environ. Microbiol. 2005, 7, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Dedysh, S.N.; Pankratov, T.A.; Belova, S.E.; Kulichevskaya, I.S.; Liesack, W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl. Environ. Microbiol. 2006, 72, 2110–2117. [Google Scholar] [CrossRef] [Green Version]
- Hartman, W.H.; Richardson, C.J.; Vilgalys, R.; Bruland, G.L. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc. Natl. Acad. Sci. USA 2008, 105, 17842–17847. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Green, S.; Tfaily, M.M.; Prakash, O.; Konstantinidis, K.T.; Corbett, J.E.; Chanton, J.P.; Cooper, W.T.; Kostka, J.E. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl. Environ. Microbiol. 2012, 78, 7023–7031. [Google Scholar] [CrossRef] [Green Version]
- Pankratov, T.A.; Ivanova, A.O.; Dedysh, S.N.; Liesack, W. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environ. Microbiol. 2011, 13, 1800–1814. [Google Scholar] [CrossRef]
- Serkebaeva, Y.M.; Kim, Y.; Liesack, W.; Dedysh, S.N. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS ONE 2013, 8, e63994. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Tfaily, M.M.; Green, S.J.; Steinweg, J.M.; Chanton, P.; Imvittaya, A.; Chanton, J.P.; Cooper, W.; Schadt, C.; Kostka, J.E. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl. Environ. Microbiol. 2014, 80, 3531–3540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, A.A.; Wegner, C.E.; Kim, Y.; Liesack, W.; Dedysh, S.N. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. Mol. Ecol. 2016, 25, 4818–4835. [Google Scholar] [CrossRef] [PubMed]
- Kotiaho, M.; Fritze, H.; Merilä, P.; Tuomivirta, T.; Väliranta, M.; Korhola, A.; Karofeld, E.; Tuittila, E.S. Actinobacteria community structure in the peat profile of boreal bogs follows a variation in the microtopographical gradient similar to vegetation. Plant Soil 2013, 369, 103–114. [Google Scholar] [CrossRef]
- Juottonen, H.; Kotiaho, M.; Robinson, D.; Merilä, P.; Fritze, H.; Tuittila, E.S. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific. FEMS Microbiol. Ecol. 2015, 91, fiv094. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N. Cultivating uncultured bacteria from northern wetlands: Knowledge gained and remaining gaps. Front. Microbiol. 2011, 2, 184. [Google Scholar] [CrossRef] [Green Version]
- Hunger, S.; Gößner, A.S.; Drake, H.L. Anaerobic trophic interactions of contrasting methane-emitting mire soils: Processes versus taxa. FEMS Microbiol. Ecol. 2015, 91, fiv045. [Google Scholar] [CrossRef]
- Schmidt, O.; Horn, M.A.; Kolb, S.; Drake, H.L. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil. Environ. Microbiol. 2014, 17, 720–734. [Google Scholar] [CrossRef]
- Sirin, A.; Minayeva, T.; Yurkovskaya, T.; Kuznetsov, O.; Smagin, V.; Fedotov, Y. Russian Federation (European Part). In Mires and Peatlands of Europe: Status, Distribution and Conservation; Joosten, H., Tanneberger, F., Moen, A., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2017; pp. 589–616. [Google Scholar]
- Philippov, D.A. Flora Shichengskogo vodnobolotnogo ugod’ya (Vologodskaya oblast’) [Flora of wetland “Shichengskoe” (Vologda Region, Russia)]. Fitoraznoobrazie Vostochnoj Evr. 2015, 9, 86–115. (In Russian) [Google Scholar]
- Minor, M.A.; Ermilov, S.G.; Philippov, D. Hydrology-driven environmental variability determines abiotic characteristics and Oribatida diversity patterns in a Sphagnum peatland system. Exp. Appl. Acarol. 2019, 77, 43–58. [Google Scholar] [CrossRef]
- Kutenkov, S.A.; Philippov, D.A. Aapa mire on the southern limit: A case study in Vologda Region (north-western Russia). Mires Peat 2019, 24, 1–20. [Google Scholar]
- Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016, 92, fiw018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.; Kuczynski, J.; Stombaugh, J. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Glöckner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Bruns, G.; Yarza, P.; Peplies, J.; Westram, R.; et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 2017, 261, 169–176. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Asnicar, F.; Weingart, G.; Tickle, T.L.; Huttenhower, C.; Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015, 3, e1029. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Tfaily, M.M.; Steinweg, J.M.; Chanton, P.; Esson, K.; Yang, Z.K.; Chanton, J.P.; Cooper, W.; Schadt, C.W.; Kostka, J.E. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl. Environ. Microbiol. 2014, 80, 3518–3530. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Oren, A. Acidobacteriia. In Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W.B., Rainey, F.A., Kämpfer, P., Trujillo, M.E., DeVos, P., Hedlund, B., Dedysh, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 1–2. ISBN 9781118960608. [Google Scholar]
- Pankratov, T.A.; Kirsanova, L.A.; Kaparullina, E.N.; Kevbrin, V.V.; Dedysh, S.N. Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int. J. Syst. Evol. Microbiol. 2012, 62, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belova, S.E.; Ravin, N.V.; Pankratov, T.A.; Rakitin, A.L.; Ivanova, A.A.; Beletsky, A.V.; Mardanov, A.V.; Sinninghe Damsté, J.S.; Dedysh, S.N. Hydrolytic capabilities as a key to environmental success: Chitinolytic and cellulolytic Acidobacteria from acidic sub-arctic soils and boreal peatlands. Front. Microbiol. 2018, 9, 2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulichevskaya, I.S.; Belova, S.E.; Komov, V.T.; Dedysh, S.N.; Zavarzin, G.A. Phylogenetic composition of bacterial communities in small boreal lakes and ombrotrophic bogs of the upper Volga basin. Microbiology 2011, 80, 549–557. [Google Scholar] [CrossRef]
- Danilova, O.V.; Belova, S.E.; Gagarinova, I.V.; Dedysh, S.N. Microbial community composition and methanotroph diversity of a subarctic wetland in Russia. Microbiology 2016, 85, 583–591. [Google Scholar] [CrossRef]
- Nogales, B.; Moore, E.R.; Llobet-Brossa, E.; Rossello-Mora, R.; Amann, R.; Timmis, K.N. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 2001, 67, 1874–1884. [Google Scholar] [CrossRef] [Green Version]
- Dedysh, S.N.; Ivanova, A.A. Planctomycetes in boreal and subarctic wetlands: Diversity patterns and potential ecological functions. FEMS Microbiol. Ecol. 2019, 95, fiy227. [Google Scholar] [CrossRef] [Green Version]
- Kovaleva, O.L.; Merkel, Y.Y.; Novikov, A.A.; Baslerov, R.V.; Toshchakov, S.V.; Bonch-Osmolovskaya, E.A. Tepidisphaera mucosa gen.nov.,sp.nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam.nov., and a new order, Tepidisphaerales. Int. J. Syst. Evol. Microbiol. 2015, 65, 549–555. [Google Scholar] [CrossRef]
- Putkinen, A.; Larmola, T.; Tuomivirta, T.; Siljanen, H.M.P.; Bodrossy, L.; Tuittila, E.S.; Fritze, H. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol. Ecol. 2014, 88, 596–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Op den Camp, H.J.M.; Islam, T.; Stott, M.B.; Harhangi, H.R.; Hynes, A.; Schouten, S.; Jetten, M.S.M.; Birkeland, N.K.; Pol, A.; Dunfield, P.F. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 2009, 1, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.E.; Smirnova, A.V.; Graham, J.M.; Stott, M.B.; Khadka, R.; Moore, T.R.; Grasby, S.E.; Strack, M.; Dunfield, P.F. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ. Microbiol. 2014, 16, 1867–1878. [Google Scholar] [CrossRef] [PubMed]
- Castelle, C.J.; Brown, C.T.; Anantharaman, K.; Probst, A.J.; Huang, R.H.; Banfield, J.F. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 2018, 16, 629–645. [Google Scholar] [CrossRef]
Characteristics | Shichengskoe Mire | Piyavochnoe Mire | ||
---|---|---|---|---|
Sampling Site | Raised Bog | Fen | Raised Bog | Fen |
Coordinates | 59°56′56″ N, 41°16′59″ E | 59°56′31″ N, 41°15′53″ E | 60°46′29″ N, 36°49′35″ E | 60°46′08″ N, 36°49′30″ E |
Sampling date | 19.08.2019 | 19.08.2019 | 21.08.2019 | 21.08.2019 |
Water characteristics | ||||
water level depth, cm | 4 7 | 8 13 | 5 8 | 11 13 |
pH | 4.3 | 7.4 | 3.7 | 6.9 |
T, °C | 12.2–13.3 | 11.1–11.5 | 12.8–13.6 | 12.9–13.3 |
Total dissolved solids, ppm | 29–36 | 197–204 | 31–32 | 65–113 |
Electrical conductivity, µS/cm | 58–72 | 394–408 | 63–64 | 130–225 |
Peat characteristics: | ||||
Total organic carbon (%) | 88.5 | 73.6 | 85.1 | 71.6 |
N total (%) | 0.605 | 2.31 | 0.923 | 1.65 |
Sulfate (mg/L) | 172 | 202 | 220 | 222 |
Fe (ppm) | 343 | 9387 | 1347 | 16344 |
Ca (ppm) | 3522 | 29834 | 4190 | 27373 |
Mg (ppm) | 634 | 2575 | 682 | 1078 |
P (ppm) | 614 | 1179 | 791 | 1305 |
Plant community | Eriophorum vaginatum –Sphagnum angustifolium | Equisetum palustre –Sphagnum warnstorfii | Eriophorum vaginatum –Sphagnum angustifolium | Comarum palustre –Menyanthes trifoliata–Sphagnum warnstorfii |
Vegetation coverage, % | 97–98 | 95–97 | 98–99 | 97–98 |
Sampling Site | Sample ID | Technical Replicates | Input Reads | Filtered Reads | Denoised Reads | Non-Chimeric Reads | Input/Non-Chimeric (%) | Diversity Indices | ||
---|---|---|---|---|---|---|---|---|---|---|
Shannon | Observed OTUs | Pielou Evenness | ||||||||
Shichenskoe raised bog | I | 1 | 16,569 | 13,986 | 11,328 | 7911 | 47.75 | 6.26 | 234 | 0.79 |
2 | 13,368 | 11,311 | 8653 | 7871 | 58.88 | 7.06 | 263 | 0.88 | ||
3 | 9981 | 8448 | 6162 | 5837 | 58.48 | 6.78 | 219 | 0.87 | ||
II | 1 | 36,199 | 30,577 | 24,854 | 19,354 | 53.47 | 7.23 | 343 | 0.86 | |
2 | 26,855 | 22,556 | 18,200 | 15,028 | 55.96 | 6.88 | 293 | 0.84 | ||
3 | 21,574 | 18,317 | 14,728 | 12,698 | 58.86 | 7.24 | 299 | 0.88 | ||
III | 1 | 25,592 | 21,468 | 17,926 | 14,643 | 57.22 | 6.70 | 269 | 0.83 | |
2 | 15,806 | 13,431 | 11,061 | 9140 | 57.83 | 6.60 | 218 | 0.85 | ||
3 | 22,249 | 18,550 | 15,202 | 12,560 | 56.45 | 6.77 | 246 | 0.85 | ||
Shichenskoe fen | I | 1 | 66,173 | 55,426 | 34,436 | 33,475 | 50.59 | 9.25 | 965 | 0.93 |
2 | 41,081 | 34,587 | 19,400 | 18,869 | 45.93 | 8.72 | 757 | 0.91 | ||
3 | 22,977 | 19,098 | 10,130 | 9904 | 43.10 | 8.16 | 538 | 0.90 | ||
II | 1 | 13,255 | 10,914 | 4391 | 4391 | 33.13 | 7.67 | 384 | 0.89 | |
2 | 18,070 | 15,079 | 7765 | 7744 | 42.86 | 8.12 | 530 | 0.90 | ||
3 | 11,726 | 9796 | 3941 | 3855 | 32.88 | 7.58 | 379 | 0.89 | ||
III | 1 | 17,321 | 14,565 | 7189 | 7114 | 41.07 | 7.88 | 460 | 0.89 | |
2 | 14,215 | 11,974 | 5838 | 5795 | 40.77 | 7.73 | 428 | 0.88 | ||
3 | 19,799 | 16,609 | 8456 | 8332 | 42.08 | 7.84 | 457 | 0.89 | ||
Piyavochnoe fen | I | 1 | 59,217 | 49,585 | 30,626 | 29,298 | 49.48 | 8.80 | 865 | 0.90 |
2 | 29,471 | 24,831 | 14,240 | 13,779 | 46.75 | 8.33 | 651 | 0.89 | ||
3 | 30,310 | 25,511 | 14,449 | 14,029 | 46.29 | 8.17 | 569 | 0.89 | ||
II | 1 | 15,285 | 12,807 | 5039 | 5030 | 32.91 | 7.64 | 440 | 0.87 | |
2 | 27,096 | 22,699 | 11,467 | 11,253 | 41.53 | 8.22 | 632 | 0.88 | ||
III | 1 | 21,514 | 17,694 | 8561 | 8548 | 39.73 | 7.97 | 484 | 0.89 | |
2 | 22,856 | 19,147 | 9301 | 9132 | 39.95 | 8.06 | 542 | 0.89 | ||
3 | 26,518 | 22,124 | 11,157 | 10,862 | 40.96 | 8.16 | 558 | 0.89 | ||
Piyavochnoe raised bog | I | 1 | 23,968 | 20,170 | 15,768 | 13,598 | 56.73 | 7.21 | 329 | 0.86 |
2 | 13,966 | 11,754 | 8665 | 7783 | 55.73 | 6.77 | 251 | 0.85 | ||
3 | 30,399 | 24,950 | 19,350 | 16,556 | 54.46 | 7.31 | 343 | 0.87 | ||
II | 1 | 28,820 | 24,120 | 17,711 | 15,710 | 54.51 | 7.39 | 355 | 0.87 | |
2 | 29,935 | 25,098 | 18,802 | 16,641 | 55.59 | 7.57 | 374 | 0.89 | ||
3 | 33,092 | 27,498 | 20,233 | 18,084 | 54.65 | 7.58 | 391 | 0.88 | ||
III | 1 | 19,036 | 16,003 | 12,938 | 11,136 | 58.50 | 6.69 | 252 | 0.84 | |
2 | 11,608 | 9639 | 7182 | 6435 | 55.44 | 6.27 | 186 | 0.83 | ||
3 | 14,882 | 12,387 | 9439 | 7947 | 53.40 | 6.32 | 219 | 0.81 |
OTU | % | Closest Silva Match | Sequence Identity (%) | Taxonomy | |
---|---|---|---|---|---|
Raised Bogs | 1 | 2.0 | FR720610 | 97.8 | Acidobacteria; Acidobacteriia; Acidobacteriales |
2 | 1.9 | HQ598818 | 96.5 | Acidobacteria; Acidobacteriia; Acidobacteriales; Acidobacteriaceae (SD 1) | |
3 | 1.5 | FJ625320 | 99.7 | Acidobacteria; Acidobacteriia; Bryobacterales; Bryobacteraceae (SD 3); Bryobacter | |
4 | 1.5 | HM445984 | 90.2 | Patescibacteria; Parcubacteria | |
5 | 1.5 | EF516015 | 98.3 | Acidobacteria; Acidobacteriia; Acidobacteriales | |
6 | 1.5 | HQ598778 | 99.3 | ||
7 | 1.4 | GU127746 | 93.8 | Planctomycetes; Phycisphaerae; Tepidisphaerales; WD2101 soil group | |
8 | 1.4 | EF173346 | 98.5 | Acidobacteria; Acidobacteriia; Acidobacteriales; Acidobacteriaceae (SD 1); Occallatibacter | |
9 | 1.3 | AY792285 | 99.0 | Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae | |
10 | 1.2 | CZKI01000047 | 95.0 | Verrucomicrobia; Verrucomicrobiae; Opitutales; Opitutaceae | |
11 | 1.0 | GU983329 | 97.0 | Acidobacteria; Acidobacteriia; Bryobacterales; Bryobacteraceae (SD 3); Candidatus Solibacter | |
12 | 1.0 | AY792311 | 96.0 | Verrucomicrobia; Verrucomicrobiae; Pedosphaerales; Pedosphaeraceae | |
13 | 1.0 | GU727715 | 97.5 | Acidobacteria; Acidobacteriia; Bryobacterales; Bryobacteraceae (SD 3); Bryobacter | |
14 | 0.9 | GQ402663 | 95.5 | Planctomycetes; Phycisphaerae; Tepidisphaerales; WD2101 soil group | |
15 | 0.8 | AY963300 | 94.8 | ||
16 | 0.8 | AM162437 | 97.8 | Proteobacteria; Alphaproteobacteria; Rhizobiales; Beijerinckiaceae; Roseiarcus | |
17 | 0.8 | GU127795 | 97.5 | Acidobacteria; Acidobacteriia; Acidobacteriales | |
18 | 0.8 | HM445277 | 98.0 | Proteobacteria; Gammaproteobacteria; WD260 | |
19 | 0.7 | EU150204 | 97.5 | Acidobacteria; Acidobacteriia; SD 2 | |
20 | 0.7 | HQ597923 | 96.3 | Acidobacteria; Acidobacteriia; Bryobacterales;Bryobacteraceae (SD 3); Candidatus Solibacter | |
21 | 0.7 | JN023510 | 96.8 | ||
Fens | 22 | 1.3 | AB630565 | 99.5 | Chloroflexi; Anaerolineae; Anaerolineales; Anaerolineaceae |
23 | 1.1 | JQ311867 | 92.8 | Planctomycetes; Phycisphaerae; Tepidisphaerales; WD2101 soil group | |
24 | 0.9 | LN570440 | 94.5 | Proteobacteria; Alphaproteobacteria; Caulbacterales; Hyphomonadaceae | |
25 | 0.8 | HM062099 | 97.5 | Vicinamibacteria | |
26 | 0.8 | FQ659415 | 86.2 | Patescibacteria; Parcubacteria; Ca. Nomurabacteria | |
27 | 0.7 | EF019369 | 96.8 | Chloroflexi; KD4-96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, A.A.; Beletsky, A.V.; Rakitin, A.L.; Kadnikov, V.V.; Philippov, D.A.; Mardanov, A.V.; Ravin, N.V.; Dedysh, S.N. Closely Located but Totally Distinct: Highly Contrasting Prokaryotic Diversity Patterns in Raised Bogs and Eutrophic Fens. Microorganisms 2020, 8, 484. https://doi.org/10.3390/microorganisms8040484
Ivanova AA, Beletsky AV, Rakitin AL, Kadnikov VV, Philippov DA, Mardanov AV, Ravin NV, Dedysh SN. Closely Located but Totally Distinct: Highly Contrasting Prokaryotic Diversity Patterns in Raised Bogs and Eutrophic Fens. Microorganisms. 2020; 8(4):484. https://doi.org/10.3390/microorganisms8040484
Chicago/Turabian StyleIvanova, Anastasia A., Alexey V. Beletsky, Andrey L. Rakitin, Vitaly V. Kadnikov, Dmitriy A. Philippov, Andrey V. Mardanov, Nikolai V. Ravin, and Svetlana N. Dedysh. 2020. "Closely Located but Totally Distinct: Highly Contrasting Prokaryotic Diversity Patterns in Raised Bogs and Eutrophic Fens" Microorganisms 8, no. 4: 484. https://doi.org/10.3390/microorganisms8040484
APA StyleIvanova, A. A., Beletsky, A. V., Rakitin, A. L., Kadnikov, V. V., Philippov, D. A., Mardanov, A. V., Ravin, N. V., & Dedysh, S. N. (2020). Closely Located but Totally Distinct: Highly Contrasting Prokaryotic Diversity Patterns in Raised Bogs and Eutrophic Fens. Microorganisms, 8(4), 484. https://doi.org/10.3390/microorganisms8040484