Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges
Abstract
:1. Introduction
2. Plant-Derived Bioactive Natural Products from Fungal Endophytes
2.1. Plant-Derived Alkaloids from Fungal Endophytes
2.1.1. Aconitine
2.1.2. Berberine
2.1.3. Camptothecin
2.1.4. Capsaicin
2.1.5. Homoharringtonine (HHT)
2.1.6. Huperzine A
2.1.7. Peimisine and Imperialine-3β-D-glucoside
2.1.8. Piperine
2.1.9. Quinine
2.1.10. Rohitukine
2.1.11. Sanguinarine
2.1.12. Solamargine
2.1.13. Swainsonine
2.1.14. Vinblastine and Vincristine
2.1.15. Vincamine
2.2. Plant-Derived Coumarins (Benzopyrones) from Fungal Endophytes
2.2.1. Bergapten and Meranzin
2.2.2. Isofraxidin
2.2.3. Marmesin
2.2.4. Mellein
2.2.5. Scopoletin and Umbelliferone
2.3. Plant-Derived Flavonoids from Fungal Endophytes
2.3.1. Apigenin
2.3.2. Cajanol
2.3.3. Chrysin
2.3.4. Curcumin
2.3.5. Kaempferol
2.3.6. Luteolin
2.3.7. Quercetin
2.3.8. Rutin
2.3.9. Silymarin
2.3.10. Vitexin
2.4. Plant-Derived Lignans from Fungal Endophytes
Podophyllotoxin
2.5. Plant-Derived Saponins from Fungal Endophytes
Diosgenin
2.6. Plant-Derived Terpenes from Fungal Endophytes
2.6.1. Artemisinin
2.6.2. Bilobalide and Ginkgolides
2.6.3. Paclitaxel
2.6.4. Toosendanin (TSN)
2.6.5. Xanthatin
2.7. Plant-Derived Quinones and Xanthones from Fungal Endophytes
2.7.1. Hypericin
2.7.2. Pachybasin
2.7.3. Pinselin (Cassiollin)
2.7.4. Plumbagin and Shikonin
2.7.5. Rhein
2.7.6. Tanshinones
2.8. Miscellaneous Plant-Derived Compounds from Fungal Endophytes
2.8.1. Cajaninstilbene Acid (CSA)
2.8.2. Digoxin
2.8.3. Forskolin (Coleonol)
2.8.4. Salidroside and p-Tyrosol (Aglycone of Salidroside)
3. Avenues and Challenges in Application of Endophyte as Alternative Sources of Plant-Derived Natural Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, B. A new golden age of natural products drug discovery. Cell 2015, 163, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.A.; Thornburg, C.C.; Henrich, C.J.; Grkovic, T.; O’Keefe, B.R. Creating and screening natural product libraries. Nat. Prod. Rep. 2020, 37, 893–918. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G. The emergence of endophytic microbes and their biological promise. J. Fungi 2018, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul-Razek, A.S.; El-Nagar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I. Microbial natural products in drug discovery. Processes 2020, 8, 470. [Google Scholar] [CrossRef] [Green Version]
- Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Rangappa, S.; Kamath, P.V.; Singh, B.P.; Mudili, V.; Gupta, V.K.; Siddaiah, C.N.; et al. Endophytic fungi—Alternative sources of cytotoxic compounds: A review. Front. Pharmacol. 2018, 9, 309. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Plant endophytes and epiphytes: Burgeoning sources of known and “unknown” cytotoxic and antibiotic agents? Planta Med. 2020, 86, 1095–1111. [Google Scholar] [CrossRef] [Green Version]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes—Secret producers of bioactive plant metabolites. Pharmazie 2013, 68, 499–505. [Google Scholar]
- Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
- Venieraki, A.; Dimou, M.; Katinakis, P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell. Plant Protect. J. 2017, 10, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.; Gardner, D.R.; Pfister, J.A. Swainsonine-containing plants and their relationship to endophytic fungi. J. Agric. Food Chem. 2014, 62, 7326–7334. [Google Scholar] [CrossRef] [PubMed]
- Naik, S.; Shaanker, R.U.; Ravikanth, G.; Dayanandan, S. How and why do endophytes produce plant secondary metabolites? Symbiosis 2019, 78, 193–201. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Knox, R. Introduction to medicinal plants. In Medicinal Plant Biotechnology; Knox, R., Ed.; Scientific e-Resources; ED-Tech Press: Essex, UK, 2019; pp. 32–60. [Google Scholar]
- Staniek, A.; Bouwmeester, H.; Fraser, P.D.; Kayser, O.; Martens, S.; Tissier, A.; Warzecha, H. Natural products–learning chemistry from plants. Biotechnol. J. 2014, 9, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Zeilinger, S.; García-Estrada, C.; Martín, J.F. Fungal secondary metabolites in the “OMICS” Era. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Zeilinger, S., Martín, J.F., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; Volume 2, pp. 1–12. [Google Scholar]
- Mohanta, T.K. Fungi contain genes associated with flavonoid biosynthesis pathway. J. Funct. Foods 2020, 68, 103910. [Google Scholar] [CrossRef]
- Esmaeilzadeh Bahabadi, S.; Sharifi, M.; Behmanesh, M.; Safaie, N.; Murata, J.; Araki, R.; Yamagaki, T.; Satake, H. Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J. Plant Physiol. 2012, 169, 487–491. [Google Scholar] [CrossRef]
- Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011, 72, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Shang, Y.; Cen, K.; Wang, C. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc. Nat. Acad. Sci. USA 2015, 112, 11365–11370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Pogam, P.; Boustie, J. Xanthones of lichen source: A 2016 update. Molecules 2016, 21, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Liang, J.; Li, Q.; Kong, X.; Chen, R.; Jin, Y. Cladosporium cladosporioides XJ-AC03, an aconitine-producing endophytic fungus isolated from Aconitum leucostomum. World J. Microbiol. Biotechnol. 2013, 29, 933–938. [Google Scholar] [CrossRef]
- Duan, L.I.; Liwei, G.; Hong, Y. Isolation and identification of producing endophytic fungi of berberine from the plant Phellodendron amurense. J. Anhui. Agric. Sci. 2009, 22, 7. [Google Scholar]
- Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci. 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Vinodhini, D.; Agastian, P. Berberine production by endophytic fungus Fusarium solani from Coscinium fenestratum. Int. J. Biol. Pharm. Res. 2013, 4, 1239–1245. [Google Scholar]
- Bhagobaty, R.K.; Joshi, S.R. Metabolite profiling of endophytic fungal isolates of five ethno-pharmacologically important plants of Meghalaya, India. J. Metab. Syst. Biol. 2011, 2, 20–31. [Google Scholar]
- Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 2005, 68, 1717–1719. [Google Scholar] [CrossRef]
- Amna, T.; Puri, S.C.; Verma, V.; Sharma, J.P.; Khajuria, R.K.; Musarrat, J.; Spiteller, M.; Qazi, G.N. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can. J. Microbiol. 2006, 52, 189–196. [Google Scholar] [CrossRef]
- Rehman, S.; Shawl, A.S.; Verma, V.; Kour, A.; Athar, M.; Andrabi, R.; Sultan, P.; Qazi, G.N. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl. Biokhim. Mikrobiol. 2008, 44, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Min, C.; Wang, X. Isolation and identification of the 10-hydroxycamptothecin-producing endophytic fungi from Camptotheca acuminata Decne. Acta Bot. Boreal.-Occident. Sin. 2009, 29, 614–617. [Google Scholar]
- Rehman, S.; Shawl, A.S.; Kour, A.; Sultan, P.; Ahmad, K.; Khajuria, R.; Qazi, G.N. Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Nat. Prod. Res. 2009, 23, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
- Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 2009, 72, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Gurudatt, P.S.; Priti, V.; Shweta, S.; Ramesha, B.T.; Ravikanth, G.; Vasudeva, R.; Amna, T.; Deepika, S.; Ganeshaiah, K.N.; Shaanker, R.U.; et al. Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr. Sci. 2010, 98, 1006–1010. [Google Scholar]
- Liu, K.; Ding, X.; Deng, B.; Chen, W. 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotehnol. Lett. 2010, 32, 689–693. [Google Scholar] [CrossRef]
- Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Kumar, P.M.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Shaanker, R.U. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9 methoxycamptothecin. Phytochemistry 2010, 71, 117–122. [Google Scholar] [CrossRef]
- Ding, X.; Liu, K.; Deng, B.; Chen, W.; Li, W.; Liu, F. Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J. Microbiol. Biotechnol. 2013, 29, 1831–1838. [Google Scholar] [CrossRef]
- Shweta, S.; Gurumurthy, B.R.; Ravikanth, G.; Ramanan, U.S.; Shivanna, M.B. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 2013, 20, 337–342. [Google Scholar] [CrossRef]
- Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 2013, 97, 9365–9375. [Google Scholar] [CrossRef]
- Musavi, S.F.; Dhavale, A.; Balakrishnan, R.M. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep. Biochem. Biotechnol. 2015, 45, 158–172. [Google Scholar] [CrossRef] [PubMed]
- Devari, S.; Jaglan, S.; Kumar, M.; Deshidi, R.; Guru, S.; Bhushan, S.; Kushwaha, M.; Gupta, A.P.; Gandhi, S.G.; Sharma, J.P.; et al. Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC–ESI–MS/MS analysis. Phytochemistry 2014, 98, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, W.; Yuan, M.; Li, C.; Liu, S.; Jiang, C.; Wu, Y.; Cai, K.; Liu, Y. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J. Microbiol. Biotechnol. 2016, 32, 110. [Google Scholar] [CrossRef] [PubMed]
- Li, W.K.; Zhou, J.Y.; Lin, Z.W.; Hu, Z. Study on fermentation condition for production of Huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chin. J. Med. Chem. 2007, 2, 254–259. [Google Scholar]
- Ju, Z.; Wang, J.; Pan, S.L. Isolation and preliminary identification of the endophytic fungi which produce Hupzine A from four species in Hupziaceae and determination of Huperzine A by HPLC. J. Med. Sci. 2009, 36, 445–449. [Google Scholar]
- Zhou, S.L.; Yang, F.; Lan, S.L.; Xu, N.; Hong, Y.H. Huperzine A producing conditions from endophytic fungus in SHB Huperzia serrata. J. Microbiol. 2009, 3, 32–36. [Google Scholar]
- Zhu, D.; Wang, J.; Zeng, Q.; Zhang, Z.; Yan, R. A novel endophytic Huperzine A–producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J. Appl. Microbiol. 2010, 109, 1469–1478. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Zeng, Q.G.; Yan, R.M.; Wang, Y.; Zou, Z.R.; Zhu, D. Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J. Microbiol. Biotechnol. 2011, 27, 479–486. [Google Scholar] [CrossRef]
- Dong, L.H.; Fan, S.W.; Ling, Q.Z.; Huang, B.B.; Wei, Z.J. Indentification of Huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J. Microbiol. Biotechnol. 2014, 30, 1011–1017. [Google Scholar] [CrossRef]
- Su, J.; Yang, M. Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat. Prod. Res. 2015, 29, 1035–1041. [Google Scholar] [CrossRef]
- Su, J.; Liu, H.; Guo, K.; Chen, L.; Yang, M.; Chen, Q. Research advances and detection methodologies for microbe-derived acetylcholinesterase inhibitors: A systemic review. Molecules 2017, 22, 176. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.M.; Hoang, A.T.H.; Le, T.T.; Vo, T.T.B.; Van Quyen, D.; Chu, H.H. Isolation of endophytic fungi and screening of Huperzine A–producing fungus from Huperzia serrata in Vietnam. Sci. Rep. 2019, 9, 1–3. [Google Scholar]
- Cruz-Miranda, O.L.; Folch-Mallol, J.; Martínez-Morales, F.; Gesto-Borroto, R.; Villarreal, M.L.; Taketa, A.C. Identification of a Huperzine A-producing endophytic fungus from Phlegmariurus taxifolius. Mol. Biol. Rep. 2020, 47, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.M.; Hoang, A.T.H.; Nguyen, N.P.; Le, T.T.B.; Trinh, H.T.T.; Vo, T.T.B.; Van Quyen, D. A novel huperzine A-producing endophytic fungus Fusarium sp. Rsp5.2 isolated from Huperzia serrata. Biotechnol. Lett. 2020, 42, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, J.; Wang, S.; Wang, X.; Ou, Y.; Wei, D.; Xueping, L. Antitussive, expectorant and anti-inflammatory alkaloids from Bulbus Fritillariae cirrhosae. Fitoterapia 2011, 82, 1290–1294. [Google Scholar] [CrossRef]
- Pan, F.; Hou, K.; Gao, F.; Hu, B.; Chen, Q.; Wu, W. Peimisine and peiminine production by endophytic fungus Fusarium sp. isolated from Fritillaria unibracteata var. wabensis. Phytomedicine 2014, 21, 1104–1109. [Google Scholar] [CrossRef]
- Pan, F.; Su, X.; Hu, B.; Yang, N.; Chen, Q.; Wu, W. Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 2015, 103, 213–221. [Google Scholar] [CrossRef]
- Verma, V.C.; Lobkovsky, E.; Gange, A.C.; Singh, S.K.; Prakash, S. Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J. Antibiot. 2011, 64, 427–431. [Google Scholar] [CrossRef]
- Chithra, S.; Jasim, B.; Sachidanandan, P.; Jyothis, M.; Radhakrishnan, E.K. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 2014, 21, 534–540. [Google Scholar] [CrossRef]
- Chithra, S.; Jasim, B.; Anisha, C.; Mathew, J.; Radhakrishnan, E.K. LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl. Biochem. Biotechnol. 2014, 173, 30–35. [Google Scholar] [CrossRef]
- Chithra, S.; Jasim, B.; Mathew, J.; Radhakrishnan, E.K. Endophytic Phomopsis sp. colonization in Oryza sativa was found to result in plant growth promotion and piperine production. Physiol. Planta 2017, 160, 437–446. [Google Scholar]
- Maehara, S.; Simanjuntak, P.; Maetani, Y.; Kitamura, C.; Ohashi, K.; Shibuya, H. Ability of endophytic filamentous fungi associated with Cinchona ledgeriana to produce Cinchona alkaloids. J. Nat. Med. 2013, 67, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, I.; Radiastuti, N.; Rahayu, G.; Achmadi, S.; Okane, I. Three quinine and cinchonidine producing Fusarium species from Indonesia. Curr. Res. Environ. Appl. Microbiol. 2016, 6, 20–34. [Google Scholar] [CrossRef]
- Kumara, P.M.; Zuehlke, S.; Priti, V.; Ramesha, B.T.; Shweta, S.; Ravikanth, G.; Vasudeva, R.; Santhoshkumar, T.R.; Spiteller, M.; Uma Shaanker, R. Fusarium proliferatum, an endophytic fungus from Dysoxylumbinectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 2012, 101, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kumara, P.M.; Soujanya, K.N.; Ravikanth, G.; Vasudeva, R.; Ganeshaiah, K.N.; Shaanker, R.U. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 2014, 21, 541–546. [Google Scholar]
- Wang, X.J.; Min, C.L.; Ge, M.; Zuo, R.H. An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr. Microbiol. 2014, 68, 336–341. [Google Scholar] [CrossRef]
- Yin, H.; Chen, J.L. Sipeimine-producing endophytic fungus isolated from Fritillaria ussuriensis. Z. Naturforsch. 2008, 63, 789. [Google Scholar] [CrossRef] [Green Version]
- El-Hawary, S.; Mohammed, R.; AbouZid, S.; Bakeer, W.; Ebel, R.; Sayed, A.; Rateb, M. Solamargine production by a fungal endophyte of Solanum nigrum. J. Appl. Microbiol. 2016, 120, 900–911. [Google Scholar] [CrossRef] [Green Version]
- Ralphs, M.H.; Creamer, R.; Baucom, D.; Gardner, D.R.; Welsh, S.L.; Graham, J.D.; Hart, C.; Cook, D.; Stegelmeier, B.L. Relationship between the endophyte Embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis). J. Chem. Ecol. 2008, 34, 32–38. [Google Scholar] [CrossRef]
- Baucom, D.L.; Romero, M.; Belfon, R.; Creamer, R. Two new species of Undifilum, fungal endophytes of Astragalus (locoweeds) in the United States. Botany 2012, 90, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Chen, J.; Lu, W.; Ma, Y.; Zhao, B.; Wang, J. Isolation and identification of swainsonine-producing fungi found in locoweeds and their rhizosphere soil. Afr. J. Microbiol. Res. 2012, 6, 4959–4969. [Google Scholar]
- Grum, D.S.; Cook, D.; Baucom, D.; Mott, I.W.; Gardner, D.R.; Creamer, R.; Allen, J.G. Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. J. Nat. Prod. 2013, 76, 1984–1988. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Li, H.; Zhang, L. Isolation of an fungus productingvinbrastine. J. Yunnan Univ. (Nat. Sci.) 1998, 20, 214–215. [Google Scholar]
- Zhang, L.; Guo, B.; Li, H.; Zeng, S.; Shao, H.; Gu, S.; Wei, R. Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin. Tradit. Herb. Drugs 2000, 31, 805–807. [Google Scholar]
- Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 2013, 8, e71805. [Google Scholar] [CrossRef] [Green Version]
- Palem, P.P.; Kuriakose, G.C.; Jayabaskaran, C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Kuriakose, G.C.; Palem, P.P.; Jayabaskaran, C. Fungal vincristine from Eutypella spp-CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line-A431. BMC Complement. Alternat. Med. 2016, 16, 302. [Google Scholar] [CrossRef] [Green Version]
- Na, R.; Jiajia, L.; Dongliang, Y.; Yingzi, P.; Juan, H.; Xiong, L.; Nana, Z.; Jing, Z.; Yitian, L. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol. Res. 2016, 192, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Sun, Y.H. Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomedicine 2011, 18, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Martínez-Larrañaga, M.R.; Ares, I.; Martínez, M.A. Interactions between nutraceuticals/nutrients and therapeutic drugs. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 855–874. [Google Scholar]
- Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharma. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Wall, M.E.; Wani, M.C. Camptothecin and taxol: From discovery to clinic. J. Ethnopharmacol. 1996, 51, 239–254. [Google Scholar] [CrossRef]
- Kai, G.; Wu, C.; Gen, L.; Zhang, L.; Cui, L.; Ni, X. Biosynthesis and biotechnological production of anti-cancer drug Camptothecin. Phytochem. Rev. 2015, 14, 525–539. [Google Scholar] [CrossRef]
- Bhalkar, B.N.; Patil, S.M.; Govindwar, S.P. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol. 2016, 120, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Fattori, V.; Hohmann, M.S.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016, 21, 844. [Google Scholar] [CrossRef] [Green Version]
- Perdue, R.E., Jr.; Spetzman, L.A.; Rowell, R.G. Cephalotaxus-source of harringtonine, a promising new anti-cancer alkaloid. Am. Horticult. Soc. 1970, 49, 19–22. [Google Scholar]
- Kantarjian, H.M.; O’Brien, S.; Cortes, J. Homoharringtonine/omacetaxine mepesuccinate: The long and winding road to Food and Drug Administration approval. Clin. Lymphoma Myeloma Leuk. 2013, 13, 530–533. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lai, Z.; Li, X.X.; Yan, R.M.; Zhang, Z.B.; Yang, H.L.; Zhu, D. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World J. Microbiol. Biotechnol. 2016, 32, 20. [Google Scholar] [CrossRef]
- Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; Anil Kumar, N.V.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J. Piperine-A Major Principle of Black Pepper: A review of its bioactivity and studies. Appl. Sci. 2019, 9, 4270. [Google Scholar] [CrossRef] [Green Version]
- Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- Simanjuntak, P.; Parwati, T.; Bustanussalam; Prana, T.K.; Wibowo, S.; Shibuya, H. Isolasi dan kultivasimikrobaedofitpenghasilsenyawa alkaloid kinkonadariCinchona spp. J. Mikrobiol. Indones. 2002, 7, 27–30. [Google Scholar]
- Kamil, M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS ONE 2015, 10, e0137991. [Google Scholar]
- Park, S.Y.; Jin, M.L.; Kim, Y.H.; Lee, S.J.; Park, G. Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression. Oncol. Rep. 2014, 31, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Sharma, A.; Gupta, S.; Sarethy, I.P.; Gabrani, R. Solanum nigrum: Current perspectives on therapeutic properties. Altern. Med. Rev. 2011, 16, 78–85. [Google Scholar] [PubMed]
- Liu, L.F.; Liang, C.H.; Shiu, L.Y.; Lin, W.L.; Lin, C.C.; Kuo, K.W. Action of solamargine on human lung cancer cells–enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett. 2004, 577, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldrup, E.; McLain-Romero, J.; Padilla, A.; Moya, A.; Gardner, D.; Creamer, R. Localization of endophytic Undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany 2010, 88, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, M. Vinca alkaloids. Int. J. Prevent. Med. 2013, 4, 1231. [Google Scholar]
- Vora, S.C.; Gujar, K.N. Vinpocetine: Hype, hope and hurdles towards neuroprotection. Asian J. Pharma. Res. Develop. 2013, 1, 17–23. [Google Scholar]
- Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—An important class of phytochemicals. Phytochem. Isol. Characterisation Role Hum. Health 2015, 30, 113–140. [Google Scholar]
- Huang, Z.; Yang, J.; Cai, X.; She, Z.; Lin, Y. A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat. Prod. Res. 2012, 26, 1291–1295. [Google Scholar] [CrossRef]
- Zaher, A.M.; Moharram, A.M.; Davis, R.; Panizzi, P.; Makboul, M.A.; Calderón, A.I. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodiatheobromae Pat. of Dracaena draco L. by LC–MS/MS. Nat. Prod. Res. 2015, 29, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Tokiwa, T. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits matrix metalloproteinase-7 expression and cell invasion of human hepatoma cells. Biol. Pharma. Bull. 2010, 33, 1716–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.J.; Wu, M.D.; Hsieh, S.Y.; Su, Y.S.; Chen, I.S.; Yuan, G.F. Secondary metabolites from the endophytic fungus Annulohypoxylon boveri var. microspora BCRC 34012. Chem. Nat. Comp. 2011, 47, 536–540. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, J.; She, Z.; Lin, Y. Isoflavones from the mangrove endophytic fungus Fusarium sp. (ZZF41). Nat. Prod. Commun. 2010, 5, 1771–1773. [Google Scholar] [CrossRef] [Green Version]
- Findlay, J.A.; Buthelezi, S.; Lavoie, R.; Peña-Rodriguez, L.; Miller, J.D. Bioactive isocoumarins and related metabolites from conifer endophytes. J. Nat. Prod. 1995, 58, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Schmeda-Hirschmann, G.; Hormazabal, E.; Astudillo, L.; Rodriguez, J.; Theoduloz, C. Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World J. Microbiol. Biotechnol. 2005, 21, 27–32. [Google Scholar] [CrossRef]
- Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J. A new dihydrobenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76. Chem. Pharm. Bull. 2007, 55, 1404–1405. [Google Scholar] [CrossRef] [Green Version]
- Amaral, L.S.; Murgu, M.; Rodrigues-Fo, E.; de Souza, A.Q.; de Moura Sarquis, M.I. A saponin tolerant and glycoside producer xylariaceous fungus isolated from fruits of Sapindus saponaria. World J. Microbiol. Biotechnol. 2008, 24, 1341–1348. [Google Scholar] [CrossRef]
- de Oliveira, C.M.; Regasini, L.O.; Silva, G.H.; Pfenning, L.H.; Young, M.C.M.; Berlinck, R.G.S.; Bolzani, V.S.; Araujo, A.R. Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp., endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochem. Lett. 2011, 4, 93–96. [Google Scholar] [CrossRef]
- Cheng, M.J.; Wu, M.D.; Yuan, G.F.; Chen, Y.L.; Su, Y.S.; Hsieh, M.T.; Chen, I.S. Secondary metabolites and cytotoxic activities from the endophytic fungus Annulohypoxylonsquamulosum. Phytochem. Lett. 2012, 5, 219–223. [Google Scholar] [CrossRef]
- Zhao, J.H.; Zhang, Y.L.; Wang, L.W.; Wang, J.Y.; Zhang, C.L. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J. Microbiol. Biotechnol. 2012, 28, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Ramos, H.P.; Simão, M.R.; de Souza, J.M.; Magalhães, L.G.; Rodrigues, V.; Ambrósio, S.R.; Said, S. Evaluation of dihydroisocoumarins produced by the endophytic fungus Arthrinium state of Apiosporamontagnei against Schistosoma mansoni. Nat. Prod. Res. 2013, 27, 2240–2243. [Google Scholar] [CrossRef] [PubMed]
- Rukachaisirikul, V.; Buadam, S.; Sukpondma, Y.; Phongpaichit, S.; Sakayaroj, J.; Hutadilok-Towatanad, N. Indanone and mellein derivatives from the Garcinia-derived fungus Xylaria sp. PSU-G12. Phytochem. Lett. 2013, 6, 135–138. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhang, Y.; Zheng, B.; Zhang, C.; Wang, L. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J. Microbiol. Biotechnol. 2014, 30, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.W.; Chang, H.S.; Cheng, M.J.; Hsieh, S.Y.; Liu, T.W.; Yuan, G.F.; Chen, I.S. Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv. Chim. Acta 2014, 97, 1689–1699. [Google Scholar] [CrossRef]
- Seida, A.A.A.; Kinghorn, D.; Cordell, G.A.; Farnsworth, N.A. Isolation of bergapten and marmesin from Balanites aegyptiaca. Planta Med. 1981, 43, 92–103. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, X.; Hu, S.Y.; Qiu, X.J.; Zhang, Y.J.; Ren, P.; Wang, Y.; Ji, H.; Zhang, C.H.; Xie, W.B.; et al. Meranzin hydrate exhibits anti-depressive and prokinetic-like effects through regulation of the shared alpha 2-adrenoceptor in the brain–gut axis of rats in the forced swimming test. Neuropharmacology 2013, 67, 318–325. [Google Scholar] [CrossRef]
- Chebrolua, K.K.; Jayaprakash, G.K.; Jifon, J.; Patil, B.S. Purification of coumarins, including meranzin and pranferin, from grapefruit by solvent partitioning and a hyphenated chromatography. Separat. Purif. Technol. 2013, 116, 137–144. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Li, Z.; Zhang, L.; Liu, Y.; Ding, H.; Yin, S. Isofraxidin, a coumarin component improves high-fat diet induced hepatic lipid homeostasis disorder and macrophage inflammation in mice. Food Funct. 2017, 8, 2886–2896. [Google Scholar] [CrossRef]
- Yim, S.H.; Tabassum, N.; Kim, W.H.; Cho, H.; Lee, J.H.; Batkhuu, G.J.; Kim, H.J.; Oh, W.K.; Jung, D.W.; Williams, D.R. Isolation and characterization of isofraxidin 7-O-(6′-Op-Coumaroyl)-β-glucopyranoside from Artemisia capillaris Thunberg: A novel, nontoxic hyperpigmentation agent that is effective in vivo. Evid. Based Complement. Alternat. Med. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Majnooni, M.B.; Fakhri, S.; Shokoohinia, Y.; Mojarrab, M.; Kazemi-Afrakoti, S.; Farzaei, M.H. Isofraxidin: Synthesis, biosynthesis, isolation, pharmacokinetic and pharmacological properties. Molecules 2020, 25, 2040. [Google Scholar] [CrossRef] [PubMed]
- Abu-mustafam, E.A.; Fayez, B.E. Natural Coumarins. I. marmesin and marmesinin, further products from the fruits of Ammi majus L. J. Org. Chem. 1961, 26, 161–166. [Google Scholar] [CrossRef]
- Nishikawa, E. Biochemisty of filamentous fungi. II. A metabolic product of Aspergillus melleus Yukawa. Part I. Bull. Agric. Chem. Soc. Jpn. 1933, 9, 107–109. [Google Scholar]
- Das, A.J. Moringa oleifera (Lamm.): A plant with immense importance. J. Biol. Act. Prod. Nat. 2012, 2, 307–315. [Google Scholar] [CrossRef]
- Chacón-Morales, P.; Amaro-Luis, J.M.; Bahsas, A. Isolation and characterization of (+)-mellein, the first isocoumarin reported in Stevia genus. Avan. Quim. 2013, 8, 145–151. [Google Scholar]
- Hornick, A.; Lieb, A.; Vo, N.P.; Rollinger, J.M.; Stuppner, H.; Prast, H. The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic-and age-impaired memory. Neuroscience 2011, 197, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Zhang, L.; Fu, X.L.; Chen, K.; Qian, B.C. Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol. Sin. 2001, 22, 929–933. [Google Scholar]
- Yu, S.M.; Hu, D.H.; Zhang, J.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep. 2015, 12, 3869–3873. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef]
- Panda, S.; Kar, A. Apigenin (4‘, 5, 7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J. Pharm. Pharmacol. 2007, 59, 1543–1548. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhou, S.L.; Wang, M.X.; Chen, S.L. Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat. Prod. Comm. 2011, 6, 1131–1132. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhao, J.; Zu, Y.; Fu, Y.; Liang, L.; Luo, M.; Wang, W.; Efferth, T. Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int. 2012, 49, 147–152. [Google Scholar] [CrossRef]
- Tian, Y.; Amand, S.; Buisson, D.; Kunz, C.; Hachette, F.; Dupont, J.; Nay, B.; Prado, S. The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 2014, 108, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, C.; Wang, W.; Zhao, C.; Luo, M.; Mu, F.; Fu, Y.; Zu, Y.; Yao, M. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] M illsp.). J. Appl. Microbiol. 2013, 115, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, L.Y.; Lu, Y.H. Ceriporialacerata DMC1106, a new endophytic fungus: Isolation, identification, and optimal medium for 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone production. Biotechnol. Bioprocess Eng. 2013, 18, 669–678. [Google Scholar] [CrossRef]
- Seetharaman, P.; Gnanasekar, S.; Chandrasekaran, R.; Chandrakasan, G.; Kadarkarai, M.; Sivaperumal, S. Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann. Microbiol. 2017, 67, 321–331. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Ren, W.; Zhao, D.; Zhu, Y.; Wu, X. Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 2012, 19, 364–368. [Google Scholar] [CrossRef]
- Yan, J.; Qi, N.; Wang, S.; Gadhave, K.; Yang, S. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin. Curr. Microbiol. 2014, 69, 740–744. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Gajbhiye, S.; Roy, S.; Dudhale, R.; Chowdhary, A. Determination of Kaempferol in extracts of Fusarium chlamydosporum, an endophytic fungi of Tylophora indica (Asclepeadaceae) and its anti-microbial activity. J. Pharm. Biol. Sci. 2014, 9, 51–55. [Google Scholar]
- Huang, J.X.; Zhang, J.; Zhang, X.R.; Zhang, K.; Zhang, X.; He, X.R. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm. Biol. 2014, 52, 1237–1243. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, D.; Luo, M.; Wang, W.; Zhao, C.; Zu, Y.; Fu, Y.; Wink, M. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int. 2014, 56, 243–251. [Google Scholar] [CrossRef]
- Qiu, M.; Xie, R.; Shi, Y.; Zhang, H.; Chen, H. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann. Microbiol. 2010, 60, 143–150. [Google Scholar] [CrossRef]
- Ebada, S.S.; Eze, P.; Okoye, F.B.; Esimone, C.O.; Proksch, P. The fungal endophyte Nigrosporaoryzae produces quercetin monoglycosides previously known only from plants. ChemistrySelect 2016, 16, 2767–2771. [Google Scholar] [CrossRef]
- Hu, M.Y.; Zhong, G.H.; Sun, Z.T.; Sh, G.; Liu, H.M.; Liu, X.Q. Insecticidal activities of secondary metabolites of endophytic Pencillium sp. in Derris elliptica Benth. J. Appl. Entomol. 2005, 129, 413–417. [Google Scholar] [CrossRef]
- Fan, Y.F.; Zhan, S.F.; Chen, Y.; Gan, J.L.; Peng, Q.; Liu, Z.J.; Li, S.J. Study on endophytic fungi of Pteris multifida II: A preliminary study on a strain of Rutin-producing endophytic fungi. J. Fung. Res. 2007, 4, 008. [Google Scholar]
- Huang, W.; Cai, Y.; Hyde, K.D.; Corke, H.; Sun, M. Endophytic fungi from Nerium oleander L (Apocynaceae): Main constituents and antioxidant activity. World J. Microbiol. Biotechnol. 2007, 23, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Yan, G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007, 105, 548–554. [Google Scholar] [CrossRef]
- Patil, M.P.; Patil, R.H.; Maheshwari, V.L. Biological activities and identification of bioactive metabolite from endophytic Aspergillus flavus L7 isolated from Aegle marmelos. Curr. Microbiol. 2015, 71, 39–48. [Google Scholar] [CrossRef]
- El-Elimat, T.; Raja, H.A.; Graf, T.N.; Faeth, S.H.; Cech, N.B.; Oberlies, N.H. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod. 2014, 77, 193–199. [Google Scholar] [CrossRef]
- Gu, C.; Ma, H.; Ning, W.; Niu, L.; Han, H.; Yuan, X.; Fu, Y. Characterization, culture medium optimization and antioxidant activity of an endophytic vitexin-producing fungus Dichotomopilus funicola Y3 from pigeon pea [Cajanus cajan (L.) Millsp.]. J. Appl. Microbiol. 2018, 125, 1054–1065. [Google Scholar] [CrossRef]
- Sato, F.; Matsukawa, Y.; Matsumoto, K.; Nishino, H.; Sakai, T. Apigenin induces morphological differentiation and G2-M arrest in rat neuronal cells. Biochem. Biophys. Res. Comm. 1994, 204, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Viola, H.; Wasowski, C.; Levi de Stein, M.; Wolfman, C.; Silveira, R.; Dajas, F.; Medina, J.H.; Paladini, A.C. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med. 1995, 61, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Liu, X.; Zu, Y.; Fu, Y.; Zhang, S.; Yao, L.; Efferth, T. Cajanol, a novel anticancer agent from pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem. Biol. Interact. 2010, 188, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 2017, 7, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, F.U.; Rehman, M.S.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet. 2019, 10, 514. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lazaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Kim, J.M.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458–2461. [Google Scholar] [CrossRef]
- Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep. 2016, 6, 24049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of quercetin, a polyphenol, on blood pressure. Molecules 2017, 22, 209. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidat. Med. Cell. Long. 2018, 17, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, K.; Agarwal, R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008, 269, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, Á.; Esquivel-Soto, J.; Esquivel-Chirino, C.; y González-Rubio, M.G.L.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective effect of silymarin. World J. Hepatol. 2014, 6, 144–149. [Google Scholar] [CrossRef]
- Dixit, N.; Baboota, S.; Kohli, K.; Ahmad, S.; Ali, J. Silymarin: A review of pharmacological aspects and bioavailability enhancement approaches. Indian J. Pharmacol. 2007, 39, 172. [Google Scholar] [CrossRef] [Green Version]
- Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran. J. Basic Med. Sci. 2011, 14, 308. [Google Scholar]
- He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Chapela, I.H.; Petrini, O.; Hagmann, L. Monolignol glucosides as specific recognition messengers in fungus-plant symbioses. Physiol. Mol. Plant Pathol. 1991, 39, 289–298. [Google Scholar] [CrossRef]
- Kong, P.; Zhang, L.; Guo, Y.; Lu, Y.; Lin, D. Phillyrin, a natural lignan, attenuates tumor necrosis factor α-mediated insulin resistance and lipolytic acceleration in 3T3-L1 adipocytes. Planta Med. 2014, 80, 880–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Wei, X.; Wang, J. Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 2012, 83, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, S.; Zhang, L.; Shao, H. Select of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat. Prod. Res. Dev. 2003, 15, 419–422. [Google Scholar]
- Zeng, S.; Shao, H.; Zhang, L. An endophytic fungus producing a substance analogous to podophyllotoxin isolated from Diphylleia sinensis. J. Microbiol. 2004, 24, 1–2. [Google Scholar]
- Lu, L.; He, J.; Yu, X.; Li, G.; Zhang, X. Studies on isolation and identification of endophytic fungi strain SC13 from pharmaceutical plant Sabina vulgaris Ant. and metabolites. Acta Agric. Boreali-Occident. Sin. 2006, 15, 85–89. [Google Scholar]
- Eyberger, A.L.; Dondapati, R.; Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 2006, 69, 1121–1124. [Google Scholar] [CrossRef]
- Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 2006, 122, 494–510. [Google Scholar] [CrossRef]
- Cao, L.; Huang, J.; Li, J. Fermentation conditions of Sinopodophyllumhexandrum endophytic fungus on production of podophyllotoxin. Food Ferment. Ind. 2007, 33, 28–32. [Google Scholar]
- Kour, A.; Shawl, A.S.; Rehman, S.; Sultan, P.; Qazi, P.H.; Suden, P.; Khajuria, R.K.; Verma, V. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World. J. Microbiol. Biotechnol. 2008, 24, 1115–1121. [Google Scholar] [CrossRef]
- Kusari, S.; Lamshöft, M.; Spiteller, M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J. Appl. Mmicrobiol. 2009, 107, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Mauji, R.; Pravej, A.; Ahmad, M.M.; Mohammad, A.; Qurainy, F.A.; Khan, S.; Abdin, M.Z. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr. J. Microbiol. Res. 2012, 6, 2493–2499. [Google Scholar]
- Arneaud, S.L.; Porter, J.R. Investigation and expression of the secoisolariciresinol dehydrogenase gene involved in podophyllotoxin biosynthesis. Mol. Biotechnol. 2015, 57, 961–973. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, J.; Zhang, X.; Li, J.; Zhang, X.; Zhao, C. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces Podophyllotoxin. J. Chromatogr. Sci. 2016, 54, 175–178. [Google Scholar]
- Tan, X.; Zhou, Y.; Zhou, X.; Xia, X.; Wei, Y.; He, L.; Tang, H.; Yu, L. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci. Rep. 2018, 8, 5929. [Google Scholar] [CrossRef]
- Cheng, M.J.; Wu, M.D.; Chen, J.J.; Hsieh, S.Y.; Yuan, G.F.; Chen, I.S.; Chang, C.W. Secondary metabolites from the endophytic fungus of Annulohypoxylon ilanense. Chem. Nat. Compd. 2013, 49, 523–525. [Google Scholar] [CrossRef]
- Krishnan, S.S.C.; Subramanian, I.P.; Subramanian, S.P. Isolation, characterization of syringin, phenylpropanoid glycoside from Musa paradisiaca tepal extract and evaluation of its antidiabetic effect in streptozotocin-induced diabetic rats. Biomed. Prev. Nutr. 2014, 4, 105–111. [Google Scholar] [CrossRef]
- Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry 2000, 54, 115–120. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, X.; Yang, C.; Wu, X.; Zhang, L. Endophytic fungi of Paris polyphylla var. yunnanensis and steroid analysis in the fungi. Nat. Prod. Res. Dev. 2004, 16, 198–200. [Google Scholar]
- Cao, X.; Li, J.; Zhou, L.; Xu, L.; Li, J.; Zhao, J. Determination of diosgenin content of the endophytic fungi from Paris polyphylla var. yunnanensis by using an optimum ELISA. Nat. Prod. Res. Dev. 2007, 19, 1020–1023. [Google Scholar]
- Ding, C.H.; Du, X.W.; Xu, Y.; Xu, X.M.; Mou, J.C.; Yu, D.; Wu, J.K.; Meng, F.J.; Liu, Y.; Wang, W.L.; et al. Screening for differentially expressed genes in endophytic fungus strain 39 during co-culture with herbal extract of its host Dioscorea nipponica Makino. Curr. Microbiol. 2014, 69, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, H.; You, X.; Li, Y. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int. J. Mol. Sci. 2012, 13, 16255–16266. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yang, H.Y.; You, X.L.; Li, Y.H. Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2013, 2, 107. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Gao, L.; Zhang, L.; Liu, T.; Yu, F.; Zhang, Z.; Guo, Q.; Wang, B. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Nat. Prod. Res. 2017, 31, 2700–2703. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Sathiyabama, M. Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R. Br. Appl. Biochem. Biotechnol. 2014, 172, 3141–3152. [Google Scholar] [CrossRef]
- Govindappa, M.; Bharath, N.; Shruthi, H.B.; Santoyo, G. In vitro antioxidant activity and phytochemical screening of endophytic extracts of Crotalaria pallida. Free Radic. Antioxid. 2011, 1, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Govindappa, M.; Channabasava, R.; Sowmya, D.V.; Meenakshi, J.; Shreevidya, M.R.; Lavanya, A.; Santoyo, G.; Sadananda, T.S. Phytochemical screening, antimicrobial and in vitro anti-inflammatory activity of endophytic extracts from Loranthus sp. Pharmaco. J. 2011, 3, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Sadananda, T.S.; Nirupama, R.; Chaithra, K.; Govindappa, M.; Chandrappa, C.P.; Vinay Raghavendra, B. Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J. Med. Plants Res. 2011, 5, 3643–3652. [Google Scholar]
- Dhankhar, S.; Kumar, S.; Dhankhar, S.; Yadav, J.P. Antioxidant activity of fungal endophytes isolated from Salvadoraoleoides Decne. Int. J. Pharm. Pharm. Sci. 2012, 4, 381–385. [Google Scholar]
- Prabavathy, D.; Nachiyar, C. Cytotoxic potential and phytochemical analysis of Justicia beddomei and its endophytic Aspergillus sp. Asian J. Pharm. Clin. Res. 2013, 6, 159–161. [Google Scholar]
- Pragathi, D.; Vijaya, T.; Mouli, K.C.; Anitha, D. Diversity of fungal endophytes and their bioactive metabolites from endemic plants of Tirumala hills-Seshachalam biosphere reserve. Afr. J. Biotechnol. 2013, 12, 4317–4323. [Google Scholar]
- Saraswaty, V.; Srikandace, Y.; Simbiyani, N.A.; Setiyanto, H.; Udin, Z. Antioxidant activity and total phenolic content of endophytic fungus Fennellia nivea NRRL 5504. Pakistan J. Biol. Sci. 2013, 16, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
- Karunai Selvi, B.; Balagengatharathilagam, P. Isolation and screening of endophytic fungi from medicinal plants of Virudhunagar district for antimicrobial activity. Int. J. Sci. Nat. 2014, 5, 147–155. [Google Scholar]
- Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014, 7, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Chattopadhyay, A.; Joshi, S.R. Biological activity of endophytic fungi of Rauwolfia serpentine Benth: An ethnomedicinal plant used in folk medicines in Northeast India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 233–240. [Google Scholar] [CrossRef]
- Jesus, M.; Martins, A.P.; Gallardo, E.; Silvestre, S. Diosgenin: Recent highlights on pharmacology and analytical methodology. J. Anal. Methods Chem. 2016, 2016, 1–16. [Google Scholar] [CrossRef]
- Gardner, D.R.; Panter, K.E.; Stegelmeier, B.L. Implication of agathic acid from Utah juniper bark as an abortifacient compound in cattle. J. Appl. Toxicol. 2010, 30, 115–119. [Google Scholar] [CrossRef]
- Izumi, E.; Ueda-Nakamura, T.; Veiga, V.F., Jr.; Pinto, A.C.; Nakamura, C.V. Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J. Med. Chem. 2012, 55, 2994–3001. [Google Scholar] [CrossRef]
- Yuan, L.; Zhao, P.J.; Ma, J.; Lu, C.H.; Shen, Y.M. Labdane tetranorlabdane diterpenoids from Botryosphaeria sp. MHF, an endophytic fungus of Maytenus hookeri. Helv. Chim. Acta 2009, 92, 1118–1125. [Google Scholar] [CrossRef]
- Kamdem, R.S.; Wang, H.; Wafo, P.; Ebrahim, W.; Özkaya, F.C.; Makhloufi, G.; Janiak, C.; Sureechatchaiyan, P.; Kassack, M.U.; Lin, W.; et al. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 2018, 124, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Liu, W.; Li, J.; Deng, Y.; Chen, S.; Liu, H. Bioactive terpenoids from Santalum album derived endophytic fungus Fusarium sp. YD-2. RSC Adv. 2018, 8, 14823–14828. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.Y.; Cai, Y.Z.; Xing, J.; Corke, H.; Sun, M. A potential antioxidant resource: Endophytic fungi from medicinal plants. Econ. Bot. 2007, 61, 14–30. [Google Scholar] [CrossRef]
- Gupta, S.; Bhatt, P.; Chaturvedi, P. Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World J. Microbiol. Biotechnol. 2018, 34, 111. [Google Scholar] [CrossRef] [PubMed]
- Kusari, S.; Verma, V.C.; Lamshoeft, M.; Spiteller, M. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J. Microbiol. Biotechnol. 2012, 28, 1287–1294. [Google Scholar] [CrossRef]
- Qian, Y.X.; Kang, J.C.; Luo, Y.K.; Zhao, J.J.; He, J.; Geng, K. A Bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Curr. Microbiol. 2016, 73, 280–286. [Google Scholar] [CrossRef]
- Chen, M.; Yang, L.; Li, Q.; Shen, Y.; Shao, A.; Lin, S.; Huang, L. Volatile metabolites analysis and molecular identification of endophytic fungi bn12 from Cinnamomum camphora var. borneol. Chin. J. Chin. Mater. Med. 2011, 36, 3217–3221. [Google Scholar]
- Suwannarach, N.; Kumla, J.; Bussaban, B.; Nuangmek, W.; Matsui, K.; Lumyong, S. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop. Prot. 2013, 45, 63–70. [Google Scholar] [CrossRef]
- Tomsheck, A.R.; Strobel, G.A.; Booth, E.; Geary, B.; Spakowicz, D.; Knighton, B.; Floerchinger, C.; Sears, J.; Liarzi, O.; Ezra, D. Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb. Ecol. 2010, 60, 903–914. [Google Scholar] [CrossRef]
- Hassan, S.R.; Strobel, G.A.; Geary, B.; Sears, J. An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J. Microbiol. Biotechnol. 2013, 23, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Nigg, J.; Strobel, G.; Knighton, W.B.; Hilmer, J.; Geary, B.; Riyaz-Ul-Hassan, S.; Harper, J.K.; Valenti, D.; Wang, Y. Functionalized para-substituted benzenes as 1, 8-cineole production modulators in an endophytic Nodulisporium species. Microbiology 2014, 160, 1772–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.Y.; Strobel, G.A.; Yan, D.H. The production of 1, 8-cineole, a potential biofuel, from an endophytic strain of Annulohypoxylon sp. FPYF3050 when grown on agricultural residues. J. Sustain. Bioenergy Syst. 2017, 7, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yi, D.; Bai, X.; Sun, B.; Zhao, Y.; Zhang, Y. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 2012, 83, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.D.; Cheng, M.J.; Chen, I.S.; Su, Y.S.; Hsieh, S.Y.; Chang, H.S.; Chang, C.W.; Yuan, G.F. Phytochemical investigation of Annulohypoxylon ilanense, an endophytic fungus derived from Cinnamomum species. Chem. Biodivers. 2013, 10, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Caruso, M.; Colombo, A.L.; Fedeli, L.; Pavesi, A.; Quaroni, S.; Saracchi, M.; Ventrella, G. Isolation of endophytic fungi and actinomycetes taxane producers. Ann. Microbiol. 2000, 50, 3–14. [Google Scholar]
- Staniek, A.; Woerdenbag, H.J.; Kayser, O. Screening the endophytic flora of Wollemia nobilis for alternative paclitaxel sources. J. Plant Interact. 2010, 5, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Qiu, D.; Huang, M.; Fang, X.; Zhu, C.; Zhu, Z. Isolation of an endophytic fungus associated with Taxus yunnanensis Cheng et LK Fu. Acta Mycol. Sin. 1994, 13, 314. [Google Scholar]
- Li, J.Y.; Strobel, G.A.; Sidhu, R.; Hess, W.M.; Ford, E.J. Endophytitaxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 1996, 142, 2223–2226. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.A.; Hess, W.M.; Ford, E.; Sidhu, R.S.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. Biotechnol. 1996, 17, 417–423. [Google Scholar] [CrossRef]
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.A.; Hess, W.M.; Li, J.Y.; Ford, E.; Sears, J.; Sidhu, R.S.; Summerell, B. Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust. J. Bot. 1997, 45, 1073–1082. [Google Scholar] [CrossRef]
- Li, J.Y.; Sidhu, R.S.; Ford, E.J.; Long, D.M.; Hess, W.M.; Strobel, G.A. The induction of taxol production in the endophytic fungus-Periconia sp. from Torreya grandifolia. J. Ind. Microbiol. Biotechnol. 1998, 20, 259–264. [Google Scholar] [CrossRef]
- Bashyal, B. Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 1999, 72, 33–42. [Google Scholar]
- Kim, S.U.; Strobel, G.A.; Ford, E. Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea. Agric. Chem. Biotechnol. 1999, 42, 97–99. [Google Scholar]
- Stierle, A.; Stierle, D.; Stierle, S. Bioactive compounds from four endophytic Penicillium sp. of a northwest pacific yew tree. Nat. Prod. Chem. 2000, 24, 933–977. [Google Scholar]
- Wang, J.; Li, G.; Lu, H.; Zheng, Z.; Huang, Y.; Su, W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 2000, 193, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.A.; Hess, W.M.; Baird, G.; Ford, E.; Li, J.Y.; Sidhu, R.S. Stegolerium kukenani gen. et sp. nov. an endophytic, taxol producing fungus from the Roraima and Kukenan tepuis of Venezuela. Mycotaxon 2001, 78, 353–361. [Google Scholar]
- Wan, B.; Li, A.M.; Wang, X.L. Separation of a fungus producing taxol. Sci. China Ser. C 2001, 44, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, K.; Strobel, G.A.; Shrivastava, S.P.; Gewali, M.B. Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med. 2001, 67, 374–376. [Google Scholar] [CrossRef]
- Zhao, K.; Zhou, D.P.; Ping, W.X.; Ge, J. Study on the preparation and regeneration of protoplast from taxol-producing fungus Nodulisporium sylviforme. Nat. Sci. 2004, 2, 52–59. [Google Scholar]
- Guo, B.H.; Wang, Y.C.; Zhou, X.W.; Hu, K.; Tan, F.; Miao, Z.Q.; Tang, K.X. An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 2006, 5, 875–877. [Google Scholar]
- Hu, K.; Tan, F.; Tang, K.; Zhu, S.; Wang, W. Isolation and screening of endophytic fungi synthesizing taxol from Taxus chinensis var. mairei. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2006, 31, 134–137. [Google Scholar]
- Liu, J.J.; Gong, H.X.; Yang, D.L.; Chen, S.J.; Yang, L. Study on endophytic fungi producing taxol isolated from Taxus yunnanensis. Prog. Mod. Biomed. 2006, 6, 53–55. [Google Scholar]
- Xu, F.; Tao, W.; Chang, L.; Guo, L. Strain improvement and optimization of the media of taxol-producing fungus Fusarium mairei. Biochem. Eng. J. 2006, 31, 67–73. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. Endophytic fungal diversity from young, mature and senescent leaves of Ocimum basilicum L. with special reference to taxol production. Indian J. Sci. Technol. 2007, 1, 1–12. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Jiang, K.; Wei, Y.; Lin, J.; Sun, X.; Tang, K. Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Appl. Biochem. Microbiol. 2007, 43, 439–443. [Google Scholar] [CrossRef]
- Chakravarthi, B.V.; Das, P.; Surendranath, K.; Karande, A.A.; Jayabaskaran, C. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J. Biosci. 2008, 33, 259–267. [Google Scholar] [CrossRef]
- Gangadevi, V.; Murugan, M.; Muthumary, J. Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin. J. Biotechnol. 2008, 24, 1433–1438. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J. Microbiol. Biotechnol. 2008, 24, 717–724. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol. Balc. 2008, 5, 1–4. [Google Scholar]
- Gogoi, D.K.; Deka Boruah, H.P.; Saikia, R.; Bora, T.C. Optimization of process parameters for improved production of bioactive metabolite by a novel endophytic fungus Fusarium sp. DF2 isolated from Taxus wallichiana of North East India. World J. Microbiol. Biotechnol. 2008, 24, 79–87. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J. Biosci. Bioeng. 2008, 106, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Muthumary, J.; Hur, B.K. Isolation and identification of taxol, an anticancer drug from Phyllosticta melochiae Yates, an endophytic fungus of Melochia corchorifolia L. Food Sci. Biotechnol. 2008, 17, 1246–1253. [Google Scholar]
- Kumaran, R.S.; Muthumary, J.; Hur, B. Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng. Life Sci. 2008, 8, 438–446. [Google Scholar] [CrossRef]
- Li, C.T.; Li, Y.; Wang, Q.J.; Sung, C.K. Taxol production by Fusarium arthrosporioides isolated from yew, Taxus cuspidata. J. Med. Biochem. 2008, 27, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Ran, X.; Wang, J. Isolation and identification of a taxol producing endophytic fungus from Podocarpus. Acta Microbiol. Sin. 2008, 48, 589–595. [Google Scholar]
- Venkatachalam, R.; Subban, K.; Paul, M.J. Taxol from Botryodiplodia theobromae (BT 115)-an endophytic fungus of Taxus baccata. J. Biotechnol. 2008, 136, 189–190. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, L.; Jin, Y.; Wei, H.; Ping, W.; Zhou, D. Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 2008, 27, 735–744. [Google Scholar]
- Deng, B.W.; Liu, K.H.; Chen, W.Q.; Ding, X.W.; Xie, X.C. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microb. Biotechnol. 2009, 25, 139–143. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl. Biochem. Biotechnol. 2009, 158, 675–684. [Google Scholar] [CrossRef]
- Gangadevi, V.; Muthumary, J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol. Appl. Biochem. 2009, 52, 9–15. [Google Scholar] [CrossRef]
- Kumaran, R.S.; Hur, B.K. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol. Appl. Biochem. 2009, 54, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, R.S.; Muthumary, J.; Kim, E.K.; Hur, B.K. Production of taxol from Phyllosticta dioscoreae, a leaf spot fungus isolated from Hibiscus rosa-sinensis. Biotechnol. Bioprocess 2009, 14, 76–83. [Google Scholar] [CrossRef]
- Liu, K.; Ding, X.; Deng, B.; Chen, W. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J. Ind. Microbiol. Biotechnol. 2009, 36, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Wang, Y.; Yu, X.; Guo, B.; Tang, K. A new endophytic taxane production fungus from Taxus chinensis. Appl. Biochem. Microbiol. 2009, 45, 81–86. [Google Scholar] [CrossRef]
- Nithya, K.; Muthumary, J. Growth studies of Colletotrichum gloeosporioides (Penz.) Sacc.—A taxol producing endophytic fungus from Plumeria acutifolia. Indian J. Sci. Technol. 2009, 2, 14–19. [Google Scholar] [CrossRef]
- Sreekanth, D.; Syed, A.; Sarkar, S.; Sarkar, D.; Santhakumari, B.; Ahmad, A.; Khan, I. Production, purification and characterization of taxol and 10DAB III from a new endophytic fungus Gliocladium sp. isolated from the Indian yew tree, Taxus baccata. J. Microbiol. Biotechnol. 2009, 19, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K.; Muthumary, J. Taxol production from Pestalotiopsis sp. an endophytic fungus isolated from Catharanthus roseus. J. Ecobiotechnol. 2009, 1, 28–31. [Google Scholar]
- Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol. Lett. 2009, 293, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol. 2009, 59, 227–232. [Google Scholar] [CrossRef]
- Zhao, K.; Ping, W.; Li, Q.; Hao, S.; Zhao, L.; Gao, T.; Zhou, D. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J. Appl. Microbiol. 2009, 107, 1202–1207. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, W.; Zhu, H. Identification of a taxol-producing endophytic fungus EFY-36. Afr. J. Biotechnol. 2009, 8, 2623–2625. [Google Scholar]
- Kumaran, R.S.; Kim, H.J.; Hur, B.K. Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J. Biosci. Bioeng. 2010, 110, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Vennila, R.; Thirunavukkarasu, S.V.; Muthumary, J. In-vivo studies on anticancer activity of taxol isolated from an endophytic fungus Pestalotiopsis pauciseta Sacc. VM1. Asian J. Pharm. Clin. Res. 2010, 3, 30–34. [Google Scholar]
- Pandi, M.; Kumaran, R.S.; Choi, Y.K.; Kim, H.J.; Muthumary, J. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr. J. Biotechnol. 2011, 10, 1428–1435. [Google Scholar]
- Soca-Chafre, G.; Rivera-Orduña, F.N.; Hidalgo-Lara, M.E.; Hernandez-Rodriguez, C.; Marsch, R.; Flores-Cotera, L.B. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol. 2011, 115, 143–156. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Tsao, R.; Raizada, M.N. Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J. Nat. Prod. 2011, 74, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, K. A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 2011, 10, 16379–16386. [Google Scholar]
- Mirjalili, M.H.; Farzaneh, M.; Bonfill, M.; Rezadoost, H.; Ghassempour, A. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol. Lett. 2012, 328, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, N.; Murugesan, S.; Mohan, V.; Muthumary, J. Taxol producing fungal endophyte, Colletotrichum gleospoiroides (Penz.) from Tectona grandis L. Curr. Biotica. 2013, 7, 8–15. [Google Scholar]
- Wu, L.S.; Hu, C.L.; Han, T.; Zheng, C.J.; Ma, X.Q.; Rahman, K.; Qin, L.P. Cytotoxic metabolites from Perenniporiatephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl. Microbiol. Biotechnol. 2013, 97, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.Q.; Yang, Y.Y.; Zhao, N.; Wang, Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. 2013, 13, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaran, R.S.; Choi, Y.K.; Lee, S.; Jeon, H.J.; Jung, H.; Kim, H.J. Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr. J. Biotechnol. 2014, 11, 950–960. [Google Scholar]
- Michalczyk, A.; Cieniecka-Rosłonkiewicz, A.; Cholewińska, M. Plant endophytic fungi as a source of paclitaxel. Herba Pol. J. 2014, 60, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Raj, K.G.; Rajapriya, P.; Muthumary, J.; Pandi, M. Molecular identification and characterization of the taxol-producing Colletotrichum gloeosporioides from Moringa oleifera Linn. In Microbial Diversity and Biotechnology in Food Security; Kharwar, R.N., Upadhyay, R., Dubey, N., Raghuwanshi, R., Eds.; Springer: New Delhi, India, 2014; pp. 111–120. [Google Scholar]
- Wang, Y.; Ma, Z.; Hu, F.; Fan, M.; Li, Z. Isolation and screening of endophytic fungi producing taxol from Taxus chinensis of Huangshan. Nat. Prod. Res. Dev. 2014, 26, 1624–1627. [Google Scholar]
- Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Bruce, R.; et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom. 2014, 15, 69. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 2011, 11, 159–168. [Google Scholar] [CrossRef]
- Sathiyabama, M.; Parthasarathy, R. Withanolide production by fungal endophyte isolated from Withania somnifera. Nat. Prod. Res. 2018, 32, 1573–1577. [Google Scholar] [CrossRef]
- Nibret, E.; Youns, M.; Krauth-Siegel, R.L.; Wink, M. Biological activities of xanthatin from Xanthium strumarium leaves. Phytother. Res. 2011, 25, 1883–1890. [Google Scholar] [CrossRef]
- Xu, L.L.; Han, T.; Wu, J.Z.; Zhang, Q.Y.; Zhang, H.; Huang, B.K.; Rahman, K.; Qin, L.P. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 2009, 16, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Woodrow, C.J.; Haynes, R.K.; Krishna, S. Artemisinins. Postgrad Med. J. 2005, 81, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Q&A on Artemisinin Resistance. Available online: https://www.who.int/malaria/media/artemisinin_resistance_qa/en/ (accessed on 17 September 2020).
- Das, A.K. Anticancer effect of antimalarial artemisinin compounds. Ann. Med. Health Sci. Res. 2015, 5, 93–102. [Google Scholar] [CrossRef] [PubMed]
- O’neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin—The debate continues. Molecules 2010, 15, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
- Bridgford, J.L.; Xie, S.C.; Cobbold, S.A.; Pasaje, C.F.; Herrmann, S.; Yang, T.; Gillett, D.L.; Dick, L.R.; Ralph, S.A.; Dogovski, C.; et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Usai, S.; Grazzi, L.; Bussone, G. Gingkolide B as migraine preventive treatment in young age: Results at 1-year follow-up. Neurol. Sci. 2011, 1, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Nutrition Business Journal Annual Report. Nutr. Bus. J. 2012. Available online: http://nutritionbusinessjournal.com/ (accessed on 9 December 2014).
- Kiewert, C.; Kumar, V.; Hildmann, O.; Hartmann, J.; Hillert, M.; Klein, J. Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide. Brain Res. 2008, 27, 143–150. [Google Scholar] [CrossRef]
- Michelle, G.; Sharron, D. Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats. Behav. Pharmacol. 2013, 24, 298–306. [Google Scholar]
- Baker, M.A.; Demoret, R.M.; Ohtawa, M.; Shenvi, R.A. Concise asymmetric synthesis of (−)-bilobalide. Nature 2019, 575, 643–646. [Google Scholar] [CrossRef]
- Guo, M.; Suo, Y.; Gao, Q.; Du, H.; Zeng, W.; Wang, Y.; Hu, X.; Jiang, X. The protective mechanism of Ginkgolides and Ginkgo flavonoids on the TNF-α induced apoptosis of rat hippocampal neurons and its mechanisms in vitro. Heliyon 2015, 1, e00020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Sun, Q.; Chen, W.; Bai, Y.; Hu, D.; Xie, X. The neuroprotective mechanisms of ginkgolides and bilobalide in cerebral ischemic injury: A literature review. Mol. Med. 2019, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.C.; Horwitz, S.B. Nature as a remarkable chemist: A personal story of the discovery and development of Taxol. Anticancer Drugs 2014, 25, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, D.A.; Yang, Z.; Rieder, C.L. Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J. Cell Biol. 2008, 182, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Fu, Y.; Gao, J.; Wang, Y.; Li, X.; Zhang, A. Preliminary isolation and screening of the endophytic fungi from Melia azedarach L. Acta Agric. Boreali-Occident. Sin. 2007, 16, 224–227. [Google Scholar]
- Jin, Y.H.; Kwon, S.; Choi, J.G.; Cho, W.K.; Lee, B.; Ma, J.Y. Toosendanin from Melia fructus suppresses influenza a virus infection by altering nuclear localization of viral polymerase PA protein. Front. Pharmacol. 2019, 10, 25. [Google Scholar] [CrossRef]
- Zhang, T.; Li, J.; Yin, F.; Lin, B.; Wang, Z.; Xu, J.; Wang, H.; Zuo, D.; Wang, G.; Hua, Y.; et al. Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3. Oncogene 2017, 36, 6627–6639. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Cao, L.; Wang, Z.; Li, Z.; Ma, J. Anti-cancer effect of toosendanin and its underlying mechanisms. J. Asian Nat. Prod. Res. 2019, 21, 270–283. [Google Scholar] [CrossRef]
- Gao, T.; Xie, A.; Liu, X.; Zhan, H.; Zeng, J.; Dai, M.; Zhang, B. Toosendanin induces the apoptosis of human Ewing’s sarcoma cells via the mitochondrial apoptotic pathway. Mol. Med. Rep. 2019, 20, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Kovács, A.; Vasas, A.; Forgo, P.; Réthy, B.; Zupkó, I.; Hohmann, J. Xanthanolides with antitumour activity from Xanthium italicum. Z. Naturforsch. C 2009, 64, 343–349. [Google Scholar] [CrossRef]
- Sun, P.; Huo, J.; Kurtan, T.; Mandi, A.; Antus, S.; Tang, H.; Draeger, S.; Schulz, B.; Hussain, H.; Krohn, K.; et al. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality 2013, 25, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Yan, Y.M.; Wei, W.; Luo, J.; Zhang, L.S.; Zhou, X.J.; Wang, P.C.; Yang, Y.X.; Cheng, Y.X. Anthraquinone derivatives from Rumex plants and endophytic Aspergillus fumigatus and their effects on diabetic nephropathy. Bioorg. Medicin. Chem. Lett. 2013, 23, 3905–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasuriya, H.; Koonchanok, N.M.; Geahlen, R.L.; McLaughlin, J.L.; Chang, C.J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J. Nat. Prod. 1992, 55, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.M.; Rodrigues-Filho, E.; Moitinho, M.D.; Santos, L.S. Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J. Braz. Chem. Soc. 2005, 16, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Cai, X.L.; Yang, H.; Xia, X.K.; Guo, Z.Y.; Yuan, J.; Li, M.F.; She, Z.G.; Lin, Y.C. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med. 2010, 76, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Hawas, U.W.; El-Beih, A.A.; El-Halawany, A.M. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch. Pharm. Res. 2012, 35, 1749–1756. [Google Scholar] [CrossRef]
- You, X.; Feng, S.; Luo, S.; Cong, D.; Yu, Z.; Yang, Z.; Zhang, J. Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 2013, 85, 161–168. [Google Scholar] [CrossRef]
- Zin, W.W.; Buttachon, S.; Dethoup, T.; Pereira, J.A.; Gales, L.; Inacio, A.; Costa, P.M.; Lee, M.; Sekeroglu, N.; Silva, A.M.; et al. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 2017, 141, 86–97. [Google Scholar] [CrossRef]
- Vigneshwari, A.; Rakk, D.; Németh, A.; Kocsubé, S.; Kiss, N.; Csupor, D. Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE 2019, 14, e0217060. [Google Scholar] [CrossRef]
- Chomcheon, P.; Wiyakrutta, S.; Sriubolmas, N.; Ngamrojanavanich, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Metabolites from the endophytic mitosporic Dothideomycete sp. LRUB20. Phytochemistry 2009, 70, 121–127. [Google Scholar] [CrossRef]
- Kusari, S.; Lamshöft, M.; Zühlke, S.; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod. 2008, 71, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Kusari, S.; Zühlke, S.; Kosuth, J.; Cellárová, E.; Spiteller, M. Light independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J. Nat. Prod. 2009, 72, 1825–1835. [Google Scholar] [CrossRef]
- Channabasava, R.; Govindappa, M. First report of anticancer agent, lapachol producing endophyte, Aspergillus niger of Tabebuia argentea and its in vitro cytotoxicity assays. Bangladesh J. Pharmacol. 2014, 9, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Sarang, H.; Rajani, P.; Vasanthakumari, M.M.; Kumara, P.M.; Siva, R.; Ravikanth, G.; Shaanker, R.U. An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie Van Leeuwenhoek 2017, 110, 853–862. [Google Scholar] [CrossRef]
- Borges, W.D.; Pupo, M.T. Novel anthraquinone derivatives produced by Phoma sorghina, an endophyte found in association with the medicinal plant Tithonia diversifolia (Asteraceae). J. Braz. Chem. Soc. 2006, 17, 929–934. [Google Scholar] [CrossRef]
- Liu, J.Y.; Song, Y.C.; Zhang, Z.; Wang, L.; Guo, Z.J.; Zou, W.X.; Tan, R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol. 2004, 114, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.M.; Song, Y.C.; Shan, C.Y.; Ye, Y.H.; Tan, R.X. New and cytotoxic anthraquinones from Pleospora sp. IFB-E006, an endophytic fungus in Imperata cylindrical. Planta Med. 2005, 71, 1063–1065. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.W.; Hou, Z.M.; Wang, C.R.; Li, P.; Shi, D.H. Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J. Microbiol. Biotechnol. 2008, 24, 2143–2147. [Google Scholar] [CrossRef]
- Wu, S.H.; Chen, Y.W.; Qin, S.; Huang, R. A new spiroketal from Aspergillus terreus, an endophytic fungus in Opuntia ficus-indica Mill. J. Basic Microbiol. 2008, 48, 140–142. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, W.J.; Fu, C.L.; Ma, S.; Zhu, M.Q. Chemical constituents from an endophyte, Cercosporella sp. Chem. Nat. Compd. 2013, 49, 117–118. [Google Scholar] [CrossRef]
- Law, K.K.; Chan, T.L.; Tam, S.W.; Shatin, N.T. Synthesis of pinselic acid and pinselin. J. Org. Chem. 1979, 44, 4452–4453. [Google Scholar] [CrossRef]
- Song, X.Q.; Zhang, X.; Han, Q.J.; Li, X.B.; Li, G.; Li, R.J.; Jiao, Y.; Zhou, J.C.; Lou, H.X. Xanthone derivatives from Aspergillus sydowii, an endophytic fungus from the liverwort Scapania ciliata S. Lac and their immunosuppressive activities. Phytochem. Lett. 2013, 6, 318–321. [Google Scholar] [CrossRef]
- Yang, H.Y.; Gao, Y.H.; Niu, D.Y.; Yang, L.Y.; Gao, X.M.; Du, G.; Hu, Q.F. Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Fitoterapia 2013, 1, 189–193. [Google Scholar] [CrossRef]
- Yuan, L.; Huang, W.; Du, G.; Gao, X.; Yang, H.; Hu, Q.; Ma, Y. Isolation of Xanthones from the Fermentation Products of the Endophytic Fungus of Phomopsis amygdali. Chem. Nat. Compd. 2015, 51, 460–463. [Google Scholar] [CrossRef]
- Liu, H.; Chen, S.; Liu, W.; Liu, Y.; Huang, X.; She, Z. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Drugs 2016, 14, 217. [Google Scholar] [CrossRef] [Green Version]
- Venkateswarulu, N.; Shameer, S.; Bramhachari, P.V.; Basha, S.T.; Nagaraju, C.; Vijaya, T. Isolation and characterization of plumbagin (5-hydroxyl-2-methylnaptalene-1, 4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol. Rep. 2018, 20, e00282. [Google Scholar] [CrossRef]
- Li, D.L.; Li, X.M.; Wang, B.G. Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum, structural elucidation and DPPH radical scavenging activity. J. Microbiol. Biotechnol. 2009, 19, 675–680. [Google Scholar] [PubMed]
- Du, F.Y.; Li, X.M.; Song, J.Y.; Li, C.S.; Wang, B.G. Anthraquinone derivatives and an orsellinic acid ester from the marine alga-derived endophytic fungus Eurotium cristatum EN-220. Helv. Chim. Acta 2014, 97, 973–978. [Google Scholar] [CrossRef]
- Ren-Yi, G.; Lei, X.; Yi, K.; Iii-Ming, C.; Jian-Chun, Q.; Li, L.; Sheng-Xiang, Y.; Li-Chun, Z. Chaetominine, (+)-alantrypinone, questin, isorhodoptilometrin, and 4-hydroxybenzaldehyde produced by the endophytic fungus Aspergillus sp. YL-6 inhibit wheat (Triticum aestivum) and radish (Raphanus sativus) germination. J. Plant Interact. 2015, 10, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Kim, S.; Bang, S.; Lee, H.J.; Liu, C.; Park, C.I.; Shim, S.H. Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. JS752 and its antibacterial activities. J. Antibiot. 2015, 68, 139–141. [Google Scholar] [CrossRef]
- Hammerschmidt, L.; Wray, V.; Lin, W.; Kamilova, E.; Proksch, P.; Aly, A.H. New styrylpyrones from the fungal endophyte Penicillium glabrum isolated from Punica granatum. Phytochem. Lett. 2012, 5, 600–603. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Melong, R.; Tsamo, A.T.; Maffo, T.; Kapche, D.G.; Ngadjui, B.T.; McGaw, L.J.; Eloff, J.N. Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev. Brasil. Farm 2017, 27, 251–253. [Google Scholar] [CrossRef]
- Movahhedin, N.; Albadry, M.; Hamann, M.T. Isolation and characterization of cytotxic compounds from endophytes of an endangered American cactus, Mammillaria hahniana. Planta Med. 2014, 80, PD136. [Google Scholar] [CrossRef]
- Mollaei, S.; Khanehbarndaz, O.; Gerami-Khashal, Z.; Ebadi, M. Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin. Phytochemistry 2019, 168, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Jiang, D.; Wei, X. Mutation breeding of Emericella foeniculicola TR21 for improved production of tanshinone IIA. Proc. Biochem. 2011, 46, 2059–2063. [Google Scholar] [CrossRef]
- Ming, Q.L.; Han, T.; Li, W.; Zhang, Q.Y.; Zhang, H.; Zheng, C.J.; Huang, F.; Rahman, K.; Qin, L.P. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine 2012, 19, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhai, X.; Shu, Z.; Dong, R.; Ming, Q.; Qin, L.; Zheng, C. Phoma glomerata D14: An endophytic fungus from Salvia miltiorrhiza that produces salvianolic acid C. Curr. Microbiol. 2016, 73, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lou, J.; Yu, R.; Wang, X.; Mao, Z.; Fu, L.; Liu, Y.; Zhou, L. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz. J. Microbiol. 2016, 47, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Strobel, G.A.; Lobkovsky, E.; Clardy, J. Torreyanic acid: A selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J. Org. Chem. 1996, 61, 3232–3233. [Google Scholar] [CrossRef]
- Pizzorno, J.E.; Murray, M.T.; Joiner-Bey, H. The Clinician’s Handbook of Natural Medicine E-Book, 3rd ed.; Elsevier Health Sciences: St Lois, MO, USA, 2016. [Google Scholar]
- Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the light and in the dark: Two sides of the same coin. Front. Plant Sci. 2016, 7, 560. [Google Scholar] [CrossRef] [Green Version]
- Furuya, T.; Kojima, H.; Katsuta, T. 3-Methylpurpurin and other anthraquinones from callus tissue of Digitalis lanata. Phytochemistry 1972, 11, 1073–1076. [Google Scholar] [CrossRef]
- Fujii, N.; Yamashita, Y.; Arima, Y.; Nagashima, M.; Nakano, H. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob. Agents Chemother. 1992, 36, 2589–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checker, R.; Patwardhan, R.S.; Sharma, D.; Sandur, S.K. Chemopreventive and anticancer effects of plumbagin: Novel mechanism (s) via modulation of cellular redox. In Role of Nutraceuticals in Cancer Chemosensitization; Bharti, A.C., Aggarwal, B.B., Eds.; Academic Press; Elsevier: San Diego, CA, USA, 2018; pp. 325–341. ISSN 2468-3183. [Google Scholar]
- Cao, Y.Y.; Yu, J.; Liu, T.T.; Yang, K.X.; Yang, L.Y.; Chen, Q.; Shi, F.; Hao, J.J.; Cai, Y.; Wang, M.R.; et al. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, K.; Li, W. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma. Free Rad. Biol. Med. 2011, 51, 2259–2271. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Wang, M.; Lu, M.; Xi, B.; Sheng, H.; Zang, Y.Q. Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2011, 300, 886–893. [Google Scholar] [CrossRef]
- Mendes, A.F.; Caramona, M.M.; de Carvalho, A.P.; Lopes, M.C. Diacerhein and rhein prevent interleukin-1beta-induced nuclear factor-kappaB activation by inhibiting the degradation of inhibitor kappaB-alpha. Pharmacol. Toxicol. 2002, 91, 22–28. [Google Scholar] [CrossRef]
- Sun, H.; Luo, G.; Chen, D.; Xiang, Z. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient. Front. Pharmacol. 2016, 7, 247. [Google Scholar] [CrossRef] [Green Version]
- Fernand, V.E.; Losso, J.N.; Truax, R.E.; Villar, E.E.; Bwambok, D.K.; Fakayode, S.O.; Lowry, M.; Warner, I.M. Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro. Chem. Biol. Interact. 2011, 192, 220–232. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, W.; Huang, L. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front. Pharmacol. 2019, 10, 202. [Google Scholar] [CrossRef]
- Ming, Q.; Su, C.; Zheng, C.; Jia, M.; Zhang, Q.; Zhang, H.; Rahman, K.; Han, T.; Qin, L. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J. Experiment. Bot. 2013, 64, 5687–5694. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Luo, D.; Li, X.; Han, T.; Jia, M.; Kong, Z.; Ji, J.; Rahman, K.; Qin, L.; Zheng, C. Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front. Microbiol. 2018, 8, 2694. [Google Scholar] [CrossRef]
- Schwarz, M.; Köpcke, B.; Weber, R.W.; Sterner, O.; Anke, H. 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 2004, 65, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
- Chomcheon, P.; Wiyakrutta, S.; Sriubolmas, N.; Ngamrojanavanich, N.; Isarangkul, D.; Kittakoop, P. 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: Is 3-NPA in some plants produced by endophytes? J. Nat. Prod. 2005, 68, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.C.; Pamphile, J.A.; Sarragiotto, M.H.; Clemente, E. Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS and evaluation of biological activity. World J. Microbiol. Biotechnol. 2013, 29, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Meshram, V.; Kapoor, N. Muscodor tigerii sp. nov.-Volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann. Microbial. 2015, 65, 47–57. [Google Scholar] [CrossRef]
- Gu, X.J.; Ren, K.; Yao, N.; Yan, S.; Zhao, J.F.; Jiang, X.Y.; Lian, Q. Chemical constituents from endophytic fungus Plectosphaerella cucumerina YCTA2Z1 of Cynanchum auriculatum. Chin. Herb. Med. 2018, 10, 95–98. [Google Scholar] [CrossRef]
- Kamat, S.; Kumari, M.; Taritla, S.; Jayabaskaran, C. Endophytic fungi of marine alga from Konkan coast, India—A rich source of bioactive material. Front. Mar. Sci. 2020, 7, 31. [Google Scholar] [CrossRef]
- Guo, B.; Dai, J.R.; Ng, S.; Huang, Y.; Leong, C.; Ong, W.; Carte, B.K. Cytonic acids A and B: Novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J. Nat. Prod. 2000, 63, 602–604. [Google Scholar] [CrossRef]
- Zhao, J.; Fu, Y.; Luo, M.; Zu, Y.; Wang, W.; Zhao, C.; Gu, C. Endophytic fungi from pigeon pea (Cajanus cajan (L.) Millsp.) produce antioxidant cajaninstilbene acid. J. Agric. Food Chem. 2012, 60, 4314–4319. [Google Scholar] [CrossRef]
- Chen, X.; Sang, X.; Li, S.; Zhang, S.; Bai, L. Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J. Ind. Microbiol. Biotechnol. 2010, 37, 447–454. [Google Scholar] [CrossRef]
- Kaul, S.; Wani, M.; Dhar, K.L.; Dhar, M.K. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol. 2008, 58, 443. [Google Scholar] [CrossRef]
- Cheng, M.J.; Wu, M.D.; Chen, J.J.; Cheng, Y.C.; Hsieh, M.T.; Hsieh, S.Y.; Yuan, G.F.; Su, Y.S. Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chem. Nat. Compd. 2014, 50, 237–241. [Google Scholar] [CrossRef]
- Faisal, M.P.; Prasad, L.A. Potential source of methyl-eugenol from secondary metabolite of Rhizopus oryzae 6975. Int. J. Appl. Biol. Pharm. Technol. 2016, 7, 187–192. [Google Scholar]
- Tanapichatsakul, C.; Khruengsai, S.; Monggoot, S.; Pripdeevech, P. Production of eugenol from fungal endophytes Neopestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. PeerJ 2019, 7, e6427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaul, S.; Ahmed, M.; Zargar, K.; Sharma, P.; Dhar, M.K. Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: A cardiac glycoside. 3 Biotech 2013, 3, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.A.; Kaushik, S.P.; Chowdery, R.A.; Anuradha, M. Elicitation of forskolin in cultures of Rhizactonia bataticola-a phytochemical synthesizing endophytic fungi. Int. J. Pharm. Pharma. Sci. 2015, 7, 185–189. [Google Scholar]
- Seger, C.; Godejohann, M.; Tseng, L.H.; Spraul, M.; Girtler, A.; Sturm, S.; Stuppner, H. LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: Identification of isobaric irid glycoside regioisomers from Harpagophytum procumbens. Anal. Chem. 2005, 77, 878–885. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Zhu, B.; Zhang, Q.L.; Qin, L.P. Isolation and identification of endophytic fungi producing harpagoside and harpagide from Scrophularia ningpoensis. China J. Chin. Mat. Med. 2019, 44, 2046–2050. [Google Scholar]
- Nicoletti, R.; Ferranti, P.; Caira, S.; Misso, G.; Castellano, M.; Di Lorenzo, G.; Caraglia, M. Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World J. Microbiol. Biotechnol. 2014, 30, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
- Ruangrungsi, N.; Wongpanich, V.; Tantivatana, P.; Cowe, H.J.; Cox, P.J.; Funayama, S.; Cordell, G.A. Traditional medicinal plants of Thailand, V. Ancistrotectorine, a new naphthalene-isoquinoline alkaloid from Ancistrocladus tectorius. J. Nat. Prod. 1985, 48, 529–535. [Google Scholar] [CrossRef]
- Daisy, B.H.; Strobel, G.A.; Castillo, U.; Ezra, D.; Sears, J.; Weaver, D.K.; Runyon, J.B. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 2002, 148, 3737–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Krohn, K.; Draeger, S.; Schulz, B. New naphthalene-chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. Eur. J. Org. Chem. 2009, 2009, 1564–1569. [Google Scholar] [CrossRef]
- Gond, S.K.; Mishra, A.; Sharma, V.K.; Verma, S.K.; Kharwar, R.N. Isolation and characterization of antibacterial naphthalene derivative from Phoma herbarum, an endophytic fungus of Aegle marmelos. Curr. Sci. 2013, 105, 167–169. [Google Scholar]
- Shi, J.; Zeng, Q.; Liu, Y.; Pan, Z. Alternaria sp. MG1, a resveratrol-producing fungus: Isolation, identification, and optimal cultivation conditions for resveratrol production. Appl. Microbiol. Biotechnol. 2012, 95, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Guo, T.; Chao, J.; Wang, M.; Wang, J. Potential of the endophytic fungus Phialocephala fortinii Rac56 found in Rhodiola plants to produce salidroside and p-tyrosol. Molecules 2016, 21, 502. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Luo, X.; Zhong, W.; Zhang, J.; Tan, R. Characterization of volatile constituents from an endophytic Aspergillus fumigatus strain. J. Chem. Pharm. Res. 2014, 6, 893–897. [Google Scholar]
- Liang, L.; Luo, M.; Fu, Y.; Zu, Y.; Wang, W.; Gu, C.; Zhao, C.; Li, C.; Efferth, T. Cajaninstilbene acid (CSA) exerts cytoprotective effects against oxidative stress through the Nrf2-dependent antioxidant pathway. Toxicol. Lett. 2013, 219, 254–261. [Google Scholar] [CrossRef]
- Huang, M.Y.; Lin, J.; Lu, K.; Xu, H.G.; Geng, Z.Z.; Sun, P.H.; Chen, W.M. Anti-inflammatory effects of cajaninstilbene acid and its derivatives. J. Agric. Food Chem. 2016, 64, 2893–2900. [Google Scholar] [CrossRef]
- Wang, L.S.; Tao, X.; Liu, X.M.; Zhou, Y.F.; Zhang, M.D.; Liao, Y.H.; Pan, R.L.; Chang, Q. Cajaninstilbene acid ameliorates cognitive impairment induced by intrahippocampal injection of amyloid-β1-42 oligomers. Front. Pharmacol. 2019, 10, 1084. [Google Scholar] [CrossRef]
- Ren, Y.; Ribas, H.T.; Heath, K.; Wu, S.; Ren, J.; Shriwas, P.; Chen, X.; Johnson, M.E.; Cheng, X.; Burdette, J.E.; et al. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J. Nat. Prod. 2020, 83, 638–648. [Google Scholar] [CrossRef]
- Pateraki, I.; Andersen-Ranberg, J.; Jensen, N.B.; Wubshet, S.G.; Heskes, A.M.; Forman, V.; Hallström, B.; Hamberger, B.; Motawia, M.S.; Olsen, C.E.; et al. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife 2017, 6, e23001. [Google Scholar] [CrossRef] [PubMed]
- Laurenza, A.; Sutkowski, E.M.; Seamon, K.B. Forskolin: A specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol. Sci. 1989, 10, 442–447. [Google Scholar] [CrossRef]
- Chiang, H.M.; Chen, H.C.; Wu, C.S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. J. Food Drug Anal. 2015, 23, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Shi, L.S.; Chu, H.; Li, M.H.; Ho, C.W.; Lai, F.Y.; Huang, C.Y.; Chang, T.C. Rhodiola crenulata and its bioactive components, salidroside and tyrosol, reverse the hypoxia-induced reduction of plasma-membrane-associated Na, K-ATPase expression via inhibition of ROS-AMPK-PKCξ pathway. Evid. Based Complement. Alternat. Med. 2013, 2013, 1–15. [Google Scholar]
- Zhong, Z.; Han, J.; Zhang, J.; Xiao, Q.; Hu, J.; Chen, L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des. Devel. Ther. 2018, 12, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potterat, O.; Hamburger, M. Concepts and technologies for tracking bioactive compounds in natural product extracts: Generation of libraries, and hyphenation of analytical processes with bioassays. Nat. Prod. Rep. 2013, 30, 546–564. [Google Scholar] [CrossRef] [PubMed]
- Kharwar, R.N.; Sharma, V.K.; Mishra, A.; Kumar, J.; Singh, D.K.; Verma, S.K.; Gond, S.K.; Kumar, A.; Kaushik, N.; Revuru, B.; et al. Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Med. 2020, 86, 906–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, E.T.; Readnour, L.R.; Solomon, K.V. Exploiting the natural product potential of fungi with integrated-omics and synthetic biology approaches. Curr. Opin. Syst. Biol. 2017, 5, 50–56. [Google Scholar] [CrossRef]
- Hautbergue, T.; Jamin, E.L.; Debrauwer, L.; Puel, O.; Oswald, I.P. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat. Prod. Rep. 2018, 35, 147–173. [Google Scholar] [CrossRef]
- Swift, C.L.; Podolsky, I.A.; Lankiewicz, T.S.; Seppälä, S.; O’Malley, M.A. Linking ‘omics’ to function unlocks the biotech potential of non-model fungi. Curr. Opin. Syst. Biol. 2019, 14, 9–17. [Google Scholar]
- Romano, S.; Jackson, S.A.; Patry, S.; Dobson, A.D. Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Mar. Drugs 2018, 16, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, R.; Bai, X.; Chen, J.; Zhang, H.; Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Front. Microbiol. 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariantari, N.P.; Daletos, G.; Mándi, A.; Kurtán, T.; Müller, W.E.; Lin, W.; Ancheeva, E.; Proksch, P. Expanding the chemical diversity of an endophytic fungus Bulgaria inquinans, an ascomycete associated with mistletoe, through an OSMAC approach. RSC Adv. 2019, 9, 25119–25132. [Google Scholar] [CrossRef] [Green Version]
- Amirkia, V.; Heinrich, M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Phamacol. 2015, 6, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Zhu, W.; Wang, Y.; Sun, C.; Zhang, K.Q.; Yang, J. Molecular tools for functional genomics in filamentous fungi: Recent advances and new strategies. Biotechnol. Adv. 2013, 31, 1562–1574. [Google Scholar] [CrossRef]
- Singh, B.N.; Upreti, D.K.; Gupta, V.K.; Dai, X.F.; Jiang, Y. Endolichenic fungi: A hidden reservoir of next generation biopharmaceuticals. Trends Biotechnol. 2017, 35, 808–813. [Google Scholar] [CrossRef]
Plant-Derived Alkaloids | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
Aconitine | Anticancer, anti-inflammatory, anti-neuralgic, cardiotoxic | Aconitum spp. | Cladosporium cladosporioides | Aconitum leucostomum | [26] |
Berberine | Antibiotic, antidiabetic, antihypertensive, antiproliferative hepatoprotective, hypolipidemic, vasodilator | Berberis spp., Coscinium fenestratum, Hydrastis canadensis, Phellodendron amurense | Alternaria sp. | Phellodendron amurense | [27] |
Fusarium solani | Coscinium fenestratum | [28,29] | |||
Caffeine | CNS stimulant | Coffea spp., Theobroma cacao | Anonymous endophytes | Osbeckia chinensis, Osbeckia stellata, Potentilla fulgens | [30] |
Camptothecin | Antitumor | Camptotheca acuminata, Miquelia dentata, Nothapodytes nimmoniana, Ophiorrhiza spp. | Entrophospora infrequens | Nothapodytes foetida | [31] |
Entrophospora infrequens | Nothapodytes foetida | [32] | |||
Neurospora sp. | Nothapodytes foetida | [33] | |||
Valsa mali | Camptotheca acuminata | [34] | |||
Nodulisporium sp. | Nothapodytes foetida | [35] | |||
Fusarium solani | Camptotheca acuminata | [36] | |||
Botryosphaeria parva, Diaporthe conorum, Fusarium oxysporum, Fusarium sacchari, Fusarium solani, Fusarium subglutinans, Fusarium verticillioides, Galactomyces sp., Irpex lacteus, Phomopsis sp., Fusarium sp. | Nothapodytes nimmoniana | [37] | |||
Xylaria sp. | Camptotheca acuminata | [38] | |||
Fusarium solani | Apodytes dimidiata | [39] | |||
Botryosphaeria dothidea | Camptotheca acuminata | [40] | |||
Alternaria alternata, Fomitopsis sp., Phomopsis sp. | Miquelia dentata | [41] | |||
Trichoderma atroviride | Camptotheca acuminata | [42] | |||
Aspergillus sp. | Camptotheca acuminata | [36] | |||
Fusarium oxysporum | Nothapodytes foetida | [43] | |||
Capsaicin | Anti-inflammatory, gastro-stimulatory | Capsicum annuum | Alternaria alternata | Capsicum annuum | [44] |
Homoharringtonine | Anticancer | Cephalotaxus spp. | Alternaria tenuissima | Cephalotaxus sp. | [45] |
Huperzine A | Acetylcholinesterase inhibitor, Alzheimer’s treatment | Huperzia serrata | Acremonium sp. | Huperzia serrata (syn. Lycopodium serratum) | [46] |
Blastomyces sp., Botrytis sp. | Phlegmariurus cryptomerianus | [47] | |||
Penicillium chrysogenum | Huperzia serrata | [48] | |||
Shiraia sp. | Huperzia serrata | [49] | |||
Cladosporium cladosporioides | Huperzia serrata | [50] | |||
Colletotrichum sp., Trichoderma sp. | Huperzia serrata | [51] | |||
Paecilomyces tenuis | Huperzia serrata | [52] | |||
Aspergillus flavus, Mycoleptodiscus terrestris, Penicillium griseofulvum | Huperzia serrata | [53] | |||
Penicillium sp. | Huperzia serrata | [54] | |||
Fusarium sp. | Phlegmariurus taxifolius | [55] | |||
Fusarium sp. | Huperzia serrata | [56] | |||
Peimisine, Imperialine-3b-D-glucoside | Antiasthmatic, antitumor, expectorant | Fritillaria spp. | Fusarium sp. | Fritillaria unibracteata var. wabuensis | [57,58] |
Fusarium redolens | Fritillaria unibracteata var. wabuensis | [59] | |||
Piperine | Anti-inflammatory, anticancer, antimicrobial, antidepressant, hepatoprotective | Piper longum, Piper nigrum | Periconia sp. | Piper longum | [60] |
Colletotrichum gloeosporioides | Piper nigrum | [61] | |||
Mycosphaerella sp. | Piper nigrum | [62] | |||
Phomopsis sp. | Oryza sativa | [63] | |||
Cinchona alkaloids: Quinine, Quinidine, Cinchonidine, Cinchonine | Antimalarial, antiarrhythmic, analgesic | Cinchona spp. | Arthrinium, Fomitopsis, Diaporthe, Penicillium, Phomopsis, Schizophyllum | Cinchona ledgeriana | [64] |
Fusarium incarnatum, Fusarium oxysporum (only quinine and cinchonidine) Fusarium solani (only quinine) | Cinchona calisaya | [65] | |||
Rohitukine | Anticancer, CDK inhibitor, cytotoxic | Amoora rohituka Dysoxylum binectariferum, | Fusarium proliferatum | Dysoxylum binectariferum | [66] |
Fusarium oxysporum, Fusarium solani | Dysoxylum binectariferum | [67] | |||
Gibberella fujikuroi | Amoora rohituka | [67] | |||
Sanguinarine | Anticancer, antimicrobial, anti-inflammatory antioxidant, antihelmintic, neuroprotective | Macleaya cordata, Sanguinaria canadensis | Fusarium proliferatum | Macleaya cordata | [28,68] |
Sipeimine | Antibechic, anti-ulcer | Fritillaria spp. | Cephalosporium corda | Fritillaria ussuriensis | [69] |
Solamargine | Anticancer, cytotoxic | Solanum nigrum | Aspergillus flavus | Solanum nigrum | [70] |
Swainsonine | Toxicosis in livestock | Astragalus, Oxytropis spp., Swainsona canescens | Embellisia sp. | Astragalus, Oxytropis spp. | [15,71] |
Undifilum cinereum, U. fulvum | Astragalus lentiginosus, Astragalus mollissimus | [72] | |||
Fusarium tricinctum | Oxytropis deflexa, Oxytropis kansuensis | [73] | |||
Undifilum sp. | Swainsona canescens | [74] | |||
Vinblastine, Vincristine | Antitumor | Catharanthus roseus (syn. Vinca rosea) | Alternaria sp. | Catharanthus roseus | [75] |
Fusarium oxysporum | Catharanthus roseus | [76] | |||
Fusarium oxysporum | Catharanthus roseus | [77] | |||
Talaromyces radicus | Catharanthus roseus | [78] | |||
Eutypella spp. | Catharanthus roseus | [79] | |||
Geomyces sp. | Nerium indicum | [80] | |||
Vincamine | Antihypertensive, vasodilator | Vinca minor | Anonymous | Vinca minor | [81] |
Plant-Derived Coumarins | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
Bergapten, Meranzin | Antioxidant, psoriasis treatment | Balanites aegyptiaca, Citrus bergamia, Grapefruit peel | Penicillium sp. | Avicennia | [103] |
Botryodiplodia theobromae | Dracaena draco | [104] | |||
Isofraxidin | Anticancer, anti-obesity, cardioprotective, neuroprotective, hyper pigmentation | Acanthopanax senticosus, Sarcandra glabra | Annulohypoxylon bovei var. microspora | Cinnamomum sp. | [105,106] |
Marmesin | Anticancer, antihelmintic, antioxidant, antisyphilitic, purgative | Ammi majus, Balanites aegyptiaca | Fusarium sp. | Mangrove | [107] |
Mellein | Antibacterial, antifungal, antihepatitis c, larvicidal, phytotoxic | Alibertia macrophylla, Litsea akoensis, Garcinia bancana, Moringa oleifera, Stevia lucida | Septoria nodorum | Conifer | [108] |
Penicillium janczewskii | Prumnopitys andina | [109] | |||
Botryosphaeria mamane | Anonymous | [110] | |||
A xylariaceous fungus | Sapindus saponaria | [111] | |||
Annulohypoxylon bovei var. microspora | Cinnamomum sp. | [106] | |||
Penicillium sp., Xylaria sp. | Alibertia macrophylla, Piper aduncum | [112] | |||
Annulohypoxylon squamulosum | Cinnamomum sp. | [113] | |||
Nigrospora sp. | Moringa oleifera | [114] | |||
Arthrinium (Apiospora montagnei) | Anonymous | [115] | |||
Xylaria sp. | Garcinia sp. | [116] | |||
Pezicula sp. | Forsythia viridissima | [117] | |||
Xylaria cubensis | Litsea akoensis | [118] | |||
Scopoletin, Umbelliferone | Antifungal, antioxidant, anti-inflammatory | Artemisia scoparia, Scopolia carniolica (syn. Scopolia japonica), Viburnum prunifolium | Penicillium sp. | Avicennia | [103] |
Plant-Derived Flavonoids | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
Apigenin | Antibacterial, anticancer, antioxidant, antihyperglycaemic, lipid peroxidation, sedative, thyroid dysfunction | Cajanus cajan, Cephalotaxus harringtonia, Matricaria chamomilla, vegetables | Colletotrichum sp. | Ginkgo biloba | [132,133,134] |
Chaetomium globosum | Cajanus cajan | [135] | |||
Paraconiothyriu mvariabile | Cephalotaxus harringtonia | [136] | |||
Cajanol | Anticancer, antimicrobial, antiplasmodial | Cajanus cajan | Hypocrealixii | Cajanus cajan | [137] |
Chalcone | Antibacterial, antifungal, antitumor, anti-inflammatory | Cleistocalyx operculatus, Members of Leguminosae, Asteraceae, Moraceae | Ceriporia lacerata | Cleistocalyx operculatus (syns. Eugenia operculata, Syzygium operculatum) | [138] |
Chrysin | Antiaging, anticonvulsant, antidiabetic, anti-inflammatory, antimicrobial, anxiolytic, hepatoprotective | Passiflora incarnata | Alternaria alternata, Colletotrichum capsici, Colletotrichum taiwanense | Passiflora incarnata | [139] |
Curcumin | Anti-inflammatory, antioxidant, antitumor | Curcuma spp. | Chaetomium globosum | Curcuma wenyujin | [140] |
Anonymous | Curcuma wenyujin | [141] | |||
Kaempferol | Antibacterial, antidiabetic, anti-inflammatory, antioxidant, antitumor | Fruits, vegetables, medicinal herbs | Annulohypoxylonboveri var. microspora, Annulohypoxylon squamulosum | Cinnamomum sp. | [106,113] |
Fusarium chlamydosporum | Tylophora indica | [142] | |||
Mucor fragilis | Podophyllum hexandrum | [143] | |||
Luteolin | Anti-inflammatory, antioxidant, immunomodulatory | Fruits, vegetables, medicinal herbs | Annulohypoxylon boveri var. microspora | Cinnamomum sp. | [106] |
Aspergillus fumigatus | Cajanus cajan | [144] | |||
Quercetin | Anticancer, anti-inflammatory antioxidant | Fruits, vegetables | Aspergillus nidulans, Aspergillus oryzae | Ginkgo biloba | [145] |
Annulohypoxylon squamulosum | Cinnamomum sp. | [113] | |||
Nigrospora oryzae | Loranthus micranthus | [146] | |||
Rotenone | Insecticide, pesticide, piscicide | Derris elliptica | Penicillium sp. | Derris elliptica | [147] |
Rutin | Antioxidant, cardioprotective, neuroprotective | Aegle marmelos Ginkgo biloba, Nerium oleander, Pteris multifida, fruits, vegetables | Anonymous | Pteris multifida | [148] |
Chaetomium sp. | Nerium oleander | [149] | |||
Xylaria sp. | Ginkgo biloba | [150] | |||
Aspergillus flavus | Aegle marmelos | [151] | |||
Silymarin | Anticancer, antioxidant, anti-inflammatory, cardioprotective, hepatoprotective | Silybum marianum | Aspergillus iizukae | Silybum marianum | [152] |
Vitexin | Antioxidant, antitumor, neuroprotective | Cajanus cajan, Vitex agnus-castus | Colletotrichum sp. | Ginkgo biloba | [134] |
Dichotomopilus funicola | Cajanus cajan | [153] |
Plant-Derived Lignans | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
Coniferin | Antidiabetic | Angelica archangelica, Conifers | Members of xylariaceae | Angelica archangelica | [175] |
Phillyrin | Antioxidant, antidiabetic, anti-inflammatory, anti-obesity, antipyretic | Forsythia suspensa, Phyllirea | Colletotrichum gloeosporioides | Forsythia suspensa | [176,177] |
Podophyllotoxin | Antitumor, antivirus | Diphylleia sp., Dysosma sp., Juniperus sp., Podophyllum spp. | Alternaria sp., Penicillium spp. | Podophyllum hexandrum | [178] |
Monilia sp., Penicillium sp. | Dysosma veitchii | [178] | |||
Penicillium sp. | Diphylleia sinensis | [178] | |||
Penicillium implicatum | Diphylleia sinensis | [179] | |||
Alternaria sp. | Juniperus vulgaris | [180] | |||
Phialocephala fortinii | Podophyllum peltatum | [181] | |||
Trametes hirsuta | Podophyllum hexandrum | [182] | |||
Alternaria neesex | Podophyllum hexandrum | [183] | |||
Fusarium oxysporum | Juniperus recurva | [184] | |||
Aspergillus fumigatus | Juniperus communis | [185] | |||
Fusarium solani | Podophyllum hexandrum | [186] | |||
Mucor fragilis | Podophyllum hexandrum | [143] | |||
Phialocephala podophylli | Podophyllum peltatum | [187] | |||
Alternaria tenuissima | Podophyllum emodi | [188] | |||
Fusarium sp. | Dysosma versipellis | [189] | |||
Sesamin, Syringaresinol, Ketopinoresinol | Antioxidant, anti-inflammatory | Cinnamomum cassia | Annulohypoxylon ilanense | Cinnamomum sp. | [190] |
Syringin | Antidiabetic | Syringa vulgaris, Eleutherococcus senticosus, Magnolia sieboldii, Musa paradisiaca | Members of xylariaceae | Syringa vulgaris | [175,191] |
Plant-Derived Saponins | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
Diosgenin | Anti-inflammatory, antitumor, cardiovascular protection | Dioscorea spp. | Paecilomyces sp. | Paris polyphylla var. yunnanensis | [193] |
Cephalosporium sp. | Paris polyphylla var. yunnanensis | [194] | |||
Fusarium sp. | Dioscorea nipponica | [195] | |||
Ginsenoside | Anti-inflammatory, antioxidation, antitumor | Panax | Camarosporium sp., Dictyochaeta sp., Penicillium sp. | Aralia elata | [196] |
Aspergillus sp., Fusarium sp., Verticillium sp. | Panax ginseng | [197] | |||
Aspergillus sp., Fusarium sp. | Panax notoginseng | [198] | |||
Gymnemagenin | Antidiabetic | Gymnema sylvestre | Penicillium oxalicum | Gymnema sylvestre | [199] |
Other saponins | Cardiovascular disease | Gynostemma pentaphyllum, Manilkara zapota, Sapindus sp., Saponaria sp. | Aspergillus niger, F. oxysporum | Crotalaria pallida | [200] |
Alternaria alternata, Aspergillus niger, Penicillium sp. | Loranthus sp. | [201] | |||
Alternaria alternata, Aspergillus flavus, Aspergillus niger, Colletotrichum gleosporioides, Trichoderma sp. | Tabebuia argentea | [202] | |||
Aspergillus sp. | Salvadora oleoides | [203] | |||
Aspergillus sp. | Justicia beddomei | [204] | |||
Cochliobolus lunatus (anamorph Curvularia lunata) | Boswellia ovalifoliolata | [205] | |||
Monochaetia karstenii (syn. Pestalotiopsis maculans), Phyllosticta sp. | Shorea thumbuggaia | [205] | |||
Aspergillus neoniveus (syn. Fennellia nivea) | Typhonium divaricatum | [206] | |||
Alternaria alternata, Aspergillus flavus, Aspergillus niger, Cladosporium sp., Penicillium sp., Phomopsis sp., Trichoderma sp. | Aegle marmelos | [207] | |||
Aspergillus niger, Aspergillus sp., Aspergillus terreus, Aspergillus tubingensis, Coprinopsis cinerea, Curvularia lunata, Fusarium sp. | Eugenia jambolana | [208] | |||
Aspergillus awamori, Colletotrichum gleosporioides | Rauwolfia serpentina | [209] |
Plant-Derived Terpenes | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
Agathic acid | Abortifacient, anti-inflammatory, anticancer, trypanocidal | Agathis spp., Copaifera spp., Juniperus osteosperma | Botryosphaeria sp. | Maytenus hookeri | [211,212,213] |
Bionectria sp. | Raphia taedigera | [214] | |||
Fusarium sp. | Santalum album | [215] | |||
Artemisinin | Antimalarial | Artemisia spp. | Anonymous | Artemisia indica | [216] |
Asiaticoside | Antidermatitic, anti-inflammatory, antioxidant, immunomodulatory | Centella asiatica | Colletotrichum gloeosporioides | Centella asiatica | [217] |
Azadirachtin | Hepatoprotective, insecticidal | Azadirachta indica | Penicillium (Eupenicillium) parvum | Azadirachta indica | [218] |
Bilobalide | Neuroprotective, | Ginkgo biloba | Pestalotiopsis uvicola | Ginkgo biloba | [219] |
Borneol | Antiapoptotic, anti-inflammatory, antioxidant, neuroprotective | Cinnamomum camphora var. borneol | Cochliobolus nisikadoi | Cinnamomum camphora var. borneol | [220] |
Camphor | Antimicrobial, topical skin preparations | Cinnamomum camphora | Nodulisporium sp. | Lagerstroemia loudoni | [221] |
Cineole (Eucalyptol) | Antimicrobial, respiratory illness | Eucalyptus spp. | Hypoxylon sp., Nodulisporium sp. | Persea indica | [222] |
Nodulisporium sp. | Lagerstroemia loudoni | [221] | |||
Nodulisporium sp. | Thelypteris angustifolia | [223] | |||
Nodulisporium sp. | Cassia fistula | [224] | |||
Annulohypoxylon sp. | Neolitsea pulchella | [225] | |||
Dihydrocumambrin | Antibacterial, cytotoxic | Glebionis coronaria (syn. Chrysanthemum coronarium) | Botryodiplodia theobromae | Dracaena draco | [104] |
Ginkgolide | Antiallergic, anti-inflammatory | Ginkgo biloba | Fusarium oxysporum | Ginkgo biloba | [226] |
Isocupressic acid | Abortifacient | Conifers | Botryosphaeria sp. | Maytenus hookeri | [212,213] |
Loliolide | Herbivore resistance | Lolium perenne | Annulohypoxylon ilanense | Cinnamomum sp. | [227] |
Taxane (other than taxol) | Anticancer | Taxus spp. | Alternaria, Aspergillus, Beauveria, Epicoccum, Fusarium, Gelasinospora, Geotrichum, Phoma, Phomopsis | Taxus baccata | [228] |
Cladosporium langeronii, Phomopsis sp. | Wollemia nobilis | [229] | |||
Taxol | Anticancer | Taxus brevifolia | Taxomyces andreanae | Taxus brevifolia | [11] |
Taxomyces sp. | Taxus yunnanensis | [230] | |||
Pestalotiopsis microspora | Taxodium distichum | [231] | |||
Alternaria sp., Pestalotiopsis microspora | Taxus cuspidata | [232] | |||
Fusarium lateritium, Monochaetia sp., Pestalotia bicilia | Taxus baccata | [232] | |||
Pithomyces sp. | Taxus sumatrana | [232] | |||
Pestalotiopsis microspora | Taxus wallichiana | [233] | |||
Pestalotiopsis guepinii | Wollemia nobilis | [234] | |||
Periconia sp. | Torreyagrandifolia | [235] | |||
Seimatoantlerium nepalense | Taxus wallichiana | [236] | |||
Alternaria sp., Pestalosiopsis sp. | Ginkgo biloba | [237] | |||
Penicillium raistrickii | Taxus brevifolia | [238] | |||
Tubercularia sp. | Taxus chinensis var. mairei | [239] | |||
Stegolerium kukenani | Kukenan tepuis, Roraima | [240] | |||
Taxomyces sp. | Taxus sp. | [241] | |||
Sporormia minima, Trichothecium sp. | Taxus wallichiana | [242] | |||
Nodulisporium sylviforme | Taxus cuspidata | [243] | |||
Anonymous | Taxus chinensis var. mairei | [244] | |||
Botrytis sp. | Taxus chinensis var. mairei | [245] | |||
Penicillium sp. | Taxus yunnanensis | [246] | |||
Fusarium mairei | Rhizophora annamalayana | [247] | |||
Phyllosticta sp. | Ocimum basilicum | [248] | |||
Alternaria alternata, Ectostromasp., Fusarium mairei, Ozoniumsp., Papulaspora sp. | Taxus chinensis var. mairei | [249] | |||
Fusarium solani | Taxus celebica | [250] | |||
Pestalotiopsis pauciseta | Cardiospermum helicacabum | [251] | |||
Bartalinia robillardoides | Aegle marmelos | [252] | |||
Colletotrichum gloeosporioides | Justicia gendarussa | [253] | |||
Fusarium sp. | Taxus wallichiana | [254] | |||
Phyllosticta citricarpa | Citrus medica | [255] | |||
Phyllosticta melochiae | Melochia corchorifolia | [256] | |||
Phyllosticta spinarum | Cupressus sp. | [257] | |||
Fusarium arthrosporioides | Taxus cuspidata | [258] | |||
Aspergillus fumigatus | Podocarpus sp. | [259] | |||
Botryodiplodia theobromae | Taxus baccata | [260] | |||
Botrytis sp. | Taxus cuspidata | [261] | |||
Fusarium solani | Taxus chinensis | [262] | |||
Chaetomella raphigera | Terminalia arjuna | [263] | |||
Pestalotiopsis terminaliae | Terminalia arjuna | [264] | |||
Phomopsis sp. | Ginkgo biloba | [265] | |||
Phomopsis sp. | Larix leptolepis | [265] | |||
Phomopsis sp. | Taxus cuspidata | [265] | |||
Phyllosticta dioscoreae | Hibiscus rosa-sinensis | [266] | |||
Aspergillus sp., Ceratobasidium sp., Cladosporium tenuissimum, Coniothyrium diplodiella, Epacris sp., Fusarium solani, Metarhizium anisopliae, Paraconiothyrium brasiliense, Pezicula sp., Phomopsis sp. Sordaria sp., Trichoderma sp., Xylaria sp. | Taxus chinensis | [267] | |||
Mucor rouxianus | Taxus chinensis | [268] | |||
Colletotrichum gloeosporioides | Plumeria acutifolia | [269] | |||
Gliocladium sp. | Taxus baccata | [270] | |||
Pestalotiopsis sp. | Catharanthus roseus | [271] | |||
Aspergillus candidus, Cladosporium cladosporioides | Taxus media | [272,273] | |||
Aspergillus niger var. taxi | Taxus cuspidata | [274] | |||
Mucor sp. | Taxus chinensis var. mairei | [275] | |||
Pestalotiopsis neglecta, Pestalotiopsis versicolor | Taxus cuspidata | [276] | |||
Pestalotiopsis pauciseta | Tabebuia pentaphylla | [277] | |||
Lasiodiplodia theobromae | Morinda citrifolia | [278] | |||
Acremonium sp., Botryosphaeria sp., Fusarium sp., Gyromitra sp., Nigrosporasp., Penicillium sp. | Taxus globosa | [279] | |||
Paraconiothyrium sp. | Taxus media | [280] | |||
Didymostilbe sp. | Taxus chinensis var. mairei | [281] | |||
Stemphylium sedicola | Taxus baccata | [282] | |||
Colletotrichum gloeosporioides | Tectona grandis | [283] | |||
Perenniporia tephropora | Taxus chinensis var. mairei | [284] | |||
Colletotrichum gloeosporioides, Fusarium proliferatum, Guignardia mangiferae | Taxus media | [285] | |||
Phoma betae | Ginkgo biloba | [286] | |||
Alternaria sp. | Corylus avellana | [287] | |||
Colletotrichum gloeosporioides | Moringa oleifera | [288] | |||
Penicillium sp. | Taxus chinensis | [289] | |||
Penicillium aurantiogriseum | Corylus avellana | [290] | |||
Toosendanin | Anticancer, antifeedant | Melia azedarach | Anonymous | Melia azedarach | [291,292] |
Withanolide | Anticancer, cardiovascular disease, Alzheimer’s disease treatment | Withaniasp. | Taleromyces pinophilus | Withania somnifera | [293] |
Xanthatin | Antitumor | Xanthium spp. | Paecilomyces sp. | Panax ginseng | [294,295] |
Plant-Derived Quinones and Xanthones | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
1,7-dihydroxyxanthone | Antioxidant | Weddellina squamulosa | Penicillium sp. | Avicennia | [103] |
Anthraquinone | Anticancer, antioxidant, laxative | Digitalis viridiflora, Rumex spp. | Coniothyriumsp. | Salsola oppostifolia | [316] |
Aspergillus fumigatus | Rumex nepalensis, Rumex hastatus | [317] | |||
Emodin | Antibacterial, anti-inflammatory, antitumor, immunosuppressive | Hypericum perforatum, Polygonum cuspidatum, Rheum spp. | Penicillium janthinellum | Melia azedarach | [318,319] |
Talaromyces sp. | Kandelia candel | [320] | |||
Aspergillus versicolor | Halimeda opuntia | [321] | |||
Fusarium solani | Rheum palmatum | [322] | |||
Eurotium chevalieri | Mangrove | [323] | |||
Alternaria alternata | Hypericum perforatum | [324] | |||
Eugenitin | Glucoamylase activation | Syzygium aromaticum | Dothideomycetes sp. | Leea rubra | [325] |
Hypericin | Anti-depressant, antimicrobial, antiretroviral | Hypericum perforatum | Chaetomium globosum | Hypericum perforatum | [326] |
Thielavia subthermophila | Hypericum perforatum | [327] | |||
Epicoccum nigrum | Hypericum perforatum | [324] | |||
Lapachol | Anticancer, antimicrobial, antiviral, anti-inflammatory, antiparasitic | Tabebuia avellanedae | Alternaria sp., Alternaria alternata, Penicillium sp. | Tabebuia argentea | [202] |
Aspergillus niger | Tabebuia argentea | [328] | |||
Lawsone | Cytotoxic | Lawsonia inermis | Gibberella moniliformis | Lawsonia inermis | [329] |
Pachybasin, Phomarin | Antibacterial, antiviral, bioagricultural agent | Digitalis spp., Isoplexis isabelliana | Phoma sorghina | Tithonia diversifolia | [330] |
Coniothyrium sp. | Salsola oppostifolia | [316] | |||
Physcion (Parietin) | Antibiotics, antifungals, cytotoxic | Hopea hainanensis, Rheum officinale | Aspergillus fumigatus | Cynodon dactylon | [331] |
Pleospora sp. | Imperata cylindrical | [332] | |||
Penicillium sp. | Hopea hainanensis | [333] | |||
Aspergillus terreus | Opuntia ficus-indica | [334] | |||
Cercosporella sp. | Schisandra chinensis | [335] | |||
Eurotiumchevalieri | Mangrove | [323] | |||
Pinselin (Cassiollin) | Cytotoxic | Cassia occidentalis | Aspergillus sydowii | Scapania ciliata | [336,337] |
Phomopsis sp. | Paris polyphylla var. yunnanensis | [338] | |||
Phomopsis amygdali | Paris axialis | [339] | |||
Penicillium sp. | Sonneratia apetala | [340] | |||
Plumbagin | Anticancer | Plumbago zeylanica | Cladosporium delicatulum | Terminalia pallida | [341] |
Questin | Antioxidant, allelopathic, herbicide | Leea rubra | Dothideomycete | Leea rubra | [325] |
Eurotium rubrum | Hibiscus tiliaceus | [342] | |||
Eurotium cristatum | Sargassum thunbergii | [343] | |||
Aspergillus sp. | Pleioblastus amarus | [344] | |||
Phoma sp. | Phragmites communis | [345] | |||
Eurotium chevalieri | Mangrove | [323] | |||
Questinol | Anti-inflammatory, antibacterial | Cassia spp., Polygonum spp. | Eurotium rubrum | Hibiscus tiliaceus | [342] |
Penicillium glabrum | Punica granatum | [346] | |||
Eurotium chevalieri | Mangrove | [323] | |||
Quinizarin | Cytotoxicity, antibacterial | Rubia tinctorum | Epicoccum nigrum | Entada abyssinica | [347] |
Rhein | Anticancer, anti-inflammatory, antimicrobial, antioxidant, hepatoprotective, nephroprotective | Rheum palmatum | Fusarium solani | Rheum palmatum | [322] |
Shikonin | Anti-inflammatory, anti-HIV, antimicrobial, | Lithospermum erythrorhizon | Anonymous | Mammillaria hahniana | [348] |
Fusarium tricinctum | Lithospermum officinale | [349] | |||
Sterequinone C | Anti-inflammatory | Stereospermum spp. | Penicillium sp. | Avicennia | [103] |
Tanshinone | Antibacterial, antifungal, anti-inflammatory, antihypertensive, antitumor | Salvia spp. | Paecilomyces sp. | Panax ginseng | [295] |
Emericella foeniculicola | Salvia spp. | [350] | |||
Trichoderma atroviride | Salvia miltiorrhiza | [351] | |||
Phoma glomerata | Salvia miltiorrhiza | [352] | |||
Alternaria sp. | Salvia miltiorrhiza | [353] | |||
Torreyanic acid | Anticancer, cytotoxic | Torreya taxifolia | Pestalotiopsis microspora | Torreya taxifolia | [354] |
Plant-Derived Compounds | Activities/Applications | Plant Source | Endophytic Source | Host Plant | References |
---|---|---|---|---|---|
3-Nitropropionic acid (beta-Nitropropionic acid) | Antimycobacterial, nematicidal, succinate dehydrogenase inhibitor | Astragalus falcatus, Coronilla viminalis, Hippocrepis sp., Lotus, Scorpiurus sp., Securigera sp. | Melanconium betulinum | Birches | [369,370] |
Phomopsis phaseoli (syn. Diaporthe phaseolorum) | Rainforest tree | [369] | |||
Phomopsis spp. | Costus sp. | [370] | |||
Phomopsis longicolla | Trichilia elegans | [371] | |||
Asarone (Phenyl propane) | Antimicrobial | Cinnamomum camphora | Muscodor tigerii | Cinnamomum camphora | [372] |
Azelaic acid (Saturated dicarboxylic acid) | Antimicrobial, anti-inflammatory, anticancer | Wheat, rye, barley | Plectosphaerella cucumerina | Cynanchum auriculatum | [373] |
Aspergillus unguis | Enteromorpha sp. | [374] | |||
Cajaninstilbene acid | Antioxidant, anti-inflammatory, hypoglycemic, neuroprotective | Cajanus cajan | Cytonaema sp. | Quercus sp. | [375] |
Alternaria, Fusarium oxysporum, Fusarium solani, Fusarium proliferatum, Neonectria macrodidym | Cajanus cajan | [376] | |||
Chlorogenic acid (5-O-caffeoylquinic acid) (Cinnamate conjugates) | Antimicrobial, antioxidant, antitumor, immunomodulatory, antiviral | Arnica spp., Arctium lappa, Coffea canephora, Chrysanthemum coronarium, Schefflera heptaphylla | Anonymous | Artemisia indica | [216] |
Sordariomycete sp. | Eucommia ulmoides | [377] | |||
Eugenol (Phenyl propane) | Antimicrobial | Syzygium aromaticum | Alternaria sp. | Rosa damascaena | [378] |
Annulohypoxylon stygium | Anonymous | [379] | |||
Rhizopus oryzae | Holarrhena pubescens | [380] | |||
Diaporthe sp., Neopestalotiopsis sp. | Cinnamomum loureiroi | [381] | |||
Digoxin | Cardiac, anticancer | Digitalis lanata | Anonymous | Digitalis lanata | [382] |
Forskolin | Antiglaucoma, anti-HIV, antitumor | Coleus forskohlii | Rhizoctonia bataticola | Coleus forskohlii | [383] |
Harpagide (Iridoid glycosides) | Anticancer, anti-inflammatory, Leishmanicidal | Harpagophytum procumbens | Alternaria alternata | Scrophularia ningpoensis | [384,385] |
Myrtucommulones (Lactone) | Anticancer, anti-inflammatory | Myrtus communis | Neofusicoccum australe (teleomorph Botryosphaeria australis) | Myrtus communis | [386] |
Naphthalene (Aromatic hydrocarbon) | Antibacterial, insect repellent | Ancistrocladus tectorius | Muscodor vitigenus | Paullinia paullinioides | [387,388] |
Nodulisporium sp. | Erica arborea | [389] | |||
Phoma herbarum | Aegle marmelos | [390] | |||
Panaxynol or Falcarinol or Carotatoxin (Polyacetylene) | Anticancer | Panax ginseng, Falcaria vulgaris, Daucus carota, Hedera spp. | Paecilomyces sp. | Panax ginseng | [295] |
Resveratrol (Stilbene polyphenol) | Antioxidant, anticancer, epigenetic modulation | Vitis spp. | Alternaria sp., Aspergillus sp., Botryosphaeria sp., Cephalosporium sp., Geotrichum sp., Mucor sp., Penicillium sp. | Polygonum cuspidatum, Vitis quinquangularis, Vitis vinifera | [391] |
Salidroside, p-tyrosol | Antioxidant, antihypoxic, adaptogenic | Rhodiola rosea | Phialocephala fortinii | Rhodiola sp. | [392] |
Salvianolic acid (Polyphenol) | Antioxidant, cardiovascular, cerebrovascular diseases | Salvia miltiorrhiza | Phoma glomerata | Salvia miltiorrhiza | [352] |
Tocopherol (Phenol) | Anti-influenza, antioxidant | Ribes sp. | Aspergillus fumigatus | Cynodon dactylon | [393] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021, 9, 197. https://doi.org/10.3390/microorganisms9010197
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms. 2021; 9(1):197. https://doi.org/10.3390/microorganisms9010197
Chicago/Turabian StyleSingh, Archana, Dheeraj K. Singh, Ravindra N. Kharwar, James F. White, and Surendra K. Gond. 2021. "Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges" Microorganisms 9, no. 1: 197. https://doi.org/10.3390/microorganisms9010197
APA StyleSingh, A., Singh, D. K., Kharwar, R. N., White, J. F., & Gond, S. K. (2021). Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms, 9(1), 197. https://doi.org/10.3390/microorganisms9010197