Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Co-Inoculation Effect of S141 on Soybean–Bradyrhizobium Symbiosis
2.3. Co-Inoculation Effect of S141 and Biological Molecules Secreted from S141 on Soybean–Bradyrhizobium Symbiosis
2.4. Effect of Bradyrhizobium Co-Inoculation Dose with Biological Molecules Secreted from S141 on Soybean–Bradyrhizobium Symbiosis
2.5. Effect of Co-Inoculation with S141 on Bradyrhizobium Competition
2.6. Colonization of S141 on Soybean–Bradyrhizobium Symbiosis
2.7. Co-Inoculation Effect of S141 and Plant Growth Hormones on Soybean–Bradyrhizobium Symbiosis
2.8. Gene Disruption Related to Plant Growth Hormones Biosynthesis Pathway in S141
2.8.1. Construction of Gene Related IAA Biosynthesis Pathway
2.8.2. Construction of Gene Related Cytokinin Biosynthesis Pathway
2.8.3. IAA Production Assay
2.9. The Statistical Analysis
3. Results
3.1. Co-Inoculation of S141 Enhanced N2 Fixation Efficiency in Soybean–Bradyrhizobium Symbiosis
3.2. Influence of Biological Molecules Secreted from S141 on Soybean–Bradyrhizobium
3.3. Effect of Biological Molecules Secreted from S141 on Inoculation Dose of Bradyrhizobium
3.4. Co-Inoculation Effect of S141 on Bradyrhizobium Competition
3.5. Colonization of S141 on Soybean–Bradyrhizobium Symbiosis
3.6. Effect of S141 and Plant Growth Hormone on Soybean–Bradyrhizobium Symbiosis
3.7. Effect of Plant Growth Hormone Biosynthesis in S141 on Soybean–Bradyrhizobium Symbiosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daayf, F.; El Hadrami, A.; El-Bebany, A.F.; Henriquez, M.A.; Yao, Z.; Derksen, H.; El-Hadrami, I.; Adam, L.R. Phenolic Compounds in Plant Defense and Pathogen Counter-Defense Mechanisms. In Recent Advances in Polyphenol Research; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 191–208. ISBN 9781118299753. [Google Scholar]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology; Springer New York Inc.: New York, NY, USA, 1994. [Google Scholar]
- Vauclare, P.; Bligny, R.; Gout, E.; Widmer, F. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: An in vitro13C- and 31P-nuclear magnetic resonance spectroscopy study. FEMS Microbiol. Lett. 2013, 343, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisz, P.R.; Sinclair, T.R. A rapid non-destructive assay to quantify soybean nodule gas permeability. Plant Soil 1988, 105, 69–78. [Google Scholar] [CrossRef]
- Saharan, B.S.; Nehra, V. Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sci. Med. Res. 2011, 21, 1–30. [Google Scholar]
- Abdiev, A.; Khaitov, B.; Toderich, K.; Park, K.W. Growth, nutrient uptake and yield parameters of chickpea (Cicer arietinum L.) enhance by Rhizobium and Azotobacter inoculations in saline soil. J. Plant Nutr. 2019, 42, 2703–2714. [Google Scholar] [CrossRef]
- Wu, F.; Wan, J.H.C.; Wu, S.; Wong, M. Effects of earthworms and plant growth–promoting rhizobacteria (PGPR) on availability of nitrogen, phosphorus, and potassium in soil. J. Plant Nutr. Soil Sci. 2012, 175, 423–433. [Google Scholar] [CrossRef]
- Aung, T.T.; Tittabutr, P.; Boonkerd, N.; Herridge, D. Co-inoculation effects of Bradyrhizobium japonicum and Azospirillum sp. on competitive nodulation and rhizosphere eubacterial community structures of soybean under rhizobia-established soil conditions. African J. Biotechnol. 2013, 12, 2850–2862. [Google Scholar]
- Remans, R.; Ramaekers, L.; Schelkens, S.; Hernandez, G.; Garcia, A.; Reyes, J.L.; Mendez, N.; Toscano, V.; Mulling, M.; Galvez, L.; et al. Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 2008, 312, 25–37. [Google Scholar] [CrossRef]
- Prakamhang, J.; Tittabutr, P.; Boonkerd, N.; Teamtisong, K.; Uchiumi, T.; Abe, M.; Teaumroong, N. Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl. Soil Ecol. 2015, 85, 38–49. [Google Scholar] [CrossRef]
- Korir, H.; Mungai, N.W.; Thuita, M.; Hamba, Y.; Masso, C. Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil. Front. Plant Sci. 2017, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Atieno, M.; Herrmann, L.; Okalebo, R.; Lesueur, D. Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J. Microbiol. Biotechnol. 2012, 28, 2541–2550. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, F.X.; Tavares, M.J.; Franck, J.; Ali, S.; Glick, B.R.; Rossi, M.J. ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains. Arch. Microbiol. 2019, 201, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Zahir, Z.A.; Zafar-ul-Hye, M.; Sajjad, S.; Naveed, M. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol. Fertil. Soils 2011, 47, 457–465. [Google Scholar] [CrossRef]
- Pan, B.; Vessey, J.K.; Smith, D.L. Response of field-grown soybean to co-inoculation with the plant growth promoting rhizobacteria Serratia proteamaculans or Serratia liquefaciens, and Bradyrhizobium japonicum pre-incubated with genistein. Eur. J. Agron. 2002, 17, 143–153. [Google Scholar] [CrossRef]
- Htwe, A.Z.; Moh, S.M.; Moe, K.; Yamakawa, T. Effects of co-inoculation of Bradyrhizobium elkanii BLY3-8 and Streptomyces griseoflavus P4 on Rj4 soybean varieties. Soil Sci. Plant Nutr. 2018, 64, 449–454. [Google Scholar] [CrossRef]
- Htwe, A.Z.; Moh, S.M.; Moe, K.; Yamakawa, T. Effects of co-inoculation of Bradyrhizobium japonicum SAY3-7 and Streptomyces griseoflavus P4 on plant growth, nodulation, nitrogen fixation, nutrient uptake, and yield of soybean in a field condition. Soil Sci. Plant Nutr. 2018, 64, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Barea, J.-M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Burdman, S.; Kigel, J.; Okon, Y. Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol. Biochem. 1997, 29, 923–929. [Google Scholar] [CrossRef]
- Remans, R.; Beebe, S.; Blair, M.; Manrique, G.; Tovar, E.; Rao, I.; Croonenborghs, A.; Torres-Gutierrez, R.; El-Howeity, M.; Michiels, J.; et al. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 2008, 302, 149–161. [Google Scholar] [CrossRef]
- Remans, R.; Croonenborghs, A.; Torres Gutierrez, R.; Michiels, J.; Vanderleyden, J. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. In New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research; Bakker, P.A.H.M., Raaijmakers, J.M., Bloemberg, G., Höfte, M., Lemanceau, P., Cooke, B.M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 341–351. ISBN 978-1-4020-6776-1. [Google Scholar]
- Lugtenberg, B.J.J.; Malfanova, N.; Kamilova, F.; Berg, G. Plant Growth Promotion by Microbes. In Molecular Microbial Ecology of the Rhizosphere; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 559–573. ISBN 9781118297674. [Google Scholar]
- Drogue, B.; Combes-Meynet, E.; Moënne-Loccoz, Y.; Wisniewski-Dyé, F.; Prigent-Combaret, C. Control of the Cooperation Between Plant Growth-Promoting Rhizobacteria and Crops by Rhizosphere Signals. In Molecular Microbial Ecology of the Rhizosphere; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 279–293. ISBN 9781118297674. [Google Scholar]
- Sibponkrung, S.; Kondo, T.; Tanaka, K.; Tittabutr, P.; Boonkerd, N.; Teaumroong, N.; Yoshida, K. Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere. Microbiol. Resour. Announc. 2017, 5, e01312-17. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, T.; Ara, K.; Ozaki, K.; Ogasawara, N. A new simple method to introduce marker-free deletions in the Bacillus subtilis genome. Genes Genet. Syst. 2009, 84, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Miyano, M.; Tanaka, K.; Ishikawa, S.; Takenaka, S.; Miguel-Arribas, A.; Meijer, W.J.J.; Yoshida, K. Rapid conjugative mobilization of a 100 kb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. Microb. Cell Fact. 2018, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Blauenfeldt, J.; Joshi, P.A.; Gresshoff, P.M.; Caetano-Anollés, G. Nodulation of white clover (Trifolium repens) in the absence of Rhizobium. Protoplasma 1994, 179, 106–110. [Google Scholar] [CrossRef]
- Lin, M.-H.; Gresshoff, P.M.; Ferguson, B.J. Systemic Regulation of Soybean Nodulation by Acidic Growth Conditions. Plant Physiol. 2012, 160, 2028–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, P.B., Jr.; Harper, J.E. Autoregulation of soybean nodulation: Delayed inoculation increases nodule number. Physiol. Plant. 1995, 93, 411–420. [Google Scholar] [CrossRef]
- Zhang, F.; Dashti, N.; Hynes, R.K.; Smith, D.L. Plant Growth Promoting Rhizobacteria and Soybean [ Glycine max (L.) Merr.] Nodulation and Nitrogen Fixation at Suboptimal Root Zone Temperatures. Ann. Bot. 1996, 77, 453–460. [Google Scholar] [CrossRef]
- Jefferson, R.A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 1987, 5, 387–405. [Google Scholar] [CrossRef]
- Hussain, A.; Hasnain, S. Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. Afr. J. Microbiol. Res. 2009, 3, 704–712. [Google Scholar]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Gadallah, M.A.A. Effects of indole-3-acetic acid and zinc on the growth, osmotic potential and soluble carbon and nitrogen components of soybean plants growing under water deficit. J. Arid Environ. 2000, 44, 451–467. [Google Scholar] [CrossRef]
- Kakimoto, T. Biosynthesis of cytokinins. J. Plant Res. 2003, 116, 233–239. [Google Scholar] [CrossRef]
- Costacurta, A.; Mazzafera, P.; Rosato, Y.B. Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiol. Lett. 1998, 159, 215–220. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Siqueira, A.F.; Ormeño-Orrillo, E.; Souza, R.C.; Rodrigues, E.P.; Almeida, L.G.P.; Barcellos, F.G.; Batista, J.S.S.; Nakatani, A.S.; Martínez-Romero, E.; Vasconcelos, A.T.R.; et al. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: Elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014, 15, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- İçgen, B.; Özcengiz, G.; Alaeddinoglu, N.G. Evaluation of symbiotic effectiveness of various Rhizobium cicer strains. Res. Microbiol. 2002, 153, 369–372. [Google Scholar] [CrossRef]
- Heath, K.D.; Tiffin, P. Context dependence in the coevolution of plant and rhizobial mutualists. Proc. R. Soc. B Biol. Sci. 2007, 274, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, C.A.; Kim, S.J.; Kwon, S.W.; Rooney, A.P. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. Plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenom. Int. J. Syst. Evol. Microbiol. 2016, 66, 1212–1217. [Google Scholar]
- Mens, C.; Li, D.; Haaima, L.E.; Gresshoff, P.M.; Ferguson, B.J. Local and Systemic Effect of Cytokinins on Soybean Nodulation and Regulation of Their Isopentenyl Transferase (IPT) Biosynthesis Genes Following Rhizobia Inoculation. Front. Plant Sci. 2018, 9, 1150. [Google Scholar] [CrossRef]
- Kaneda, K.; Kuzuyama, T.; Takagi, M.; Hayakawa, Y.; Seto, H. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc. Natl. Acad. Sci. 2001, 98, 932–937. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Yang, J.; Yu, N.; Wang, E. Hormone modulation of legume-rhizobial symbiosis. J. Integr. Plant Biol. 2018, 60, 632–648. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, K.; Shi, R.-H.; Yuan, J.; Wang, X.-J.; Dai, C.-C. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N2-fixation. Plant. Cell Environ. 2018, 41, 2093–2108. [Google Scholar] [CrossRef]
- Arora, N.K.; Tewari, S.; Singh, R. Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and Indirect PGPRs. In Plant Microbe Symbiosis: Fundamentals and Advances; Arora, N.K., Ed.; Springer India: New Delhi, India, 2013; pp. 411–449. ISBN 978-81-322-1287-4. [Google Scholar]
- Tewari, S.; Arora, N.K. Transactions Among Microorganisms and Plant in the Composite Rhizosphere Habitat. In Plant Microbe Symbiosis: Fundamentals and Advances; Arora, N.K., Ed.; Springer India: New Delhi, India, 2013; pp. 1–50. ISBN 978-81-322-1287-4. [Google Scholar]
- Frank, M.; Guivarc’h, A.; Krupková, E.; Lorenz-Meyer, I.; Chriqui, D.; Schmülling, T. TUMOROUS SHOOT DEVELOPMENT (TSD) genes are required for co-ordinated plant shoot development. Plant J. 2002, 29, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Sturtevant, D.B.; Taller, B.J. Cytokinin Production by Bradyrhizobium japonicum. Plant Physiol. 1989, 89, 1247–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carimi, F.; Zottini, M.; Formentin, E.; Terzi, M.; Lo Schiavo, F. Cytokinins: New apoptotic inducers in plants. Planta 2003, 216, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, L.M. Plant Growth and Development: Hormones and Environment; Elsevier Science: Amsterdam, The Netherlands, 2002; ISBN 9780080514031. [Google Scholar]
- Nishiwaki, T.; Sato, T.; Yashima, H.; Ikarashi, T.; Ohyama, T.; Harper, J.E.; Akao, S.; Kouchi, H. Changes in concentration of leghemoglobin components in hypernodulation mutants of soybean. In Proceedings of the Plant Nutrition for Sustainable Food Production and Environment: Proceedings of the XIII International Plant Nutrition Colloquium, Tokyo, Japan, 13–19 September 1997; pp. 693–698, ISBN 978-94-009-0047-9. [Google Scholar]
- Ferguson, B.J.; Indrasumunar, A.; Hayashi, S.; Lin, M.-H.; Lin, Y.-H.; Reid, D.E.; Gresshoff, P.M. Molecular Analysis of Legume Nodule Development and Autoregulation. J. Integr. Plant Biol. 2010, 52, 61–76. [Google Scholar] [CrossRef]
- Idris, E.E.; Iglesias, D.J.; Talon, M.; Borriss, R. Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact. 2007, 20, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Hillebrand, H.; Bartling, D.; Weiler, E.W. Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol. Biol. 1998, 36, 89–99. [Google Scholar] [CrossRef]
- Zimmer, W.; Aparicio, C.; Elmerich, C. Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: Identification and sequencing of a trpGDC cluster. Mol. Gen. Genet. 1991, 229, 41–51. [Google Scholar] [CrossRef]
Bacterial Strains | Relevant Genotype or Description | Source or References |
---|---|---|
Bradyrhizobium diazoefficiens USDA110 | Wild type | [8] |
B. diazoefficiens CB1809 | Wild type | DAR |
B. diazoefficiens GUS-tagged USDA110 | marked with mTn5SSgusA20 (pCAM120); Smr Spr | [8] |
Bacillus subtilis 168:ytsJ:gfp | ytsJ::gfp::ermr | Kobe University |
B. subtilis TSU077 | trpC2, epr::PrpsO-dam(Phle) | Kobe University |
B. subtilis TMO310 | trpC2 aprE::(spc lacI Pspac-mazF) | [25] |
B. subtilis TMO311 | trpC2 aprE::(kan lacI Pspac-mazF) | [25] |
B. subtilis YNB100 | trpc2 aprE::kan yhcT::(oriTLS20-F erm) pLS20catΔoriT | [26] |
Bacillus velezensis S141 | Wild type | [24] |
B. velezensis S141:GFP | tuf::gfp::phler | This study |
B. velezensis S141ΔdhaS | dhaS deletion, ΔdhaS::ermr | This study |
B. velezensis S141ΔyhcX | yhcX deletion, ΔyhcX::kanr | This study |
B. velezensis S141ΔIPyAD | IPyAD deletion, ΔIPyAD::spmr | This study |
B. velezensis S141Δipt | IPT deletion, Δipt::phler | This study |
B. velezensis S141Δipi | IPI deletion, Δipi::kanr | This study |
Size | Diameter of Nodule (mm) |
---|---|
Very large (VL) | more than 4 |
Large (L) | 3–4 |
Medium (M) | 2–3 |
Small (S) | Less than 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sibponkrung, S.; Kondo, T.; Tanaka, K.; Tittabutr, P.; Boonkerd, N.; Yoshida, K.-i.; Teaumroong, N. Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation. Microorganisms 2020, 8, 678. https://doi.org/10.3390/microorganisms8050678
Sibponkrung S, Kondo T, Tanaka K, Tittabutr P, Boonkerd N, Yoshida K-i, Teaumroong N. Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation. Microorganisms. 2020; 8(5):678. https://doi.org/10.3390/microorganisms8050678
Chicago/Turabian StyleSibponkrung, Surachat, Takahiko Kondo, Kosei Tanaka, Panlada Tittabutr, Nantakorn Boonkerd, Ken-ichi Yoshida, and Neung Teaumroong. 2020. "Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation" Microorganisms 8, no. 5: 678. https://doi.org/10.3390/microorganisms8050678
APA StyleSibponkrung, S., Kondo, T., Tanaka, K., Tittabutr, P., Boonkerd, N., Yoshida, K.-i., & Teaumroong, N. (2020). Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation. Microorganisms, 8(5), 678. https://doi.org/10.3390/microorganisms8050678