IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Antigens and Serological Testing
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ascherio, A. Environmental factors in multiple sclerosis. Expert Rev. Neurother. 2013, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Mameli, G.; Cossu, D.; Cocco, E.; Masala, S.; Frau, J.; Marrosu, M.G.; Sechi, L.A. Epstein-Barr virus and Mycobacterium avium subsp. paratuberculosis peptides are cross recognized by anti-myelin basic protein antibodies in multiple sclerosis patients. J. Neuroimmunol. 2014, 270, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Madeira, A.; Burgelin, I.; Perron, H.; Curtin, F.; Lang, A.B.; Faucard, R. MSRV envelope protein is a potent, endogenous and pathogenic agonist of human toll-like receptor 4: Relevance of GNbAC1 in multiple sclerosis treatment. J. Neuroimmunol. 2016, 291, 29–38. [Google Scholar] [CrossRef]
- Perron, H.; Dougier-Reynaud, H.L.; Lomparski, C.; Popa, I.; Firouzi, R.; Bertrand, J.B.; Marusic, S.; Portoukalian, J.; Jouvin-Marche, E.; Villiers, C.L.; et al. Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS ONE 2013, 8, e80128. [Google Scholar] [CrossRef]
- Perron, H.; Lang, A. The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin. Rev. Allergy Immunol. 2010, 39, 51–61. [Google Scholar] [CrossRef]
- Grandi, N.; Tramontano, E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Front. Microbiol. 2018, 9, 462. [Google Scholar] [CrossRef]
- Balada, E.; Vilardell-Tarrés, M.; Ordi-Ros, J. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int. Rev. Immunol. 2010, 29, 351–370. [Google Scholar] [CrossRef]
- Arru, G.; Sechi, E.; Mariotto, S.; Zarbo, I.R.; Ferrari, S.; Gajofatto, A.; Monaco, S.; Deiana, G.A.; Bo, M.; Sechi, L.A.; et al. Antibody response against HERV-W in patients with MOG-IgG associated disorders, multiple sclerosis and NMOSD. J. Neuroimmunol. 2020, 338, 577110. [Google Scholar] [CrossRef]
- Capone, A.; Bianco, M.; Ruocco, G.; De Bardi, M.; Battistini, L.; Ruggieri, S.; Gasperini, C.; Centonze, D.; Sette, C.; Volpe, E. Distinct Expression of Inflamm atory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells 2019, 8, 533. [Google Scholar] [CrossRef]
- Dubey, D.; Zhang, Y.; Graves, D.; DeSena, A.D.; Frohman, E.; Greenberg, B. Use of interleukin-2 for management of natalizumab-associated progressive multifocal leukoencephalopathy: Case report and review of literature. Ther. Adv. Neurol. Disord. 2016, 9, 211–215. [Google Scholar] [CrossRef]
- Preiningerova, J.L.; Vachova, M. Daclizumab high-yield process in the treatment of relapsing-remitting multiple sclerosis. Ther. Adv. Neurol. Disord. 2017, 10, 67–75. [Google Scholar] [CrossRef]
- Stork, L.; Brück, W.; von Gottberg, P.; Pulkowski, U.; Kirsten, F.; Glatzel, M.; Rauer, S.; Scheibe, F.; Radbruch, H.; Hammer, E.; et al. Severe meningo-/encephalitis after daclizumab therapy for multiple sclerosis. Mult. Scler. 2019, 25, 1618–1632. [Google Scholar] [CrossRef]
- Cohan, S.L.; Lucassen, E.B.; Romba, M.C.; Linch, S.N. Daclizumab: Mechanisms of Action, Therapeutic Efficacy, Adverse Events and Its Uncovering the Potential Role of Innate Immune System Recruitment as a Treatment Strategy for Relapsing Multiple Sclerosis. Biomedicines 2019, 7, 18. [Google Scholar] [CrossRef]
- Volkó, J.; Kenesei, Á.; Zhang, M.; Várnai, P.; Mocsár, G.; Petrus, M.N.; Jambrovics, K.; Balajthy, Z.; Müller, G.; Bodnár, A.; et al. IL-2 receptors preassemble and signal in the ER/Golgi causing resistance to antiproliferative anti-IL-2Rα therapies. Proc. Natl. Acad. Sci. USA 2019, 116, 21120–21130. [Google Scholar] [CrossRef]
- Singh, P.K.; Singh, S.V.; Saxena, V.K.; Singh, M.K.; Singh, A.V.; Sohal, J.S. Expression profiles of different cytokine genes in peripheral blood mononuclear cells of goats infected experimentally with native strain of Mycobacterium avium subsp. paratuberculosis. Anim. Biotechnol. 2013, 24, 187–197. [Google Scholar] [CrossRef]
- Sahmoudi, K.; Abbassi, H.; Bouklata, N.; El Alami, M.N.; Sadak, A.; Burant, C.; Henry Boom, W.; El Aouad, R.; Canaday, D.H.; Seghrouchni, F. Immune activation and regulatory T cells in Mycobacterium tuberculosis infected lymph nodes. BMC Immunol. 2018, 19, 33. [Google Scholar] [CrossRef]
- Pérol, L.; Lindner, J.M.; Caudana, P.; Nunez, N.G.; Baeyens, A.; Valle, A.; Sedlik, C.; Loirat, D.; Boyer, O.; Créange, A.; et al. Loss of immune tolerance to IL-2 in type 1 diabetes. Nat. Commun. 2016, 7, 13027. [Google Scholar] [CrossRef]
- Arru, G.; Caggiu, E.; Leoni, S.; Mameli, G.; Pugliatti, M.; Sechi, G.P.; Sechi, L.A. Natalizumab modulates the humoral response against HERV-Wenv73–88 in a follow-up study of Multiple Sclerosis patients. J. Neurol. Sci. 2015, 357, 106–108. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef]
- Frau, J.; Cossu, D.; Sardu, C.; Mameli, G.; Coghe, G.; Lorefice, L.; Fenu, G.; Tranquilli, S.; Sechi, L.A.; Marrosu, M.G.; et al. Combining HLA-DRB1-DQB1 and Mycobacterium Avium Subspecies Paratubercolosis (MAP) antibodies in Sardinian multiple sclerosis patients: Associated or independent risk factors? BMC Neurol. 2016, 16, 148. [Google Scholar] [CrossRef][Green Version]
- Uzawa, A.; Mori, M.; Sato, Y.; Masuda, S.; Kuwabara, S. CSF interleukin-6 level predicts recovery from neuromyelitis optica relapse. J. Neurol. Neurosurg. Psychiatry. 2012, 83, 339–340.
- Uzawa, A.; Mori, M.; Kuwabara, S. Neuromyelitis optica: Concept, immunology and treatment. J. Clin. Neurosci. 2014, 21, 12–21. [Google Scholar] [CrossRef]
- Masala, S.; Cossu, D.; Piccinini, S.; Rapini, N.; Mameli, G.; Manca Bitti, M.L.; Sechi, L.A. Proinsulin and MAP3865c homologous epitopes are a target of antibody response in new-onset type 1 diabetes children from continental Italy. Pediatr. Diabetes 2015, 16, 189–195. [Google Scholar] [CrossRef]
- Greenstein, R.J.; Su, L.; Brown, S.T. On the effect of thalidomide on Mycobacterium avium subspecies paratuberculosis in culture. Int. J. Infect. Dis. 2009, 13, e254–e263. [Google Scholar] [CrossRef][Green Version]
- Lünemann, J.D.; Jelcić, I.; Roberts, S.; Lutterotti, A.; Tackenberg, B.; Martin, R.; Münz, C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J. Exp. Med. 2008, 205, 1763–1773. [Google Scholar] [CrossRef]
- Sheridan, J.P.; Robinson, R.R.; Rose, J.W. Daclizumab, an IL-2 modulating antibody for treatment of multiple sclerosis. Expert Rev. Clin. Pharmacol. 2014, 7, 9–19. [Google Scholar] [CrossRef]
- Ellman, P. Natural Healing in Pulmonary Tuberculosis. BMJ 1939, 1, 1024–1046. [Google Scholar] [CrossRef][Green Version]
- Kim, S.M.; Kim, S.J.; Lee, H.J.; Kuroda, H.; Palace, J.; Fujihara, K. Differential diagnosis of neuromyelitis optica spectrum disorders. Ther. Adv. Neurol. Disord. 2017, 10, 265–289. [Google Scholar] [CrossRef]
- Stabel, J.R. Transitions in immune responses to Mycobacterium paratuberculosis. Vet. Microbiol. 2000, 77, 465–473. [Google Scholar] [CrossRef]
- Cocco, E.; Sardu, C.; Massa, R.; Mamusa, E.; Musu, L.; Ferrigo, P.; Melis, M.; Montomoli, C.; Ferretti, V.; Coghe, G.; et al. Epidemiology of multiple sclerosis in south-western Sardinia. Mult. Scler. J. 2011, 17, 1282–1289. [Google Scholar] [CrossRef]
Clinical Data | MS n = 108 | NMOSD n = 34 | HCs n = 137 |
---|---|---|---|
Age, years | 40.06 | 51.32 | 46.30 |
Female, n | 66 | 29 | 90 |
Male, n | 42 | 5 | 47 |
AQP4-Abs − | 11 | ||
AQP4-Abs + | 23 | ||
Cortisone | 25 | ||
No cortisone | 18 | ||
Interferon beta | 6 | ||
Alemtuzumab | 3 | ||
Dimethylfumarate | 5 | ||
Teriflunomide | 5 | ||
Ocrelizumab | 1 | ||
Natalizumab | 2 | ||
Fingolimod | 4 | ||
No therapy | 39 | ||
EDSS | 2.53 ± 2 | ||
RRMS, n (%) | 34 (31.48) | ||
SPMS, n (%) Onset, n (%) | 4 (3.7) 70 (64.81) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, M.; Niegowska, M.; Frau, J.; Sechi, G.; Arru, G.; Cocco, E.; Sechi, L.A. IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms 2020, 8, 500. https://doi.org/10.3390/microorganisms8040500
Bo M, Niegowska M, Frau J, Sechi G, Arru G, Cocco E, Sechi LA. IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms. 2020; 8(4):500. https://doi.org/10.3390/microorganisms8040500
Chicago/Turabian StyleBo, Marco, Magdalena Niegowska, Jessica Frau, GianPietro Sechi, Giannina Arru, Eleonora Cocco, and Leonardo A. Sechi. 2020. "IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients" Microorganisms 8, no. 4: 500. https://doi.org/10.3390/microorganisms8040500
APA StyleBo, M., Niegowska, M., Frau, J., Sechi, G., Arru, G., Cocco, E., & Sechi, L. A. (2020). IL-2 and Mycobacterial Lipoarabinomannan as Targets of Immune Responses in Multiple Sclerosis Patients. Microorganisms, 8(4), 500. https://doi.org/10.3390/microorganisms8040500