IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Antigens and Serological Testing
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ascherio, A. Environmental factors in multiple sclerosis. Expert Rev. Neurother. 2013, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Mameli, G.; Cossu, D.; Cocco, E.; Masala, S.; Frau, J.; Marrosu, M.G.; Sechi, L.A. Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis peptides are cross recognized by anti-myelin basic protein antibodies in multiple sclerosis patients. J. Neuroimmunol. 2014, 270, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Madeira, A.; Burgelin, I.; Perron, H.; Curtin, F.; Lang, A.B.; Faucard, R. MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: Relevance of GNbAC1 in multiple sclerosis treatment. J. Neuroimmunol. 2016, 291, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Perron, H.; Dougier-Reynaud, H.L.; Lomparski, C.; Popa, I.; Firouzi, R.; Bertrand, J.B.; Marusic, S.; Portoukalian, J.; Jouvin-Marche, E.; Villiers, C.L.; et al. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS ONE 2013, 8, e80128. [Google Scholar] [CrossRef]
- Perron, H.; Lang, A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin. Rev. Allergy Immunol. 2010, 39, 51–61. [Google Scholar] [CrossRef]
- Grandi, N.; Tramontano, E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front. Microbiol. 2018, 9, 462. [Google Scholar] [CrossRef]
- Balada, E.; Vilardell-Tarrés, M.; Ordi-Ros, J. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 2010, 29, 351–370. [Google Scholar] [CrossRef]
- Arru, G.; Sechi, E.; Mariotto, S.; Zarbo, I.R.; Ferrari, S.; Gajofatto, A.; Monaco, S.; Deiana, G.A.; Bo, M.; Sechi, L.A.; et al. Antibody response against HERV-W in patients with MOG-IgG associated disorders, multiple sclerosis and NMOSD. J. Neuroimmunol. 2020, 338, 577110. [Google Scholar] [CrossRef] [Green Version]
- Capone, A.; Bianco, M.; Ruocco, G.; De Bardi, M.; Battistini, L.; Ruggieri, S.; Gasperini, C.; Centonze, D.; Sette, C.; Volpe, E. Distinct Expression of Inflamm atory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells 2019, 8, 533. [Google Scholar] [CrossRef] [Green Version]
- Dubey, D.; Zhang, Y.; Graves, D.; DeSena, A.D.; Frohman, E.; Greenberg, B. Use of interleukin-2 for management of natalizumab-associated progressive multifocal leukoencephalopathy: Case report and review of literature. Ther. Adv. Neurol. Disord. 2016, 9, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Preiningerova, J.L.; Vachova, M. Daclizumab high-yield process in the treatment of relapsing-remitting multiple sclerosis. Ther. Adv. Neurol. Disord. 2017, 10, 67–75. [Google Scholar] [CrossRef]
- Stork, L.; Brück, W.; von Gottberg, P.; Pulkowski, U.; Kirsten, F.; Glatzel, M.; Rauer, S.; Scheibe, F.; Radbruch, H.; Hammer, E.; et al. Severe meningo-/encephalitis after daclizumab therapy for multiple sclerosis. Mult. Scler. 2019, 25, 1618–1632. [Google Scholar] [CrossRef]
- Cohan, S.L.; Lucassen, E.B.; Romba, M.C.; Linch, S.N. Daclizumab: Mechanisms of Action, Therapeutic Efficacy, Adverse Events and Its Uncovering the Potential Role of Innate Immune System Recruitment as a Treatment Strategy for Relapsing Multiple Sclerosis. Biomedicines 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Volkó, J.; Kenesei, Á.; Zhang, M.; Várnai, P.; Mocsár, G.; Petrus, M.N.; Jambrovics, K.; Balajthy, Z.; Müller, G.; Bodnár, A.; et al. IL-2 receptors preassemble and signal in the ER/Golgi causing resistance to antiproliferative anti-IL-2Rα therapies. Proc. Natl. Acad. Sci. USA 2019, 116, 21120–21130. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Singh, S.V.; Saxena, V.K.; Singh, M.K.; Singh, A.V.; Sohal, J.S. Expression profiles of different cytokine genes in peripheral blood mononuclear cells of goats infected experimentally with native strain of Mycobacterium avium subsp. paratuberculosis. Anim. Biotechnol. 2013, 24, 187–197. [Google Scholar] [CrossRef]
- Sahmoudi, K.; Abbassi, H.; Bouklata, N.; El Alami, M.N.; Sadak, A.; Burant, C.; Henry Boom, W.; El Aouad, R.; Canaday, D.H.; Seghrouchni, F. Immune activation and regulatory T cells in Mycobacterium tuberculosis infected lymph nodes. BMC Immunol. 2018, 19, 33. [Google Scholar] [CrossRef]
- Pérol, L.; Lindner, J.M.; Caudana, P.; Nunez, N.G.; Baeyens, A.; Valle, A.; Sedlik, C.; Loirat, D.; Boyer, O.; Créange, A.; et al. Loss of immune tolerance to IL-2 in type 1 diabetes. Nat. Commun. 2016, 7, 13027. [Google Scholar] [CrossRef]
- Arru, G.; Caggiu, E.; Leoni, S.; Mameli, G.; Pugliatti, M.; Sechi, G.P.; Sechi, L.A. Natalizumab modulates the humoral response against HERV-Wenv73–88 in a follow-up study of Multiple Sclerosis patients. J. Neurol. Sci. 2015, 357, 106–108. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Frau, J.; Cossu, D.; Sardu, C.; Mameli, G.; Coghe, G.; Lorefice, L.; Fenu, G.; Tranquilli, S.; Sechi, L.A.; Marrosu, M.G.; et al. Combining HLA-DRB1-DQB1 and Mycobacterium Avium Subspecies Paratubercolosis (MAP) antibodies in Sardinian multiple sclerosis patients: Associated or independent risk factors? BMC Neurol. 2016, 16, 148. [Google Scholar] [CrossRef]
- Uzawa, A.; Mori, M.; Sato, Y.; Masuda, S.; Kuwabara, S. CSF interleukin-6 level predicts recovery from neuromyelitis optica relapse. J. Neurol. Neurosurg. Psychiatry. 2012, 83, 339–340.
- Uzawa, A.; Mori, M.; Kuwabara, S. Neuromyelitis optica: Concept, immunology and treatment. J. Clin. Neurosci. 2014, 21, 12–21. [Google Scholar] [CrossRef]
- Masala, S.; Cossu, D.; Piccinini, S.; Rapini, N.; Mameli, G.; Manca Bitti, M.L.; Sechi, L.A. Proinsulin and MAP3865c homologous epitopes are a target of antibody response in new-onset type 1 diabetes children from continental Italy. Pediatr. Diabetes 2015, 16, 189–195. [Google Scholar] [CrossRef]
- Greenstein, R.J.; Su, L.; Brown, S.T. On the effect of thalidomide on Mycobacterium avium subspecies paratuberculosis in culture. Int. J. Infect. Dis. 2009, 13, e254–e263. [Google Scholar] [CrossRef] [Green Version]
- Lünemann, J.D.; Jelcić, I.; Roberts, S.; Lutterotti, A.; Tackenberg, B.; Martin, R.; Münz, C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 2008, 205, 1763–1773. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, J.P.; Robinson, R.R.; Rose, J.W. Daclizumab, an IL-2 modulating antibody for treatment of multiple sclerosis. Expert Rev. Clin. Pharmacol. 2014, 7, 9–19. [Google Scholar] [CrossRef]
- Ellman, P. Natural Healing in Pulmonary Tuberculosis. BMJ 1939, 1, 1024–1046. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.M.; Kim, S.J.; Lee, H.J.; Kuroda, H.; Palace, J.; Fujihara, K. Differential diagnosis of neuromyelitis optica spectrum disorders. Ther. Adv. Neurol. Disord. 2017, 10, 265–289. [Google Scholar] [CrossRef]
- Stabel, J.R. Transitions in immune responses to Mycobacterium paratuberculosis. Vet. Microbiol. 2000, 77, 465–473. [Google Scholar] [CrossRef]
- Cocco, E.; Sardu, C.; Massa, R.; Mamusa, E.; Musu, L.; Ferrigo, P.; Melis, M.; Montomoli, C.; Ferretti, V.; Coghe, G.; et al. Epidemiology of multiple sclerosis in south-western Sardinia. Mult. Scler. J. 2011, 17, 1282–1289. [Google Scholar] [CrossRef]
Clinical Data | MS n = 108 | NMOSD n = 34 | HCs n = 137 |
---|---|---|---|
Age, years | 40.06 | 51.32 | 46.30 |
Female, n | 66 | 29 | 90 |
Male, n | 42 | 5 | 47 |
AQP4-Abs − | 11 | ||
AQP4-Abs + | 23 | ||
Cortisone | 25 | ||
No cortisone | 18 | ||
Interferon beta | 6 | ||
Alemtuzumab | 3 | ||
Dimethylfumarate | 5 | ||
Teriflunomide | 5 | ||
Ocrelizumab | 1 | ||
Natalizumab | 2 | ||
Fingolimod | 4 | ||
No therapy | 39 | ||
EDSS | 2.53 ± 2 | ||
RRMS, n (%) | 34 (31.48) | ||
SPMS, n (%) Onset, n (%) | 4 (3.7) 70 (64.81) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, M.; Niegowska, M.; Frau, J.; Sechi, G.; Arru, G.; Cocco, E.; Sechi, L.A. IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms 2020, 8, 500. https://doi.org/10.3390/microorganisms8040500
Bo M, Niegowska M, Frau J, Sechi G, Arru G, Cocco E, Sechi LA. IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms. 2020; 8(4):500. https://doi.org/10.3390/microorganisms8040500
Chicago/Turabian StyleBo, Marco, Magdalena Niegowska, Jessica Frau, GianPietro Sechi, Giannina Arru, Eleonora Cocco, and Leonardo A. Sechi. 2020. "IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients" Microorganisms 8, no. 4: 500. https://doi.org/10.3390/microorganisms8040500
APA StyleBo, M., Niegowska, M., Frau, J., Sechi, G., Arru, G., Cocco, E., & Sechi, L. A. (2020). IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms, 8(4), 500. https://doi.org/10.3390/microorganisms8040500