Next Article in Journal
Effects of Radiation Intensity, Mineral Matrix, and Pre-Irradiation on the Bacterial Resistance to Gamma Irradiation under Low Temperature Conditions
Previous Article in Journal
Genomic Features of MCR-1 and Extended-Spectrum β-Lactamase-Producing Enterobacterales from Retail Raw Chicken in Egypt
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges

1
Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
2
Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
3
Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
4
Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
*
Authors to whom correspondence should be addressed.
Microorganisms 2021, 9(1), 197; https://doi.org/10.3390/microorganisms9010197
Submission received: 17 November 2020 / Revised: 5 January 2021 / Accepted: 13 January 2021 / Published: 19 January 2021
(This article belongs to the Section Plant Microbe Interactions)

Abstract

:
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of ‘omics’ and ‘one strain many compounds’ (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.

1. Introduction

Several recent reports suggest that natural products may play a substantial role in the drug discovery and development process as a source of diverse and novel templates for future drugs [1,2,3,4]. With the rapidly evolving recognition that significant numbers of natural products are either produced by microbes or a result of microbial interactions with their hosts, the area of endophyte research for natural products is positioned to take the drug discovery and development process to the next level [5,6]. In the backdrop of the past 25 years of studies, endophytes may be defined as a polyphyletic group of unique microorganisms residing in healthy living internal tissues of the plants with covert and/or overt positive effects on their hosts. They establish a variety of intricate biological intra- and inter-relationships among them and with their hosts, respectively. Endophytes are able to produce a multitude of secondary metabolites with diverse biological activities [7,8,9]. However, merely 0.75–1.50% of known plant species has been explored for their endophytes yet. So, the opportunity to find new potential bioactive metabolites from cryptic endophytic microorganisms of nearly 374,000–400,000 plant species congruently occupying millions of biological niches is considered high [5,10]. This opportunity has increased further with the innovative discovery of biosynthesis of Taxus derived anticancer compound ‘taxol’ from its endophytic fungus T. andreanae in 1993 by Stierle et al. [11]. This discovery leads to renewed attention in endophytic fungi for isolating plant-derived medicinal compounds [12,13,14]. Later, a series of works revealed that a reasonable number of plant-derived compounds are synthesized by endophytes rather than hosts [9,15]. However, there are unsettled and contradictory reports regarding the phylogenetic origin of genes related to the biosynthesis pathway of such plant-derived compounds in host plants and their microbial endophytes [16]. The above facts prompted us to use the word “plant/host-derived” rather than “plant/host-origin” for such compounds. Nevertheless, it is now an established fact that endophytes can co-/produce, induce, and/or modify a plethora of “specific plant-derived” metabolites in-/outside of host plants [12,14,17]. Such discoveries opened the new horizons for the up-scaled production of plant-derived medicinal compounds from endophytes. The recent increase in demand for natural products and difficulties in accessing them from plants make endophytes interesting targets for the assessment and isolation of typical host-derived compounds [18,19]. Since medicinal plants are an inherent source of many therapeutic compounds, it is vital to explore their endophytes to isolate such compounds. The current review aims to provide an up-to-date overview on the globally isolated specific plant-derived bioactive compounds synthesized by fungal endophytes from the period 1993 to mid-2020. It will also focus on applications and modes of actions of such compounds. This review will also provide insights about different challenges in employing endophytes as an alternative source for the synthesis of plant-derived bioactive compounds and their application in drug discovery. Its outcome would certainly lead to strategize the use of endophytes as an efficient novel source for plant-derived metabolites.

2. Plant-Derived Bioactive Natural Products from Fungal Endophytes

A wide array of secondary metabolites in fungi is biosynthesized from very few key precursor compounds by slight variations in basic biosynthetic pathways and can be classified into nonribosomal peptides, polyketides, terpenes, and alkaloids. Nonribosomal peptides are biosynthesized by multimodular nonribosomal peptide synthetases (NRPS) enzymes using both proteinogenic and nonproteinogenic amino acids. Polyketides are biosynthesized by polyketide synthase (PKS) enzymes from acetyl-CoA and malonyl-CoA units. Terpenes consisting of isoprene subunits are biosynthesized from the mevalonate pathway catalyzed by terpene cyclase enzymes. Alkaloids are nitrogen-containing organic compounds biosynthesized as complex mixtures through the shikimic acid and the mevalonate pathways, as they are usually derived from aromatic amino acids and dimethlyallyl pyrophosphate [20]. Other classes of fungal secondary metabolites are linked with the above four groups of compounds. For ease and better understanding, we have classified different fungal secondary metabolites as alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, and xanthones, and miscellaneous compounds. Coumarins are a class of lactones consisting of a benzene ring fused to a α-pyrone ring and are mainly biosynthesized by the shikimic acid pathway from cinnamic acid. Flavonoids are synthesized by the phenylpropanoid pathway from phenylalanine using enzymes phenylalanine ammonia lyase (PAL), chalcone synthase, chalcone isomerase, and flavonol reductase [21]. Lignans are low molecular weight polyphenols biosynthesized by enzymes pinoresinol-lariciresinol reductase (PLR), PAL, cinnamoyl-CoA reductase (CCR), and cinnamyl-alcohol dehydrogenase (CAD) [22]. Saponins are glycosides containing a non-sugar triterpene or steroid aglycone (sapogenin) attached to the sugar moiety. Saponins are derived from intermediates of the phytosterol pathway using enzymes oxidosqualene cyclases (OSCs), cytochromes P450 (P450s), and UDP-glycosyltransferases (UGTs) [23]. Quinones are biosynthesized through several pathways; for example, isoprenoid quinones are synthesized by the shikimate pathway using chorismite-derived compounds as precursors, terrequinone by NRPS from L-tryptophan, dopaquinone by tyrosinase from tyrosine, and benzoquinone by catechol oxidase/PKS from catechol [24]. Xanthones comprise an important class of oxygenated heterocyclics biosynthesized through the polyacetate/polymalonate pathway by the internal cyclization of a single folded polyketide chain [25].

2.1. Plant-Derived Alkaloids from Fungal Endophytes

After a systematic literature survey, we enlisted 19 plant-derived medicinal alkaloids that have been produced by different endophytic fungi (Table 1), and some important alkaloids are described below.

2.1.1. Aconitine

Aconitine, a diterpenoid alkaloid found in Aconitum spp., is a voltage-gated sodium channel activator that effectively opens the Na+ channels causing the prolonged presynaptic depolarization of muscles and neurons. In Chinese folk medicine, aconitine is used for pain relief caused by trigeminal and intercostal neuralgia, rheumatism, migraine, and general debilitation. Aconitine is a strong cardiotoxic and neurotoxic agent, and its side effects may cause bradycardia, hypotension, ventricular dysrhythmia, and inhibition of the release of neurotransmitters [82]. Aconitine is also synthesized by endophytic fungus Cladosporium cladosporioides from Aconitum leucostomum [26].

2.1.2. Berberine

Berberine, an isoquinoline alkaloid found in Berberis spp. and some other plants (Table 1), is widely used in the treatment of hyperglycemia, hyperlipidemia, gastrointestinal, cardiovascular, renal, and neural disorders. The antidiabetic efficacy of berberine is comparable to that of the popular drug metformin. Its hypoglycemic effect is exerted via inhibition of mitochondrial function, stimulation of glycolysis, activation of AMP-activated protein kinase (AMPK)/AMPK pathway, and increasing insulin sensitivity. Moreover, berberine has additional advantageous effects on diabetic cardiovascular complications due to its antihypercholesterolemic, anti-arrhythmias, and nitric oxide (NO)-inducing properties. The antioxidant and aldose reductase inhibitory activities of berberine is useful in alleviating diabetic nephropathy [83]. Berberine specifically binds with DNA to inhibit replication, which confers its cytotoxicity and anticancer properties [28]. Moreover, the low toxicity of berberine makes it a potent future antidiabetic and antiproliferative agent. Berberine production has also been reported from endophytic fungi Alternaria sp. and Fusarium solani isolated from Phellodendron amurense and Coscinium fenestratum, respectively [27,29].

2.1.3. Camptothecin

Camptothecin (CPT), a potent anticancer quinoline indole alkaloid, was first isolated from the bark of the Camptotheca acuminata in 1966, but it was also produced by some other plant species, including Miquelia dentata, Nothapodytes nimmoniana, and Ophiorrhiza [84]. Inadequate water solubility and high toxicity are two limiting factors for the application of CPT as an anticancer agent. However, its two derivatives 10-hydroxycamptothecin (HCPT), and 9-methoxycamptothecin (MCPT) retain the same medicinal efficacy without above limitations [36]. CPT and HCPT reversibly stabilize the Top1–dsDNA complex by selectively inhibiting eukaryotic topoisomerase I (TopI) activity. In virtue of this, CPT derivatives are currently being used extensively as precursor compounds for efficient broad-spectrum anticancer drugs irinotecan, topotecan, and belotecan [36,85]. Recently, a chemically bespoke camptothecin–antibody drug conjugate named traztuzumabderuxtecan (Enhertu®) has also been approved by the US Food and Drug Administration (FDA) [9]. Puri et al. in 2005 and Rehman et al. in 2008 isolated the camptothecin-producing potential endophytic fungi Entrophospora infrequens and Neurospora sp. respectively from the inner bark of Nothapodytes foetida [31,33]. Again, endophytic fungus F. solani isolated from C. acuminata was found to produce CPT, HCPT, and MCPT [36]. Endophytic fungus F. solani isolated from Apodytes dimidiata in the Western Ghats, India also yielded camptothecin [39]. Three fungal species, Alternaria alternata, Fomitopsis sp., and Phomopsis sp., isolated from fruits of M. dentata, were found as prominent CPT producers [41]. In another bioprospection study, 161 fungal endophytes from C. acuminata were screened for CPT production in which Botryosphaeria dothidea was found as a prominent producer of MCPT [40]. Two camptothecin-producing fungi, Trichoderma atroviride and Aspergillus sp., were also isolated from C. acuminata [42,85]. CPT-producing endophytic fungi have also been isolated from N. nimmoniana [37,86]. We found a total of 22 CPT-producing endophytic fungal species from five different host plant species, as listed in Table 1. These findings suggested that the endophytic fungi could be a future alternative source of not only CPT but also of its safer and more efficient analogues.

2.1.4. Capsaicin

Capsaicin, a spicy alkaloid of red pepper Capsicum annuum first crystallized in 1878, has antilithogenic, anti-inflammatory, thermogenic, gastro-stimulatory, antidiabetic, cardioprotective, and anticancer attributes [87]. Capsaicin selectively binds to calcium channel protein targeting transient receptor potential vanilloid 1 (TRPV1) expressed by nociceptors and lowers its opening threshold, resulting in nociceptor depolarization. That is why capsaicin is linked to the sensation of heat and pain as well as obesity regulation via increased thermogenesis. Capsaicin decreases glucose tolerance by inhibiting adipose tissue inflammatory responses via decreasing adipose tissue macrophages and levels of inflammatory adipocytokines like tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6, and leptin. It also induces the TRPV1-dependent secretion of insulin and antihyperglycemic hormone glucagon. The potential beneficial effects of capsaicin on cardiovascular and gastroprotective systems are exhibited through the TRPV1-mediated release of neurotransmitter calcitonin gene related peptide (CGRP). Capsaicin exerts its anticancer activity via the activation of cAMP-activated protein kinase, peroxisome proliferator-activated receptor gamma (PPARγ)-induced apoptosis, down-regulation of signal transducer and activator of transcription 3 (STAT3) target gene B-cell lymphoma 2 (Bcl-2), cell-cycle arrest by inhibiting cyclin-dependent kinases (CDK2, CDK4 and CDK6), modulation of the human epithelial growth factor receptor 2 (HER2) pathway and p27 expression, down-regulation of p38mitogen-activated protein kinase (MAPK), protein kinase B (PKB or AKT), and focal adhesion kinase (FAK) activation, and degradation of hypoxia inducible factor 1α [88]. An endophytic fungal strain A. alternata isolated from fruits of C. annuum has also been found to produce capsaicin [44].

2.1.5. Homoharringtonine (HHT)

Valuable anticancer alkaloid homoharringtonine (HHT) for the first time has been isolated from the bark and leaves of threatened medicinal tree Cephalotaxus harringtonia [89]. It acts as a translation inhibitor during G1 and G2 phases of cell division. In 2012, homoharringtonine was approved for the treatment of chronic myeloid leukemia under generic name omacetaxine mepeosuccinate by the Food and Drug Administration of the USA [90]. Hu et al. in 2016 screened 213 fungal strains isolated from the bark of Cephalotaxus hainanensis for the HHT biosynthesis ability and found that Alternaria tenuissima was a stable HHT-producing endophyte [45].

2.1.6. Huperzine A

A tropical medicinal moss Huperzia serrata is clinically used for the treatment of Alzheimer’s disease [54]. Its biologically active alkaloid huperzine A (HupA) acts as a strong acetylcholinesterase inhibitor (AChEI), which is a class of medication that improves the level of neurotransmitters in the brain and is hoped to be a potential treatment for Alzheimer’s disease. Li et al. in 2007 first isolated an HupA-producing endophytic fungus Acremonium from H. serrata [46]. For now, 12 different HupA-producing endophytic fungal species from H. serrata and three from Phlegmariurus spp. have been reported by different workers (Table 1). Interestingly, many endophytic fungi have been shown to synthesize novel AChEIs in their metabolite extracts [91].

2.1.7. Peimisine and Imperialine-3β-D-glucoside

Fritillaria, a traditional medicinal plant, is among the most widely used antitussive and expectorant drugs. The principal bioactive constituents of Bulbus Fritillaria cirrhosa are steroidal alkaloids peimisine and imperialine-3β-D-glucoside [57]. Fusarium spp. isolated from Fritillaria unibracteata var. wabensis have also produced peimisine and imperialine-3β-D-glucoside [58,59].

2.1.8. Piperine

Anti-inflammatory and anticancer alkaloid piperine is found in the fruits of Piper longum and Piper nigrum and responsible for their pungent taste. Piperine enhances hepatic-oxidized glutathione and decreases renal glutathione concentration and renal glutathione reductase activity, showing its antidiabetic activity. Piperine decreases liver marker enzymes activity, inhibits lipopolysaccharide-induced expression of interferon regulatory factor, reduces the activation of STAT1, and inhibits the release of Th-2-mediated cytokines indicating its anti-inflammatory activity. Piperine expresses its anticancer activity through the following mechanisms: activates caspase-3 and caspase-9, cleaves poly(ADP-ribose) polymerase (PARP), decreases Bcl-2 protein expression and increases Bax protein, reduces the expression of phosphorylated STAT3 and nuclear factor kappa B (NF-kB) transcription factors, blocks extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and AKT signaling pathways, and suppresses epidermal growth factor (EGF)-induced matrix metalloproteinase (MMP)-9 expression [92]. It has bioavailability-enhancing ability for certain drugs and nutrients. It has also been extracted from the cultures of endophytic fungi Periconia sp., C. gloeosporioides, and Mycosphaerella sp. isolated from Piper spp. [60,61,62]. Recently, piperine production has also been reported from endophytic Phomopsis sp. from Oryza sativa [63].

2.1.9. Quinine

The stem bark and roots of the Cinchona spp. are well-established sources of quinine. It has been used as the only effective medication for malaria for centuries until the development of synthetic antimalarial drugs in 1940s. Quinine functions as an antimalarial by acting as an intra-erythrocytic schizonticide and also as gametocytocidal for Plasmodium malariae and Plasmodium vivax but not for Plasmodium falciparum [93]. One of the earliest reports regarding the endophytic fungi-based synthesis of quinine was published in 2002 [94]. Maehara and co-workers have found 21 endophytic fungal strains of Cinchona ledgeriana positive for quinine synthesis and identified them as strains of Arthrinium, Fomitopsis, Diaporthe, Penicillium, Phomopsis, and Schizophyllum [64]. Similarly, Hidayat et al. reported seven different strains of three Fusarium species capable of producing quinine (Table 1) [65].

2.1.10. Rohitukine

Rohitukine, a lead for the semisynthetic potential anticancer drugs flavopiridol (Sanofi-Aventis, Paris, France) and P-276-00 (Piramal Healthcare Ltd., Mumbai, India), is mainly isolated from the bark of Dysoxylum binectariferum. However, the removal of bark poses a threat to the survival of the source medicinal plant. Rohitukine exhibits anticancer activity through the up-regulation of p53 and caspase-9 and down-regulation of Bcl-2 protein [95]. In 2012, Kumara and his group isolated an endophyte Fusarium proliferatum from D. binectariferum that produces host-derived rohitukine [66]. Later, rohitukine-producing other species of Fusarium (Table 1) were also recovered from D. binectariferum and Amoora rohituka [67].

2.1.11. Sanguinarine

Sanguinarine (SA), a toxic benzophenanthridine alkaloid found in the root of Sanguinaria canadensis and leaves of Macleaya cordata, recently gained attention for its cytotoxic and anticancer activities [68]. It suppresses NF-κB activation and induces a rapid apoptotic response via glutathione depletion, and mitochondrial damage [96]. It exhibits cytotoxicity via affecting the Na+-K+-ATPase transmembrane protein, which regulates the MAPK pathway, production of reactive oxygen species (ROS), and intracellular calcium level [28]. It also inhibits microtubule polymerization and specifically induces DNA damage in cancer cells. SA has also been produced by endophytic F. proliferatum isolated from leaves of M. cordata [68].

2.1.12. Solamargine

A well-known medicinal plant Solanum nigrum shows anticancer, antioxidant, antimicrobial, hepatoprotective, anti-inflammatory, antipyretic, and diuretic properties due to its flavonoid and steroidal alkaloid contents. Its dominant steroidal alkaloid solamargine has exhibited potent anticancer activity against a wide range of cancer cell lines [97]. Solamargine may induce cell apoptosis via modulating the expression of TNF receptors (TNFRs), down-regulating Bcl-2 and Bcl-xL, increasing caspase-3 activity, and causing DNA damage [98]. Interestingly, an endophytic A. flavus isolated from its stem produced more solamargine than the host callus culture [70].

2.1.13. Swainsonine

Swainsonine is an indolizidine alkaloid found in ‘locoweeds’, including Swainsona canescens, Astragalus, and Oxytropis. It alters glycoprotein processing by inhibiting α-mannosidase and mannosidase II and causes lysosomal storage disease [15]. Research has shown that in Astragalus, Oxytropis, and Swainsona species, swainsonine is produced by endophytic fungi in genera Embellisia and Undifilum [71,72,74]. Interestingly, in earlier research, plants of Astragalus and Oxytropis without endophytes were found to be swainsonine-free [99].

2.1.14. Vinblastine and Vincristine

Madagascar periwinkle (Catharanthus roseus) is a primary source of well-known anticancer terpenoid indole alkaloids vinblastine and vincristine. They are the second most used class of anticancer drugs in chemotherapy regimens of various malignancies such as acute lymphoblastic leukemia and nephroblastoma [100]. Alkaloid vincristine interferes with spindle formation, intracellular transport, and angiogenesis in tumor cells without affecting normal cells. For the first time in 1998, Guo et al. reported the isolation of vinblastine from an endophytic fungus Alternaria sp., residing in C. roseus [75]. The endophytic fungi Fusarium oxysporum, Talaromyces radicus, and Eutypella spp. from C. roseus produced both vinblastine and vincristine [76,77,78,79].

2.1.15. Vincamine

Indole alkaloid vincamine is one of the most important constituents of Vinca minor and Nerium indicum (apocynaceae) and is used in treating various cerebrovascular disorders such as hypertension, chronic ischemic stroke, and vascular dementia [101]. In 2011, Yin and Sun reported a vincamine-producing endophyte from the host V. minor [81].

2.2. Plant-Derived Coumarins (Benzopyrones) from Fungal Endophytes

Coumarins have been routinely employed as herbal remedies since the onset of herbal medicine. It was first isolated as a natural product from seeds of Dipteryx odorata (Coumarouna odorata) [102]. A total of seven medicinally important specific plant-derived coumarins are produced by fungal endophytes (Table 2).

2.2.1. Bergapten and Meranzin

Furocoumarin bergapten (5-methoxypsoralen) from Citrus bergamia and Balanites aegyptiaca is a potential photosensitizing drug in the oral photochemotherapy of psoriasis. Bergapten forms a stable combination with pyrimidine bases causing DNA damage and phosphatase and tensin homolog (PTEN)-mediated induced autophagy, indicating anticancer activity [119]. Meranzin exhibits an antidepressant effect through regulation of the α2-adrenoceptor [120]. Meranzin along with bergapten is also found in grapefruit peels [121]. Both of the compounds are also produced by endophytic fungi Penicillium sp., Botryodiplodia theobromae, and Alternaria brassicae [103,104].

2.2.2. Isofraxidin

Isofraxidin is a coumarin compound produced in the Siberian ginseng (Acanthopanax senticosus or Eleutherococcus senticosus) and Apium graveolens. Isofraxidin mainly regulates lipid metabolism and protects from related disorders by reducing triglyceride accumulation, TNF-α release, and ROS activation, enhancing the phosphorylation of AMPKα and acetyl coenzyme A carboxylase (ACC). It also reduces hepatic expression of fatty acid synthase (FAS) and 3-hydroxyl-3-methylglutaryl-CoA synthase 2 (HMGC), inhibiting lipogenesis. Additionally, isofraxidin shows anti-inflammatory activity by significantly depleting infiltrating inflammatory cells (F4/80+ Kupffer cells, and CD68+ macrophages) and inflammatory cytokines (TNF-α and IL-6) in liver cells. Moreover, the anti-inflammatory activity of isofraxidin is correlated with the down-regulation of toll-like receptor 4 (TLR4) and NF-κB expression [122]. Isofraxidin bioactivity as a potent hyperpigmentation agent is exerted by increased melanin synthesis via stimulated tyrosinase activity, increased expression of tyrosinase, and melanogenesis regulator microphthalmia-associated transcription factor (MITF) in melanocytes [123]. The cytotoxic effects of isofraxidin on cancer cells is exerted via inhibition of AKT kinase and increase in caspase-3, caspase-9, and Bax/Bcl-2 levels. Isofraxidin has also shown anti-hypertension effects via inhibiting the activity of angiotensin I converting enzyme (ACE). Isofraxidin protects axons and dendrites against amyloid β (Aβ 25–35) and inhibits neuron-degenerating enzyme monoamine oxidase B [124].

2.2.3. Marmesin

Marmesin (furanocoumarins) was first reported from fruits of Ammi majus and later from Balanites aegyptiaca, which is a folkloric medicinal plant with purgative, antihelmintic, and antisyphilitic properties [119,125]. It is also synthesized by endophytic Fusarium sp. isolated from a mangrove plant [107].

2.2.4. Mellein

Dihydroisocoumarin mellein derives its name from a strain of Aspergillus melleus, which is the first reported source of mellein [126]. Later, this compound was found in plants such as Moringa and Stevia [127,128]. Mellein has exhibited antimicrobial and anti-schistosomiasis activities [114,115]. Mellein has been reported from endophytic fungal species Septoria nodorum in 1995 by Findlay et al. followed by dozens of similar reports as listed in Table 2 [108].

2.2.5. Scopoletin and Umbelliferone

Scopoletin (6-methoxy-7-hydroxycoumarin) is a coumarin with antifungal, anti-acetylcholinesterase (AChE), and antitumor properties. Scopoletin inhibits cancer cell proliferation by inducing apoptosis via reducing the protein content and decreasing the acid phosphatase (ACP) activity level [129,130]. Umbelliferone (7-hydroxycoumarin), distributed within the Rutaceae and Apiaceae (Umbelliferae) families, is a fluorescing compound and used as a sunscreen agent. It shows antioxidant, anti-inflammatory, anti-hyperglycemic, anti-tumor, and antimicrobial activities. Umbelliferone exhibits anticancer activity via inducing apoptosis and cell cycle arrest [131].

2.3. Plant-Derived Flavonoids from Fungal Endophytes

Flavonoids are pigments of edible plants consisting of two benzene rings at either side of a three-carbon ring. Multiple substitutions in this basic structure produce several classes of derivatives, such as flavones, isoflavones, flavonols, flavanones, catechins, and anthocyanins. We found 12 different biologically active plant-derived flavonoids (Table 3) recovered from fungal endophytes and important flavonoids are described below.

2.3.1. Apigenin

Apigenin, amply present in Matricaria spp. and vegetables, has anti-inflammatory, antioxidant, and anticancer properties. Apigenin inhibits the proliferation of malignant cancer cells causing G2-M arrest by inhibition of the mitotic kinase activity of p34cdc2 and perturbation of cyclin B1 levels [132,154]. It is also a ligand for the central benzodiazepine receptors exerting anxiolytic and sedative effects [155]. Apigenin activates different anti-inflammatory pathways, including p38/MAPK and phosphatidylinositol 3-kinase (PI3K)/AKT, to exert its anti-inflammatory effect. Further, it prevents the IκB degradation and nuclear translocation of the NF-κB, and reduces cyclooxygenase (COX)-2 activity. Additionally, apigenin up-regulates the expression of anti-oxidant enzymes such as glutathione (GSH)-synthase, catalase, and superoxide dismutase (SOD) to counteract cellular oxidative stress. Its neuroprotective effect is exhibited by the lowering of β-amyloids and restoring the ERK/cyclic AMP response element-binding protein (CREB)/ brain-derived neurotrophic factor (BDNF) pathway [156]. Apigenin also regulates hyperglycemia, thyroid dysfunction, and lipid peroxidation [133]. A fungal endophyte Chaetomium globosum, isolated from Cajanus cajan, produced apigenin with good antioxidant activities [135]. Its glycosidic derivatives, namely apigenin-5-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranoside and euryanoside (apigenin-5-O-α-L-rhamnopyranosyl-(1→2)-(6″-O-acetyl)-β-Dglucopyranoside), were detected in Paraconiothyrium variabile, which is an endophytic fungus in the Japanese plum yew (Cephalotaxus harringtonia) from which these compounds had previously been reported [136].

2.3.2. Cajanol

Cajanol (phytoalexin) is an isoflavone from roots of C. cajan displaying anticancer, antimicrobial, and antiplasmodial activities. Cajanol arrests the cell cycle in the G2/M phase and induces apoptosis via the ROS-mediated mitochondria-dependent pathway [157]. Endophytic strains of Hypocrea lixii from roots of C. cajan have also been reported to produce cajanol in aqueous cultures with anticancer activity [137].

2.3.3. Chrysin

The flavonoid chrysin is found in leaves of P. incarnata and synthesized by foliar endophytes A. alternata, Colletotrichum capsici, and Colletotrichum taiwanense. It has shown promising biological activities, including antibacterial, anti-inflammatory, antidiabetic, anxiolytic, hepatoprotective, anti-aging, and anticancer effects [139].

2.3.4. Curcumin

Curcumin is the major active principal of Curcuma spp. It shows strong anti-inflammatory and antioxidant activities via the downregulation of COX-2, lipoxygenase, TNF-α, IL-1, -2, -6, -8, and Janus kinases. Curcumin anticancer activity involves cell cycle arrest via inhibition of cyclin D1 and CDK4, and induction of apoptotic signals via the up-regulation of Fas, FasL, and DR5 expression, p-53 mediated activation of caspase, and inhibition of TNF-α-induced activation of NF-κB [158]. A recent report has suggested curcumin as a potent epigenetic modulator with activities like inhibition of DNA methyltransferases (DNMTs), regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs), regulation of microRNAs (miRNA). It also interacts with DNA and transcription factors [159]. Curcumin has been isolated from fungal endophytes Chaetomium globosum and an unidentified isolate [140,141].

2.3.5. Kaempferol

Kaempferol is a potent antioxidant, anticancer, cardioprotective, neuroprotective, hepatoprotective, and antidiabetic compound found in fruits and vegetables. It blocks the expression of inflammatory cytokines (IL-1B and TNF-α), COX-2 protein, and inducible NO synthase (iNOS). Kaempferol inhibits various cancer cells by arresting cell cycle at the G2/M phase, targeting several signaling pathways (MAPK/ERK and PI3K/AKT) that are essential for the survival of cancer cells and modulating expression of epithelial-mesenchymal transition (EMT)-related markers. It prevents the EGF-induced activation of activator protein 1 (AP-1) and NF-κB, and phosphorylation of AKT. It enhances cyclin-dependent kinase inhibitor 1A (CDKN1A) levels via the reduced expression of c-Myc and enhanced level of p53 protein [160,161]. Kaempferol is thereby used as a potent chemopreventive agent in cancer treatment. Endophytic Fusarium chlamydosporum as well as its host Tylophora indica both can produce keampferol [142]. It is also produced by some other endophytes (Table 3).

2.3.6. Luteolin

Luteolin is a plant metabolite with reputed antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. Its anticancer property is manifested via cell cycle arrest in S phase, modulation in ROS levels, inhibition of topoisomerases type I and II, reduction of NF-kB and AP-1 activity, stabilization of p53, and inhibition of PI3K, STAT3, insulin-like growth factor 1 receptor (IGF1R), and HER2 [162]. Luteolin is a better inhibitor of alpha-glucosidase than the widely prescribed drug acarbose, suggesting its role in reducing high blood sugar levels [163]. It has also been reported as a secondary metabolite of some endophytic fungal strains (Table 3).

2.3.7. Quercetin

Quercetin is a red pigment with antioxidant, anti-inflammatory, anticancer, antiviral, antidiabetic, cardiovascular, and neuroprotective properties that is widely distributed in plants. Quercetin causes cell cycle arrest in the S phase and activates apoptosis in cancer cells [164]. Quercetin along with vitamin C may be used for the prevention of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2/COVID-19) in high-risk populations [165]. Its antidiabetic activity is exhibited by induced insulin sensitivity and glucose metabolism. The cardiovascular effects of quercetin are exerted by its inhibitory effect on the angiotensin-converting enzyme and by activating Na+-K+-2Cl−cotransporter 1 (NKCC1) in renal epithelial cells [166]. The mechanism behind the neuroprotective effect of quercetin may involve mitigating oxidative stress via induction of nuclear erythroid 2-related factor 2 (Nrf2)/ antioxidant response element (ARE) and antioxidant paraoxonase 2 (PON2) [167]. Recently, three quercetin compounds were extracted from the endophytic fungus Nigrospora oryzae isolated from leaves of the Nigerian mistletoe Loranthus micranthus [146].

2.3.8. Rutin

Rutin, a glycoside of the flavonoid quercetin with powerful antioxidant, anti-inflammatory, anticancer, and promising neuroprotective properties is found in vegetables and fruits. The anti-inflammatory and antioxidant activities of rutin involves inhibition of expression of COX-2 and iNOS via inhibition of p38 MAPK and c-Jun N-terminal kinase (JNK). Rutin decreases Bcl-2 expression, Bcl-2/Bax ratio, MYCN mRNA levels, and the secretion of TNF-α, demonstrating its anticancer property [168]. Its neuroprotective mechanisms include reduction of pro-inflammatory cytokines, improved antioxidant enzyme activities, activation of MAPK cascade, up-regulation of the ion transport and antiapoptotic genes, and restoration of the activities of mitochondrial complex enzymes [169]. Rutin has also been produced by several endophytic fungi, as listed in Table 3.

2.3.9. Silymarin

Silymarin, a bioactive natural compound found in fruits of milk thistle (Silybum marianum), has cardioprotective, hepatoprotective, antioxidant, immunomodulatory, anti-inflammatory, antihepatitic, and antimetastatic activities [170]. The hepatoprotective property of silymarin is accomplished via an increase in glutathione level, inhibition of lipid peroxidation, activation of antioxidant defense, and translational activities in hepatic cells [171]. Its anticancer activity is related to the modulation of NF-kB, suppression of EGFR-MAPK/ERK1/2 and IGF1R signaling, up-regulation of tumor-suppressor genes p53 and p21CIP1. Similarly, its antiangiogenic activity is linked to suppression of both vascular endothelial growth factor (VEGF) and MMP-2 [172,173]. Endophytic silymarin for the first time has been reported from the strains of Aspergillus iizukae isolated from the leaves and stems of S. marianum [152].

2.3.10. Vitexin

C-glycosyl flavonoid vitexin has recently received increased attention due to its wide range of pharmacological effects including anticancer (as hypoxia inducible factor (HIF)-1α inhibitor), analgesic (via targeting TRPV1), antioxidant, hypotensive, neuroprotective, and antidiabetic effects [174]. It is synthesized by plants such as C. cajan, Ficus deltoidea, Passiflora incarnata, Vitex agnus-castus, and endophytic fungi such as Colletotrichum sp. from G. biloba [134] and Dichotomopilus funicola of C. cajan [153].

2.4. Plant-Derived Lignans from Fungal Endophytes

Lignans are secondary metabolites with a plethora of biological activities, making them noteworthy in several lines of research. Out of a total of seven medicinally important plant-derived lignans that have been secreted by endophytes (Table 4), one is described below.

Podophyllotoxin

Podophyllotoxin (podofilox), an aryl tetralin lactone lignan of medicinal plant Podophyllum sp., is an important anticancer and antiviral agent. It is also found in Diphylleia, Dysosma, and Juniperus. It has been used as the lead for the chemical synthesis of the many useful anticancer drugs such as etoposide, teniposide, and etopophos phosphate [184,185]. Podophyllotoxin is an anti-tubulin agent that destabilizes microtubules. Its derivatives inhibit the topoisomerase II enzyme, which is required to unwind the double helix of DNA, preventing mitosis in late S/early G2 phase [192]. For the first time, Yang et al. in 2003 reported the podophyllotoxin producing endophytic fungi (Table 4) from P. hexandrum, Diphylleia sinensis, and Dysosma veitchii [178]. Puri et al. in 2006 reported a fungal endophyte Trametes hirsuta from rhizomes of P. hexandrum that efficiently produces podophyllotoxin and other related aryl tetralin lignans with potent anticancer properties [182]. Later, several other endophytic fungi such as Phialocephala fortinii isolated from the rhizomes of Podophyllum peltatum, Alternaria sp. isolated from Juniperus vulgaris, and P. hexandrum, F. oxysporum isolated from Juniperus recurva, and A. fumigatus isolated from Juniperus communis have been reported as alternative sources for podophyllotoxin [180,181,183,184,185]. Recently, A. tenuissima, a fungal endophyte from the roots of Podophyllum emodi, and Fusarium sp. from Dysosma versipellis showed the presence of podophyllotoxin in their secondary metabolite analysis [188,189]. In total, podophyllotoxin has been isolated from 17 endophytic fungal species collected from 10 different host plant species, as listed in Table 4.

2.5. Plant-Derived Saponins from Fungal Endophytes

Saponins are known to occur in many taxonomically unrelated plants, but there is evidence that they are also produced by endophytic fungi (Table 5). We found three specific and several other plant-derived saponins that have been reported from endophytic fungi.

Diosgenin

The anti-inflammatory and anticancer agent diosgenin is primarily obtained from Dioscorea zingiberensis. Its anti-inflammatory activity is exerted via reduction in the levels of several inflammatory mediators, including NO and IL-1 and -6, inhibition of the MAPK/AKT/NF-κB signaling pathway, and ROS production. Diosgenin anticancer effects have been linked to p53 activation, immune modulation, cell cycle arrest, modulation of caspase-3 activity, and activation of STAT3 signaling pathway [210]. Considering the depleting natural populations and requirement of a long period of rhizome maturation of its primary source Dioscorea zingiberensis, endophytes might be suitable alternatives to produce diosgenin. Zhou et al. in 2004 first reported Paecilomyces sp. residing in Paris polyphylla var. yunnanensis as an adiosgenin-producing endophytic fungus [193]. Later, an endophytic strain of Fusarium sp. from Dioscorea nipponica was also been reported for enhanced production of diosgenin in its liquid cultures when supplemented with the rhizome extract of its host plant [195].

2.6. Plant-Derived Terpenes from Fungal Endophytes

Table 6 lists 17 specific plant-derived terpenes produced by fungal endophytes with some of them detailed below.

2.6.1. Artemisinin

Asian plant Artemisia annua (sweet wormwood) has been in use for the treatment of fever since more than 2000 years. In 1971, Artemisinin, a sesquiterpene lactone with endoperoxide trioxane moiety, was isolated from the A. annua as its active antimalarial principle by Tu Youyou [296]. According to a WHO report, over 2010–2017, about 2.74 billion artemisinin-based combination therapies (ACTs) have been administered globally [297]. Growing evidence revealed that artemisinin and its derivatives have many more biological activities including anti-inflammatory, immunoregulatory, and anticancer activities without any risk of drug-resistant development [298]. Its antimalarial parasite activity is mediated by ROS generation, causing protein damage and compromising parasite proteasome function, inducing the endoplasmic reticulum (ER) stress response [299,300]. Iron (heme), which is a prerequisite for cancer cells multiplication, also activates an endoperoxide bond of artemisinin, creating cytotoxic/cancer-killing carbon-centered free radicals. As an alternative source, Huang et al. isolated artemisinin from an anonymous fungal isolate of Artemisia indica [216].

2.6.2. Bilobalide and Ginkgolides

Bilobalide and ginkgolides, two main terpenoids found in the leaves and bark of G. biloba, are accountable for the therapeutic implication of its whole extract [301]. Ginkgo products, including EGb-761 registered as a phytomedicine in Europe, are now among the best-selling drugs in the world with US$ 1.26 billion worldwide sales in 2012 [302]. Widely consumed bilobalide (sesquiterpene) has neuroprotective, anti-inflammatory, and analgesic potential and inhibits the diffuse pneumonia caused by Pneumocystis carinii [303,304]. Bilobalide has recently been found to be an antagonistic allosteric modulator of the γ-aminobutyric acid A receptors (GABAARs), linking its role in improving cognitive and memory functioning domain in impaired persons [305]. Recently, Pestalotiopsis uvicola, a foliar endophyte of G. biloba, has been reported to produce bilobalide [219]. Similarly, ginkgolides are considered as possible drugs based on their key antagonistic effects on the platelet-activating factor (PAF), neuroprotective effects, and protective effects in cardio-cerebral ischemia reperfusion injuries mediated via regulation of TNF-related weak inducer of apoptosis (TWEAK)/ fibroblast growth factor-inducible molecule 14 (Fn14) signaling pathway [301,306,307]. Ginkgolides have also been found in the fermentation products of an endophytic strain of F. oxysporum recovered from the root bark of G. biloba [226].

2.6.3. Paclitaxel

Paclitaxel (PTX) is a highly functionalized diterpenoid taxane family compound with a four-membered oxetane ring and a C-13 ester side chain. It is used as a basic chemotherapy drug to treat several cancer types and was first extracted from medicinal plant Pacific yew (Taxus brevifolia) in 1971 [308]. Paclitaxel binds to the tubulin protein of mitotic spindles, making them nonfunctional. The stabilization of microtubules arrest mitosis in the M phase causes the reversal of cell cycle to the G0 phase and induces apoptosis [309]. Two decades after the discovery of paclitaxel ‘taxol’, the US FDA approved it for treating ovarian cancer in 1992 with its commercial sales reaching over $3 billion in 2004 [308]. T. andreanae from Taxus spp. was the very first endophyte reported to produce paclitaxel, taxol [11]. The above revolutionary discovery was followed by similar findings from 83 different endophytic fungal species isolated from 35 different host plant species including Taxus and non-Taxus species, as listed in Table 6.

2.6.4. Toosendanin (TSN)

Triterpenoid toosendanin (TSN) is a main bioactive component of fruits and bark of traditional anthelmintic and insecticidal plants Melia azedarach and Melia toosendan. Toosendanin has antibotulinum (inhibits the botulinum neurotoxin interaction with the SNARE protein), anti-influenza (alters nuclear localization of viral polymerase PA protein), anticancer, anti-inflammatory, and analgesic (selective presynaptic blocker) efficacy [310,311]. Possible actions of TSN as an antitumor drug against a variety of cancer types involve inhibition of STAT3, an emerging target for cancer therapy, induction of estrogen receptor β (ERβ) and p53 proteins, and activation of the mitochondrial apoptotic pathway [312,313,314]. Three unidentified endophytic fungal strains in M. azedarach have been reported to produce toosendanin [291,292].

2.6.5. Xanthatin

Xanthatin, a natural sesquiterpene lactone of Xanthium spp., has significant antimicrobial, trypanocidal, and antitumor activities. Xanthatin exerts its trypanocidal activity by inhibiting both prostaglandin E2 (PGE2) synthesis and 5-lipoxygenase activity, thereby avoiding unwanted inflammation commonly observed in trypanosomiasis. It also permanently inhibits the parasite-specific trypanothione reductase [294]. Xanthatin induces cell cycle arrest at the G2/M checkpoint and apoptosis via disrupting the NF-κB pathway [315]. It is also synthesized by endophytic Paecilomyces sp. from Panax ginseng [295].

2.7. Plant-Derived Quinones and Xanthones from Fungal Endophytes

Table 7 lists 20 different plant-derived quinones and xanthones that were reported from fungal endophytes with some important quinones described below.

2.7.1. Hypericin

Hypericin (naphthodianthrone) is a Hypericum perforatum-derived antidepressive, antineoplastic, antitumor, antiviral, and photosensitizer compound. Hypericin exerts its antidepressant activity by the inhibition of serotonin, norepinephrine, and dopamine reuptake, increases in IL-6 activity, and the agonist action of sigma receptors [355]. Due to preferential accumulation in neoplastic cells, hypericin can be used in photodynamic diagnosis as an effective fluorescence marker for tumor detection and visualization. Light-activated hypericin is used as a strong pro-oxidant agent in photodynamic therapy to induce the apoptosis, necrosis, or autophagy of cancer cells due to its high affinity for neoplastic cells [356]. It prevents the uncoating of the HIV by stabilizing its capsid and suppresses the release of reverse transcriptase. Later, endophytic fungi C. globosum, Thielavia subthermophila, and Epicoccum nigrum isolated from H. perforatum were also found to produce hypericin [324,326,327].

2.7.2. Pachybasin

Pachybasin (anthraquinone) with antimicrobial and antiviral properties was isolated from Digitalis lanata [357]. Later, pachybasin was also isolated from Phoma sorghina, an endophyte of Tithonia diversifolia, and Coniothyrium sp., an endophyte of Salsola oppostifolia [316,330].

2.7.3. Pinselin (Cassiollin)

Immunosuppressive and anticancer xanthone pinselin was initially characterized from a strain of Penicillium amarum, but later found to be identical to cassiollin reported from Cassia occidentalis [336]. Later, plant-derived pinselin was reported from endophytic Phomopsis sp. isolated from P. polyphylla var. yunnanensis, Aspergillus sydowii isolated from the liverwort Scapania ciliata, and Penicillium sp. isolated from the leaves of Sonneratia apetala [337,338,340].

2.7.4. Plumbagin and Shikonin

Plumbagin and shikonin are anticancer naphthoquinones found in Plumbago and Lithospermum, respectively. Both can induce in vitro mammalian topoisomerase II-mediated DNA cleavage [358]. The mechanisms underlying the potential antitumor effects of plumbagin involve increased oxidative stress, caspase activity, loss of mitochondrial membrane potential, induction of cytochrome c release, FasL expression, and high Bax levels via activation of the JNK pathway, down-regulation of expression of NF-κB, suppressed TNF-α-induced phosphorylation of p65 and IκB kinase (IKK), degradation of IκBα, and blocking STAT3/ polo-like kinase 1 (PLK1)/AKT signaling [359,360]. Shikonin can induce apoptosis also via ROS generation and the down-regulation of AKT and receptor interacting protein 1 (RIP1)/NF-κB activity [361]. Both the compounds have also been produced by endophytic fungi, as listed in Table 7.

2.7.5. Rhein

Rheum palmatum is a highly regarded traditional medicinal plant with cathartic, hepatoprotective, nephroprotective, antimicrobial, anti-inflammatory, anticancer, and antiaging properties. The dominant biologically active constituents in the medicinal roots of Rheum are anthraquinones rhein, emodin, and physcion. The hepatoprotective activity of rhein is exerted by its lipid lowering, anti-obesity, anti-inflammatory, and anti-oxidant actions. Rhein also suppresses the expression of alpha-smooth muscle actin (α-SMA) and transforming growth factor-beta (TGF-β), which are indicative of decreased hepatic stellate cell and myofibroblast activation [362]. Nephroprotective properties of rhein arise from its anti-inflammatory action along with the suppression of α-SMA, TGF-β, and fibronectin expression. The anti-inflammatory activity of rhein involves inhibition of the NF-κB pathway, which plays a role in the production of many pro-inflammatory cytokines [363]. The mechanism of rhein anticancer activity involves the inhibition of NF-κB, MAPK, and PI3K/AKT pathways, eventually regulating cell cycle, angiogenesis, and apoptosis [364,365]. Endophytic F. solani from the roots of R. palmatum also produced the host-derived compounds rhein and emodin [322].

2.7.6. Tanshinones

Diterpenoid quinine metabolite tanshinones (tanshinone I, tanshinone IIA, tanshinone IIB, isotanshinone I, and cryptotanshinone), found in the roots of Salvia spp., are considered to be potent anticancer, antiatherosclerosis, antihypertensive, and neuroprotective agents. Tanshinones’ antitumor mechanism involves the inhibition of DNA duplication, cell cycle arrest, regulation of oxidative stress, and reduction of the mitochondrial membrane potential and PTEN-mediated inhibition of the PI3K/AKT pathway to induce apoptosis. Tanshinone I inhibits tumor angiogenesis by the phosphorylation of STAT3 at Tyr705 and hypoxia-induced HIF-1α accumulation in neoplastic cells. The cardiovascular protective effect of tanshinones is exerted by the inhibition of myocardial apoptosis, cardiac fibrosis, atherosclerosis, oxidized low-density lipoprotein (ox-LDL) uptake, thrombin activation, and thrombosis. Tanshinones exhibit significant neuroprotective effects in various neurodegenerative diseases by selectively suppressing pro-inflammatory gene expression in activated microglia, protecting neurons from the neurotoxicity of Aβ, and down-regulating the expression of phosphorylated tau [366]. Endophytic fungi Phoma glomerata and Alternaria sp. residing in the roots of Salvia miltiorrhiza produced tanshinones [352,353]. It has also been secreted by endophytic fungi from Panex (Table 7). Interestingly, elicitors from the endophytic fungi T. atroviride and C. globosum promoted the biosynthesis of tanshinones via enhanced expression of related genes in hairy roots of S. miltiorrhiza [367,368].

2.8. Miscellaneous Plant-Derived Compounds from Fungal Endophytes

In this section, we grouped diverse classes of compounds such as phenolics, phytoalexins and acids with a total number reaching up to 17 (Table 8).

2.8.1. Cajaninstilbene Acid (CSA)

The major active constituent of leaves of therapeutic pigeon pea extract is cajaninstilbene acid (CSA), which is a low-molecular weight compound containing two benzene rings joined by a molecule of ethylene. Pharmacological studies have shown that CSA exhibits antioxidant, anti-inflammatory, analgesic, and neuroprotective effects. Its cytoprotective effects against oxidative stress is exhibited by inducing the Nrf2-dependent antioxidant pathway and gene expression of heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutamate–cysteine ligase modifier subunits by activation of PI3K/AKT, ERK, and JNK signaling pathways [394]. The anti-inflammatory activity of CSA is associated with the inhibition of NF-κB and MAPK pathways [395]. In a study, CSA attenuated the impairment of learning and memory induced by Aβ (1–42) oligomers by stimulating Aβ clearance and inhibiting microglial activation and astrocyte reactivity in the hippocampus. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited the excessive expression of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs) and up-regulated the downstream protein kinase A (PKA)/CREB/ BDNF/ tropomyosin receptor kinases (TrkB) signaling pathway. The above findings imply that CSA could be a potential neuroprotective agent at the early stage of Alzheimer’s disease [396]. CSA has also been produced by pigeon pea endophytic fungi Alternaria, Fusarium spp., and Neonectria macrodidym [137,376].

2.8.2. Digoxin

The glycoside digoxin from Digitalis spp. has been reported to be cardiotonic and is widely used in the treatment of various heart disorders such as atrial fibrillation, atrial flutter, and heart failure. Digoxin induces an increase in intracellular sodium followed by calcium in the heart by reversibly inhibiting the activity of the myocardial Na+-K+-ATPase pump, leading to an increased force of myocardial contraction and cardiac output. By stimulating the parasympathetic nerve, it slows electrical conduction in the AV node by increasing the refractory period of cardiac myocytes; therefore, it decreases the ventricular response and heart rate. Overall, the stroke volume is increased while the heart rate is decreased, resulting in a net increase in blood pressure [397]. Crude extracts of fungal cultures isolated from Digitalis lanata also showed the production of digoxin [382].

2.8.3. Forskolin (Coleonol)

The roots of Indian Coleus (Coleus forskohlii) contain a biologically active labdane diterpene compound forskolin with antiglaucoma, anti-HIV, and antitumor activities. Other approved and potential applications of forskolin range from the treatment of hypertension and heart failure to lipolysis and body weight control [398]. Forskolin activates a variety of adenylate cyclase systems to increase the cellular concentrations of cyclic AMP, which is an important second messenger necessary to elicit cAMP-dependent physiological responses [399]. An endophytic fungus Rhizoctonia bataticola isolated from C. forskohlii was found to synthesize forskolin [383].

2.8.4. Salidroside and p-Tyrosol (Aglycone of Salidroside)

Rhodiola rosea, a traditional medicinal herb used as stimulant and antidepressant, has great pharmaceutical value including antioxidant, antihypoxic, adaptogenic, cardiovascular, and neuroprotective properties. Its active principals are phenolics (salidroside and p-tyrosol) and glycosides (rosavins) [400]. Salidroside and p-tyrosol inhibit the hypoxia-induced endocytosis of pulmonary Na,K-ATPase via the inhibition of the ROS– AMPK–protein kinase Cζ (PKCζ) pathway, signifying the use of Rhodiola as a popular folk medicine for high-altitude illness [401]. The mechanisms underlying the potential neuroprotective effects of salidroside involve the regulation of oxidative stress response, inflammation, apoptosis, hypothalamus–pituitary–adrenal axis, neurotransmission, neural regeneration, and the cholinergic system [402]. Cui et al. isolated four endophytic fungi from different species of Rhodiola that could produce salidroside and p-tyrosol and characterized P. fortinii as the most capable and stable producer [392].

3. Avenues and Challenges in Application of Endophyte as Alternative Sources of Plant-Derived Natural Compounds

The success of natural products in drug discovery lies in their enormous structural diversity, diverse pharmacological activities, safety, and inherent binding capacity with other biomolecules [2,9,298]. Reports regarding the biosynthesis of plant-derived natural compounds from endophytic fungi coupled with recent dynamic progress in fermentation, extraction, purification, characterization, and bioassay techniques have enabled us to rapidly characterize valuable novel natural products and access earlier inaccessible endophytic resource [403,404]. Generally, the fermentation process for fungi is short, simple, and economically feasible with a great degree of flexibility for modulation by feeding precursors, elicitors, special enzymes, and modifiers for the efficient enhanced production of bioactive compounds. Endophytes can uniquely biotransform original plant-derived bioactive compounds to their more efficient derivatives, leading to structural and functional diversification [77,136,146]. These studies have evidenced the incredible manipulability of fungal secondary metabolism. There are cases where endophytes up-regulated the synthesis of host compounds and the expression of related genes in the plant host. Hence, each report of the biosynthesis of plant-derived natural compounds from fungal endophytes clearly presents a hopeful way for the efficient and specific production of valuable bioactive natural compounds using endophytes as stable and smart “bio-laboratories”.
However, this approach needs to overcome certain challenges. First, there is an ongoing search for highly productive endophytic fungi for desired plant-derived compounds followed by their strain improvement through epigenetic modulations, mutations, and genetic engineering to make them suitable for industrial applications. Furthermore, we need to elucidate the complete biosynthesis route including all the enzymes and related genes involved through ‘omics’—genomics, transcriptomics, proteomics, and metabolomics—to regulate and manipulate the biosynthesis process for improved productivity [405,406,407]. Alternatively, the identified biosynthetic pathway of the bioactive compounds can be assembled and mimicked in convenient systems, offering an approach to produce target compounds with ease. Second, we need to know more about the roles of host plant–endophyte interactions, requirements of plant niche, and identities of specific signals/elicitors in the synthesis and induction of host-derived natural compounds by endophytes under the OSMAC strategy to overcome the problem of low yield and attenuation, the major challenges for commercial success of this novel approach [406,408,409,410]. The reasons for the attenuation of products have been attributed to the lack of apparent signals/molecules arising from host–endophyte and/or endophyte–peer endophytes interactions in axenic monocultures, resulting in the switching off of genes [86]. However, characterization of the specific nature of assumed activator signals/molecules remains to be done. Third, this area needs collaborations between scientists working in this area and in the pharmaceutical industry for the successful industrial scale production of pharmaceutically valuable compound/leads [411]. The pharmaceutical industry must prioritize their endeavors toward the endophyte-dependent biosynthesis of plant-derived natural compounds.

4. Conclusions

After screening a large spectrum of articles dedicated to endophyte research, natural product drug discovery, combinatorial chemistry, genomics, metabolomics ethnobotany, modern medicine, and multidisciplinary science, we curated 101 specific plant-derived medicinal compounds efficiently biosynthesized by hundreds of endophytic fungi. Nonetheless, the exciting progress that has been made in the field of functional genomics, genome mining and genome scanning, fermentation technology, green combinatorial chemistry, and systems biology might remove the roadblocks in the way of commercial success of this innovative approach [282,412,413]. In conclusion, the pursuit of the idea of endophyte-dependent enhanced in vivo and in vitro production of plant-derived valuable metabolites is of prime importance for the pharmaceutical industries, for the health care systems, and for a “green drug revolution”.

Author Contributions

Conceptualization, A.S., D.K.S. and S.K.G.; Writing—Original Draft Preparation, A.S. and D.K.S.; Writing—Review and Editing, D.K.S., S.K.G., J.F.W. and R.N.K.; Supervision, S.K.G. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by CSIR, New Delhi and SERB, New Delhi, India (EEQ/2016/000555 and EEQ/2020/000485). RNK acknowledges funding support from SERB, New Delhi, India (EEQ /2020/000549). J.F.W. was supported by the Rutgers Agricultural Experiment Station and USDA NIFA Multi-State Project W-4147.

Data Availability Statement

Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Shen, B. A new golden age of natural products drug discovery. Cell 2015, 163, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
  2. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc. 2019, 91, e20190105. [Google Scholar] [CrossRef] [PubMed]
  4. Wilson, B.A.; Thornburg, C.C.; Henrich, C.J.; Grkovic, T.; O’Keefe, B.R. Creating and screening natural product libraries. Nat. Prod. Rep. 2020, 37, 893–918. [Google Scholar] [CrossRef] [PubMed]
  5. Strobel, G. The emergence of endophytic microbes and their biological promise. J. Fungi 2018, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Abdul-Razek, A.S.; El-Nagar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I. Microbial natural products in drug discovery. Processes 2020, 8, 470. [Google Scholar] [CrossRef] [Green Version]
  7. Uzma, F.; Mohan, C.D.; Hashem, A.; Konappa, N.M.; Rangappa, S.; Kamath, P.V.; Singh, B.P.; Mudili, V.; Gupta, V.K.; Siddaiah, C.N.; et al. Endophytic fungi—Alternative sources of cytotoxic compounds: A review. Front. Pharmacol. 2018, 9, 309. [Google Scholar] [CrossRef]
  8. Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
  9. Newman, D.J.; Cragg, G.M. Plant endophytes and epiphytes: Burgeoning sources of known and “unknown” cytotoxic and antibiotic agents? Planta Med. 2020, 86, 1095–1111. [Google Scholar] [CrossRef] [Green Version]
  10. Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
  11. Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef] [PubMed]
  12. Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes—Secret producers of bioactive plant metabolites. Pharmazie 2013, 68, 499–505. [Google Scholar]
  13. Nicoletti, R.; Fiorentino, A. Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture 2015, 5, 918–970. [Google Scholar] [CrossRef] [Green Version]
  14. Venieraki, A.; Dimou, M.; Katinakis, P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell. Plant Protect. J. 2017, 10, 51–66. [Google Scholar] [CrossRef] [Green Version]
  15. Cook, D.; Gardner, D.R.; Pfister, J.A. Swainsonine-containing plants and their relationship to endophytic fungi. J. Agric. Food Chem. 2014, 62, 7326–7334. [Google Scholar] [CrossRef] [PubMed]
  16. Naik, S.; Shaanker, R.U.; Ravikanth, G.; Dayanandan, S. How and why do endophytes produce plant secondary metabolites? Symbiosis 2019, 78, 193–201. [Google Scholar] [CrossRef]
  17. Ludwig-Müller, J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol. Lett. 2015, 37, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
  18. Knox, R. Introduction to medicinal plants. In Medicinal Plant Biotechnology; Knox, R., Ed.; Scientific e-Resources; ED-Tech Press: Essex, UK, 2019; pp. 32–60. [Google Scholar]
  19. Staniek, A.; Bouwmeester, H.; Fraser, P.D.; Kayser, O.; Martens, S.; Tissier, A.; Warzecha, H. Natural products–learning chemistry from plants. Biotechnol. J. 2014, 9, 326–336. [Google Scholar] [CrossRef] [PubMed]
  20. Zeilinger, S.; García-Estrada, C.; Martín, J.F. Fungal secondary metabolites in the “OMICS” Era. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Zeilinger, S., Martín, J.F., García-Estrada, C., Eds.; Springer: New York, NY, USA, 2015; Volume 2, pp. 1–12. [Google Scholar]
  21. Mohanta, T.K. Fungi contain genes associated with flavonoid biosynthesis pathway. J. Funct. Foods 2020, 68, 103910. [Google Scholar] [CrossRef]
  22. Esmaeilzadeh Bahabadi, S.; Sharifi, M.; Behmanesh, M.; Safaie, N.; Murata, J.; Araki, R.; Yamagaki, T.; Satake, H. Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J. Plant Physiol. 2012, 169, 487–491. [Google Scholar] [CrossRef]
  23. Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011, 72, 435–457. [Google Scholar] [CrossRef] [PubMed]
  24. Feng, P.; Shang, Y.; Cen, K.; Wang, C. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc. Nat. Acad. Sci. USA 2015, 112, 11365–11370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Le Pogam, P.; Boustie, J. Xanthones of lichen source: A 2016 update. Molecules 2016, 21, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Yang, K.; Liang, J.; Li, Q.; Kong, X.; Chen, R.; Jin, Y. Cladosporium cladosporioides XJ-AC03, an aconitine-producing endophytic fungus isolated from Aconitum leucostomum. World J. Microbiol. Biotechnol. 2013, 29, 933–938. [Google Scholar] [CrossRef]
  27. Duan, L.I.; Liwei, G.; Hong, Y. Isolation and identification of producing endophytic fungi of berberine from the plant Phellodendron amurense. J. Anhui. Agric. Sci. 2009, 22, 7. [Google Scholar]
  28. Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci. 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
  29. Vinodhini, D.; Agastian, P. Berberine production by endophytic fungus Fusarium solani from Coscinium fenestratum. Int. J. Biol. Pharm. Res. 2013, 4, 1239–1245. [Google Scholar]
  30. Bhagobaty, R.K.; Joshi, S.R. Metabolite profiling of endophytic fungal isolates of five ethno-pharmacologically important plants of Meghalaya, India. J. Metab. Syst. Biol. 2011, 2, 20–31. [Google Scholar]
  31. Puri, S.C.; Verma, V.; Amna, T.; Qazi, G.N.; Spiteller, M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat. Prod. 2005, 68, 1717–1719. [Google Scholar] [CrossRef]
  32. Amna, T.; Puri, S.C.; Verma, V.; Sharma, J.P.; Khajuria, R.K.; Musarrat, J.; Spiteller, M.; Qazi, G.N. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can. J. Microbiol. 2006, 52, 189–196. [Google Scholar] [CrossRef]
  33. Rehman, S.; Shawl, A.S.; Verma, V.; Kour, A.; Athar, M.; Andrabi, R.; Sultan, P.; Qazi, G.N. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl. Biokhim. Mikrobiol. 2008, 44, 225–231. [Google Scholar] [CrossRef] [PubMed]
  34. Min, C.; Wang, X. Isolation and identification of the 10-hydroxycamptothecin-producing endophytic fungi from Camptotheca acuminata Decne. Acta Bot. Boreal.-Occident. Sin. 2009, 29, 614–617. [Google Scholar]
  35. Rehman, S.; Shawl, A.S.; Kour, A.; Sultan, P.; Ahmad, K.; Khajuria, R.; Qazi, G.N. Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Nat. Prod. Res. 2009, 23, 1050–1057. [Google Scholar] [CrossRef] [PubMed]
  36. Kusari, S.; Zühlke, S.; Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J. Nat. Prod. 2009, 72, 2–7. [Google Scholar] [CrossRef] [PubMed]
  37. Gurudatt, P.S.; Priti, V.; Shweta, S.; Ramesha, B.T.; Ravikanth, G.; Vasudeva, R.; Amna, T.; Deepika, S.; Ganeshaiah, K.N.; Shaanker, R.U.; et al. Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr. Sci. 2010, 98, 1006–1010. [Google Scholar]
  38. Liu, K.; Ding, X.; Deng, B.; Chen, W. 10-Hydroxycamptothecin produced by a new endophytic Xylaria sp., M20, from Camptotheca acuminata. Biotehnol. Lett. 2010, 32, 689–693. [Google Scholar] [CrossRef]
  39. Shweta, S.; Zuehlke, S.; Ramesha, B.T.; Priti, V.; Kumar, P.M.; Ravikanth, G.; Spiteller, M.; Vasudeva, R.; Shaanker, R.U. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9 methoxycamptothecin. Phytochemistry 2010, 71, 117–122. [Google Scholar] [CrossRef]
  40. Ding, X.; Liu, K.; Deng, B.; Chen, W.; Li, W.; Liu, F. Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J. Microbiol. Biotechnol. 2013, 29, 1831–1838. [Google Scholar] [CrossRef]
  41. Shweta, S.; Gurumurthy, B.R.; Ravikanth, G.; Ramanan, U.S.; Shivanna, M.B. Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 2013, 20, 337–342. [Google Scholar] [CrossRef]
  42. Pu, X.; Qu, X.; Chen, F.; Bao, J.; Zhang, G.; Luo, Y. Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Appl. Microbiol. Biotechnol. 2013, 97, 9365–9375. [Google Scholar] [CrossRef]
  43. Musavi, S.F.; Dhavale, A.; Balakrishnan, R.M. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep. Biochem. Biotechnol. 2015, 45, 158–172. [Google Scholar] [CrossRef] [PubMed]
  44. Devari, S.; Jaglan, S.; Kumar, M.; Deshidi, R.; Guru, S.; Bhushan, S.; Kushwaha, M.; Gupta, A.P.; Gandhi, S.G.; Sharma, J.P.; et al. Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC–ESI–MS/MS analysis. Phytochemistry 2014, 98, 183–189. [Google Scholar] [CrossRef] [PubMed]
  45. Hu, X.; Li, W.; Yuan, M.; Li, C.; Liu, S.; Jiang, C.; Wu, Y.; Cai, K.; Liu, Y. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li. World J. Microbiol. Biotechnol. 2016, 32, 110. [Google Scholar] [CrossRef] [PubMed]
  46. Li, W.K.; Zhou, J.Y.; Lin, Z.W.; Hu, Z. Study on fermentation condition for production of Huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chin. J. Med. Chem. 2007, 2, 254–259. [Google Scholar]
  47. Ju, Z.; Wang, J.; Pan, S.L. Isolation and preliminary identification of the endophytic fungi which produce Hupzine A from four species in Hupziaceae and determination of Huperzine A by HPLC. J. Med. Sci. 2009, 36, 445–449. [Google Scholar]
  48. Zhou, S.L.; Yang, F.; Lan, S.L.; Xu, N.; Hong, Y.H. Huperzine A producing conditions from endophytic fungus in SHB Huperzia serrata. J. Microbiol. 2009, 3, 32–36. [Google Scholar]
  49. Zhu, D.; Wang, J.; Zeng, Q.; Zhang, Z.; Yan, R. A novel endophytic Huperzine A–producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. J. Appl. Microbiol. 2010, 109, 1469–1478. [Google Scholar] [CrossRef]
  50. Zhang, Z.B.; Zeng, Q.G.; Yan, R.M.; Wang, Y.; Zou, Z.R.; Zhu, D. Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces Huperzine A. World J. Microbiol. Biotechnol. 2011, 27, 479–486. [Google Scholar] [CrossRef]
  51. Dong, L.H.; Fan, S.W.; Ling, Q.Z.; Huang, B.B.; Wei, Z.J. Indentification of Huperzine A-producing endophytic fungi isolated from Huperzia serrata. World J. Microbiol. Biotechnol. 2014, 30, 1011–1017. [Google Scholar] [CrossRef]
  52. Su, J.; Yang, M. Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat. Prod. Res. 2015, 29, 1035–1041. [Google Scholar] [CrossRef]
  53. Su, J.; Liu, H.; Guo, K.; Chen, L.; Yang, M.; Chen, Q. Research advances and detection methodologies for microbe-derived acetylcholinesterase inhibitors: A systemic review. Molecules 2017, 22, 176. [Google Scholar] [CrossRef] [PubMed]
  54. Le, T.T.M.; Hoang, A.T.H.; Le, T.T.; Vo, T.T.B.; Van Quyen, D.; Chu, H.H. Isolation of endophytic fungi and screening of Huperzine A–producing fungus from Huperzia serrata in Vietnam. Sci. Rep. 2019, 9, 1–3. [Google Scholar]
  55. Cruz-Miranda, O.L.; Folch-Mallol, J.; Martínez-Morales, F.; Gesto-Borroto, R.; Villarreal, M.L.; Taketa, A.C. Identification of a Huperzine A-producing endophytic fungus from Phlegmariurus taxifolius. Mol. Biol. Rep. 2020, 47, 489–495. [Google Scholar] [CrossRef] [PubMed]
  56. Le, T.T.M.; Hoang, A.T.H.; Nguyen, N.P.; Le, T.T.B.; Trinh, H.T.T.; Vo, T.T.B.; Van Quyen, D. A novel huperzine A-producing endophytic fungus Fusarium sp. Rsp5.2 isolated from Huperzia serrata. Biotechnol. Lett. 2020, 42, 1–9. [Google Scholar] [CrossRef] [PubMed]
  57. Wang, D.; Zhu, J.; Wang, S.; Wang, X.; Ou, Y.; Wei, D.; Xueping, L. Antitussive, expectorant and anti-inflammatory alkaloids from Bulbus Fritillariae cirrhosae. Fitoterapia 2011, 82, 1290–1294. [Google Scholar] [CrossRef]
  58. Pan, F.; Hou, K.; Gao, F.; Hu, B.; Chen, Q.; Wu, W. Peimisine and peiminine production by endophytic fungus Fusarium sp. isolated from Fritillaria unibracteata var. wabensis. Phytomedicine 2014, 21, 1104–1109. [Google Scholar] [CrossRef]
  59. Pan, F.; Su, X.; Hu, B.; Yang, N.; Chen, Q.; Wu, W. Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-d-glucoside. Fitoterapia 2015, 103, 213–221. [Google Scholar] [CrossRef]
  60. Verma, V.C.; Lobkovsky, E.; Gange, A.C.; Singh, S.K.; Prakash, S. Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. J. Antibiot. 2011, 64, 427–431. [Google Scholar] [CrossRef]
  61. Chithra, S.; Jasim, B.; Sachidanandan, P.; Jyothis, M.; Radhakrishnan, E.K. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 2014, 21, 534–540. [Google Scholar] [CrossRef]
  62. Chithra, S.; Jasim, B.; Anisha, C.; Mathew, J.; Radhakrishnan, E.K. LC-MS/MS based identification of piperine production by endophytic Mycosphaerella sp. PF13 from Piper nigrum. Appl. Biochem. Biotechnol. 2014, 173, 30–35. [Google Scholar] [CrossRef]
  63. Chithra, S.; Jasim, B.; Mathew, J.; Radhakrishnan, E.K. Endophytic Phomopsis sp. colonization in Oryza sativa was found to result in plant growth promotion and piperine production. Physiol. Planta 2017, 160, 437–446. [Google Scholar]
  64. Maehara, S.; Simanjuntak, P.; Maetani, Y.; Kitamura, C.; Ohashi, K.; Shibuya, H. Ability of endophytic filamentous fungi associated with Cinchona ledgeriana to produce Cinchona alkaloids. J. Nat. Med. 2013, 67, 421–423. [Google Scholar] [CrossRef] [PubMed]
  65. Hidayat, I.; Radiastuti, N.; Rahayu, G.; Achmadi, S.; Okane, I. Three quinine and cinchonidine producing Fusarium species from Indonesia. Curr. Res. Environ. Appl. Microbiol. 2016, 6, 20–34. [Google Scholar] [CrossRef]
  66. Kumara, P.M.; Zuehlke, S.; Priti, V.; Ramesha, B.T.; Shweta, S.; Ravikanth, G.; Vasudeva, R.; Santhoshkumar, T.R.; Spiteller, M.; Uma Shaanker, R. Fusarium proliferatum, an endophytic fungus from Dysoxylumbinectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 2012, 101, 323–329. [Google Scholar] [CrossRef] [PubMed]
  67. Kumara, P.M.; Soujanya, K.N.; Ravikanth, G.; Vasudeva, R.; Ganeshaiah, K.N.; Shaanker, R.U. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 2014, 21, 541–546. [Google Scholar]
  68. Wang, X.J.; Min, C.L.; Ge, M.; Zuo, R.H. An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr. Microbiol. 2014, 68, 336–341. [Google Scholar] [CrossRef]
  69. Yin, H.; Chen, J.L. Sipeimine-producing endophytic fungus isolated from Fritillaria ussuriensis. Z. Naturforsch. 2008, 63, 789. [Google Scholar] [CrossRef] [Green Version]
  70. El-Hawary, S.; Mohammed, R.; AbouZid, S.; Bakeer, W.; Ebel, R.; Sayed, A.; Rateb, M. Solamargine production by a fungal endophyte of Solanum nigrum. J. Appl. Microbiol. 2016, 120, 900–911. [Google Scholar] [CrossRef] [Green Version]
  71. Ralphs, M.H.; Creamer, R.; Baucom, D.; Gardner, D.R.; Welsh, S.L.; Graham, J.D.; Hart, C.; Cook, D.; Stegelmeier, B.L. Relationship between the endophyte Embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis). J. Chem. Ecol. 2008, 34, 32–38. [Google Scholar] [CrossRef]
  72. Baucom, D.L.; Romero, M.; Belfon, R.; Creamer, R. Two new species of Undifilum, fungal endophytes of Astragalus (locoweeds) in the United States. Botany 2012, 90, 866–875. [Google Scholar] [CrossRef] [Green Version]
  73. Lu, H.; Chen, J.; Lu, W.; Ma, Y.; Zhao, B.; Wang, J. Isolation and identification of swainsonine-producing fungi found in locoweeds and their rhizosphere soil. Afr. J. Microbiol. Res. 2012, 6, 4959–4969. [Google Scholar]
  74. Grum, D.S.; Cook, D.; Baucom, D.; Mott, I.W.; Gardner, D.R.; Creamer, R.; Allen, J.G. Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. J. Nat. Prod. 2013, 76, 1984–1988. [Google Scholar] [CrossRef] [PubMed]
  75. Guo, B.; Li, H.; Zhang, L. Isolation of an fungus productingvinbrastine. J. Yunnan Univ. (Nat. Sci.) 1998, 20, 214–215. [Google Scholar]
  76. Zhang, L.; Guo, B.; Li, H.; Zeng, S.; Shao, H.; Gu, S.; Wei, R. Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin. Tradit. Herb. Drugs 2000, 31, 805–807. [Google Scholar]
  77. Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 2013, 8, e71805. [Google Scholar] [CrossRef] [Green Version]
  78. Palem, P.P.; Kuriakose, G.C.; Jayabaskaran, C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed]
  79. Kuriakose, G.C.; Palem, P.P.; Jayabaskaran, C. Fungal vincristine from Eutypella spp-CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line-A431. BMC Complement. Alternat. Med. 2016, 16, 302. [Google Scholar] [CrossRef] [Green Version]
  80. Na, R.; Jiajia, L.; Dongliang, Y.; Yingzi, P.; Juan, H.; Xiong, L.; Nana, Z.; Jing, Z.; Yitian, L. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiol. Res. 2016, 192, 114–121. [Google Scholar] [CrossRef] [PubMed]
  81. Yin, H.; Sun, Y.H. Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomedicine 2011, 18, 802–805. [Google Scholar] [CrossRef] [PubMed]
  82. Anadón, A.; Martínez-Larrañaga, M.R.; Ares, I.; Martínez, M.A. Interactions between nutraceuticals/nutrients and therapeutic drugs. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 855–874. [Google Scholar]
  83. Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharma. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef] [Green Version]
  84. Wall, M.E.; Wani, M.C. Camptothecin and taxol: From discovery to clinic. J. Ethnopharmacol. 1996, 51, 239–254. [Google Scholar] [CrossRef]
  85. Kai, G.; Wu, C.; Gen, L.; Zhang, L.; Cui, L.; Ni, X. Biosynthesis and biotechnological production of anti-cancer drug Camptothecin. Phytochem. Rev. 2015, 14, 525–539. [Google Scholar] [CrossRef]
  86. Bhalkar, B.N.; Patil, S.M.; Govindwar, S.P. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol. 2016, 120, 873–883. [Google Scholar] [CrossRef] [PubMed]
  87. Srinivasan, K. Biological activities of red pepper (Capsicum annuum) and its pungent principle capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
  88. Fattori, V.; Hohmann, M.S.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses. Molecules 2016, 21, 844. [Google Scholar] [CrossRef] [Green Version]
  89. Perdue, R.E., Jr.; Spetzman, L.A.; Rowell, R.G. Cephalotaxus-source of harringtonine, a promising new anti-cancer alkaloid. Am. Horticult. Soc. 1970, 49, 19–22. [Google Scholar]
  90. Kantarjian, H.M.; O’Brien, S.; Cortes, J. Homoharringtonine/omacetaxine mepesuccinate: The long and winding road to Food and Drug Administration approval. Clin. Lymphoma Myeloma Leuk. 2013, 13, 530–533. [Google Scholar] [CrossRef] [Green Version]
  91. Wang, Y.; Lai, Z.; Li, X.X.; Yan, R.M.; Zhang, Z.B.; Yang, H.L.; Zhu, D. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World J. Microbiol. Biotechnol. 2016, 32, 20. [Google Scholar] [CrossRef]
  92. Stojanović-Radić, Z.; Pejčić, M.; Dimitrijević, M.; Aleksić, A.; Anil Kumar, N.V.; Salehi, B.; Cho, W.C.; Sharifi-Rad, J. Piperine-A Major Principle of Black Pepper: A review of its bioactivity and studies. Appl. Sci. 2019, 9, 4270. [Google Scholar] [CrossRef] [Green Version]
  93. Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011, 10, 144. [Google Scholar] [CrossRef] [Green Version]
  94. Simanjuntak, P.; Parwati, T.; Bustanussalam; Prana, T.K.; Wibowo, S.; Shibuya, H. Isolasi dan kultivasimikrobaedofitpenghasilsenyawa alkaloid kinkonadariCinchona spp. J. Mikrobiol. Indones. 2002, 7, 27–30. [Google Scholar]
  95. Kamil, M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS ONE 2015, 10, e0137991. [Google Scholar]
  96. Park, S.Y.; Jin, M.L.; Kim, Y.H.; Lee, S.J.; Park, G. Sanguinarine inhibits invasiveness and the MMP-9 and COX-2 expression in TPA-induced breast cancer cells by inducing HO-1 expression. Oncol. Rep. 2014, 31, 497–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Jain, R.; Sharma, A.; Gupta, S.; Sarethy, I.P.; Gabrani, R. Solanum nigrum: Current perspectives on therapeutic properties. Altern. Med. Rev. 2011, 16, 78–85. [Google Scholar] [PubMed]
  98. Liu, L.F.; Liang, C.H.; Shiu, L.Y.; Lin, W.L.; Lin, C.C.; Kuo, K.W. Action of solamargine on human lung cancer cells–enhancement of the susceptibility of cancer cells to TNFs. FEBS Lett. 2004, 577, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  99. Oldrup, E.; McLain-Romero, J.; Padilla, A.; Moya, A.; Gardner, D.; Creamer, R. Localization of endophytic Undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany 2010, 88, 512–521. [Google Scholar] [CrossRef] [Green Version]
  100. Moudi, M.; Go, R.; Yien, C.Y.S.; Nazre, M. Vinca alkaloids. Int. J. Prevent. Med. 2013, 4, 1231. [Google Scholar]
  101. Vora, S.C.; Gujar, K.N. Vinpocetine: Hype, hope and hurdles towards neuroprotection. Asian J. Pharma. Res. Develop. 2013, 1, 17–23. [Google Scholar]
  102. Matos, M.J.; Santana, L.; Uriarte, E.; Abreu, O.A.; Molina, E.; Yordi, E.G. Coumarins—An important class of phytochemicals. Phytochem. Isol. Characterisation Role Hum. Health 2015, 30, 113–140. [Google Scholar]
  103. Huang, Z.; Yang, J.; Cai, X.; She, Z.; Lin, Y. A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16). Nat. Prod. Res. 2012, 26, 1291–1295. [Google Scholar] [CrossRef]
  104. Zaher, A.M.; Moharram, A.M.; Davis, R.; Panizzi, P.; Makboul, M.A.; Calderón, A.I. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodiatheobromae Pat. of Dracaena draco L. by LC–MS/MS. Nat. Prod. Res. 2015, 29, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
  105. Yamazaki, T.; Tokiwa, T. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits matrix metalloproteinase-7 expression and cell invasion of human hepatoma cells. Biol. Pharma. Bull. 2010, 33, 1716–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Cheng, M.J.; Wu, M.D.; Hsieh, S.Y.; Su, Y.S.; Chen, I.S.; Yuan, G.F. Secondary metabolites from the endophytic fungus Annulohypoxylon boveri var. microspora BCRC 34012. Chem. Nat. Comp. 2011, 47, 536–540. [Google Scholar] [CrossRef]
  107. Huang, Z.; Yang, J.; She, Z.; Lin, Y. Isoflavones from the mangrove endophytic fungus Fusarium sp. (ZZF41). Nat. Prod. Commun. 2010, 5, 1771–1773. [Google Scholar] [CrossRef] [Green Version]
  108. Findlay, J.A.; Buthelezi, S.; Lavoie, R.; Peña-Rodriguez, L.; Miller, J.D. Bioactive isocoumarins and related metabolites from conifer endophytes. J. Nat. Prod. 1995, 58, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
  109. Schmeda-Hirschmann, G.; Hormazabal, E.; Astudillo, L.; Rodriguez, J.; Theoduloz, C. Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World J. Microbiol. Biotechnol. 2005, 21, 27–32. [Google Scholar] [CrossRef]
  110. Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J. A new dihydrobenzofuran derivative from the endophytic fungus Botryosphaeria mamane PSU-M76. Chem. Pharm. Bull. 2007, 55, 1404–1405. [Google Scholar] [CrossRef] [Green Version]
  111. Amaral, L.S.; Murgu, M.; Rodrigues-Fo, E.; de Souza, A.Q.; de Moura Sarquis, M.I. A saponin tolerant and glycoside producer xylariaceous fungus isolated from fruits of Sapindus saponaria. World J. Microbiol. Biotechnol. 2008, 24, 1341–1348. [Google Scholar] [CrossRef]
  112. de Oliveira, C.M.; Regasini, L.O.; Silva, G.H.; Pfenning, L.H.; Young, M.C.M.; Berlinck, R.G.S.; Bolzani, V.S.; Araujo, A.R. Dihydroisocoumarins produced by Xylaria sp. and Penicillium sp., endophytic fungi associated with Piper aduncum and Alibertia macrophylla. Phytochem. Lett. 2011, 4, 93–96. [Google Scholar] [CrossRef]
  113. Cheng, M.J.; Wu, M.D.; Yuan, G.F.; Chen, Y.L.; Su, Y.S.; Hsieh, M.T.; Chen, I.S. Secondary metabolites and cytotoxic activities from the endophytic fungus Annulohypoxylonsquamulosum. Phytochem. Lett. 2012, 5, 219–223. [Google Scholar] [CrossRef]
  114. Zhao, J.H.; Zhang, Y.L.; Wang, L.W.; Wang, J.Y.; Zhang, C.L. Bioactive secondary metabolites from Nigrospora sp. LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J. Microbiol. Biotechnol. 2012, 28, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
  115. Ramos, H.P.; Simão, M.R.; de Souza, J.M.; Magalhães, L.G.; Rodrigues, V.; Ambrósio, S.R.; Said, S. Evaluation of dihydroisocoumarins produced by the endophytic fungus Arthrinium state of Apiosporamontagnei against Schistosoma mansoni. Nat. Prod. Res. 2013, 27, 2240–2243. [Google Scholar] [CrossRef] [PubMed]
  116. Rukachaisirikul, V.; Buadam, S.; Sukpondma, Y.; Phongpaichit, S.; Sakayaroj, J.; Hutadilok-Towatanad, N. Indanone and mellein derivatives from the Garcinia-derived fungus Xylaria sp. PSU-G12. Phytochem. Lett. 2013, 6, 135–138. [Google Scholar] [CrossRef]
  117. Wang, J.; Wang, G.; Zhang, Y.; Zheng, B.; Zhang, C.; Wang, L. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites. World J. Microbiol. Biotechnol. 2014, 30, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
  118. Fan, N.W.; Chang, H.S.; Cheng, M.J.; Hsieh, S.Y.; Liu, T.W.; Yuan, G.F.; Chen, I.S. Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv. Chim. Acta 2014, 97, 1689–1699. [Google Scholar] [CrossRef]
  119. Seida, A.A.A.; Kinghorn, D.; Cordell, G.A.; Farnsworth, N.A. Isolation of bergapten and marmesin from Balanites aegyptiaca. Planta Med. 1981, 43, 92–103. [Google Scholar] [CrossRef]
  120. Xie, Y.; Huang, X.; Hu, S.Y.; Qiu, X.J.; Zhang, Y.J.; Ren, P.; Wang, Y.; Ji, H.; Zhang, C.H.; Xie, W.B.; et al. Meranzin hydrate exhibits anti-depressive and prokinetic-like effects through regulation of the shared alpha 2-adrenoceptor in the brain–gut axis of rats in the forced swimming test. Neuropharmacology 2013, 67, 318–325. [Google Scholar] [CrossRef]
  121. Chebrolua, K.K.; Jayaprakash, G.K.; Jifon, J.; Patil, B.S. Purification of coumarins, including meranzin and pranferin, from grapefruit by solvent partitioning and a hyphenated chromatography. Separat. Purif. Technol. 2013, 116, 137–144. [Google Scholar] [CrossRef]
  122. Li, J.; Li, X.; Li, Z.; Zhang, L.; Liu, Y.; Ding, H.; Yin, S. Isofraxidin, a coumarin component improves high-fat diet induced hepatic lipid homeostasis disorder and macrophage inflammation in mice. Food Funct. 2017, 8, 2886–2896. [Google Scholar] [CrossRef]
  123. Yim, S.H.; Tabassum, N.; Kim, W.H.; Cho, H.; Lee, J.H.; Batkhuu, G.J.; Kim, H.J.; Oh, W.K.; Jung, D.W.; Williams, D.R. Isolation and characterization of isofraxidin 7-O-(6′-Op-Coumaroyl)-β-glucopyranoside from Artemisia capillaris Thunberg: A novel, nontoxic hyperpigmentation agent that is effective in vivo. Evid. Based Complement. Alternat. Med. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [Green Version]
  124. Majnooni, M.B.; Fakhri, S.; Shokoohinia, Y.; Mojarrab, M.; Kazemi-Afrakoti, S.; Farzaei, M.H. Isofraxidin: Synthesis, biosynthesis, isolation, pharmacokinetic and pharmacological properties. Molecules 2020, 25, 2040. [Google Scholar] [CrossRef] [PubMed]
  125. Abu-mustafam, E.A.; Fayez, B.E. Natural Coumarins. I. marmesin and marmesinin, further products from the fruits of Ammi majus L. J. Org. Chem. 1961, 26, 161–166. [Google Scholar] [CrossRef]
  126. Nishikawa, E. Biochemisty of filamentous fungi. II. A metabolic product of Aspergillus melleus Yukawa. Part I. Bull. Agric. Chem. Soc. Jpn. 1933, 9, 107–109. [Google Scholar]
  127. Das, A.J. Moringa oleifera (Lamm.): A plant with immense importance. J. Biol. Act. Prod. Nat. 2012, 2, 307–315. [Google Scholar] [CrossRef]
  128. Chacón-Morales, P.; Amaro-Luis, J.M.; Bahsas, A. Isolation and characterization of (+)-mellein, the first isocoumarin reported in Stevia genus. Avan. Quim. 2013, 8, 145–151. [Google Scholar]
  129. Hornick, A.; Lieb, A.; Vo, N.P.; Rollinger, J.M.; Stuppner, H.; Prast, H. The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic-and age-impaired memory. Neuroscience 2011, 197, 280–292. [Google Scholar] [CrossRef] [Green Version]
  130. Liu, X.L.; Zhang, L.; Fu, X.L.; Chen, K.; Qian, B.C. Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol. Sin. 2001, 22, 929–933. [Google Scholar]
  131. Yu, S.M.; Hu, D.H.; Zhang, J.J. Umbelliferone exhibits anticancer activity via the induction of apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep. 2015, 12, 3869–3873. [Google Scholar] [CrossRef] [Green Version]
  132. Shukla, S.; Gupta, S. Apigenin: A promising molecule for cancer prevention. Pharm. Res. 2010, 27, 962–978. [Google Scholar] [CrossRef]
  133. Panda, S.; Kar, A. Apigenin (4‘, 5, 7-trihydroxyflavone) regulates hyperglycaemia, thyroid dysfunction and lipid peroxidation in alloxan-induced diabetic mice. J. Pharm. Pharmacol. 2007, 59, 1543–1548. [Google Scholar] [CrossRef]
  134. Zhou, S.L.; Zhou, S.L.; Wang, M.X.; Chen, S.L. Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat. Prod. Comm. 2011, 6, 1131–1132. [Google Scholar] [CrossRef] [Green Version]
  135. Gao, Y.; Zhao, J.; Zu, Y.; Fu, Y.; Liang, L.; Luo, M.; Wang, W.; Efferth, T. Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int. 2012, 49, 147–152. [Google Scholar] [CrossRef]
  136. Tian, Y.; Amand, S.; Buisson, D.; Kunz, C.; Hachette, F.; Dupont, J.; Nay, B.; Prado, S. The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 2014, 108, 95–101. [Google Scholar] [CrossRef] [PubMed]
  137. Zhao, J.; Li, C.; Wang, W.; Zhao, C.; Luo, M.; Mu, F.; Fu, Y.; Zu, Y.; Yao, M. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] M illsp.). J. Appl. Microbiol. 2013, 115, 102–113. [Google Scholar] [CrossRef] [PubMed]
  138. Wang, J.; Yao, L.Y.; Lu, Y.H. Ceriporialacerata DMC1106, a new endophytic fungus: Isolation, identification, and optimal medium for 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone production. Biotechnol. Bioprocess Eng. 2013, 18, 669–678. [Google Scholar] [CrossRef]
  139. Seetharaman, P.; Gnanasekar, S.; Chandrasekaran, R.; Chandrakasan, G.; Kadarkarai, M.; Sivaperumal, S. Isolation and characterization of anticancer flavone chrysin (5,7-dihydroxy flavone)-producing endophytic fungi from Passiflora incarnata L. leaves. Ann. Microbiol. 2017, 67, 321–331. [Google Scholar] [CrossRef]
  140. Wang, Y.; Xu, L.; Ren, W.; Zhao, D.; Zhu, Y.; Wu, X. Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine 2012, 19, 364–368. [Google Scholar] [CrossRef]
  141. Yan, J.; Qi, N.; Wang, S.; Gadhave, K.; Yang, S. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin. Curr. Microbiol. 2014, 69, 740–744. [Google Scholar] [CrossRef]
  142. Chaturvedi, P.; Gajbhiye, S.; Roy, S.; Dudhale, R.; Chowdhary, A. Determination of Kaempferol in extracts of Fusarium chlamydosporum, an endophytic fungi of Tylophora indica (Asclepeadaceae) and its anti-microbial activity. J. Pharm. Biol. Sci. 2014, 9, 51–55. [Google Scholar]
  143. Huang, J.X.; Zhang, J.; Zhang, X.R.; Zhang, K.; Zhang, X.; He, X.R. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm. Biol. 2014, 52, 1237–1243. [Google Scholar] [CrossRef]
  144. Zhao, J.; Ma, D.; Luo, M.; Wang, W.; Zhao, C.; Zu, Y.; Fu, Y.; Wink, M. In vitro antioxidant activities and antioxidant enzyme activities in HepG2 cells and main active compounds of endophytic fungus from pigeon pea [Cajanus cajan (L.) Millsp.]. Food Res. Int. 2014, 56, 243–251. [Google Scholar] [CrossRef]
  145. Qiu, M.; Xie, R.; Shi, Y.; Zhang, H.; Chen, H. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann. Microbiol. 2010, 60, 143–150. [Google Scholar] [CrossRef]
  146. Ebada, S.S.; Eze, P.; Okoye, F.B.; Esimone, C.O.; Proksch, P. The fungal endophyte Nigrosporaoryzae produces quercetin monoglycosides previously known only from plants. ChemistrySelect 2016, 16, 2767–2771. [Google Scholar] [CrossRef]
  147. Hu, M.Y.; Zhong, G.H.; Sun, Z.T.; Sh, G.; Liu, H.M.; Liu, X.Q. Insecticidal activities of secondary metabolites of endophytic Pencillium sp. in Derris elliptica Benth. J. Appl. Entomol. 2005, 129, 413–417. [Google Scholar] [CrossRef]
  148. Fan, Y.F.; Zhan, S.F.; Chen, Y.; Gan, J.L.; Peng, Q.; Liu, Z.J.; Li, S.J. Study on endophytic fungi of Pteris multifida II: A preliminary study on a strain of Rutin-producing endophytic fungi. J. Fung. Res. 2007, 4, 008. [Google Scholar]
  149. Huang, W.; Cai, Y.; Hyde, K.D.; Corke, H.; Sun, M. Endophytic fungi from Nerium oleander L (Apocynaceae): Main constituents and antioxidant activity. World J. Microbiol. Biotechnol. 2007, 23, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
  150. Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Yan, G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007, 105, 548–554. [Google Scholar] [CrossRef]
  151. Patil, M.P.; Patil, R.H.; Maheshwari, V.L. Biological activities and identification of bioactive metabolite from endophytic Aspergillus flavus L7 isolated from Aegle marmelos. Curr. Microbiol. 2015, 71, 39–48. [Google Scholar] [CrossRef]
  152. El-Elimat, T.; Raja, H.A.; Graf, T.N.; Faeth, S.H.; Cech, N.B.; Oberlies, N.H. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J. Nat. Prod. 2014, 77, 193–199. [Google Scholar] [CrossRef]
  153. Gu, C.; Ma, H.; Ning, W.; Niu, L.; Han, H.; Yuan, X.; Fu, Y. Characterization, culture medium optimization and antioxidant activity of an endophytic vitexin-producing fungus Dichotomopilus funicola Y3 from pigeon pea [Cajanus cajan (L.) Millsp.]. J. Appl. Microbiol. 2018, 125, 1054–1065. [Google Scholar] [CrossRef]
  154. Sato, F.; Matsukawa, Y.; Matsumoto, K.; Nishino, H.; Sakai, T. Apigenin induces morphological differentiation and G2-M arrest in rat neuronal cells. Biochem. Biophys. Res. Comm. 1994, 204, 578–584. [Google Scholar] [CrossRef] [PubMed]
  155. Viola, H.; Wasowski, C.; Levi de Stein, M.; Wolfman, C.; Silveira, R.; Dajas, F.; Medina, J.H.; Paladini, A.C. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med. 1995, 61, 213–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  156. Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Luo, M.; Liu, X.; Zu, Y.; Fu, Y.; Zhang, S.; Yao, L.; Efferth, T. Cajanol, a novel anticancer agent from pigeonpea [Cajanus cajan (L.) Millsp.] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chem. Biol. Interact. 2010, 188, 151–160. [Google Scholar] [CrossRef] [PubMed]
  158. Fadus, M.C.; Lau, C.; Bikhchandani, J.; Lynch, H.T. Curcumin: An age-old anti-inflammatory and anti-neoplastic agent. J. Tradit. Complement. Med. 2017, 7, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  159. Hassan, F.U.; Rehman, M.S.; Khan, M.S.; Ali, M.A.; Javed, A.; Nawaz, A.; Yang, C. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet. 2019, 10, 514. [Google Scholar] [CrossRef] [Green Version]
  160. Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [Green Version]
  161. Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [Green Version]
  162. Lopez-Lazaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
  163. Kim, J.M.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458–2461. [Google Scholar] [CrossRef]
  164. Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci. Rep. 2016, 6, 24049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  165. Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
  166. Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of quercetin, a polyphenol, on blood pressure. Molecules 2017, 22, 209. [Google Scholar] [CrossRef] [PubMed]
  167. Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more. Oxid. Med. Cell. Longev. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
  168. Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  169. Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidat. Med. Cell. Long. 2018, 17, 6241017. [Google Scholar] [CrossRef] [PubMed]
  170. Ramasamy, K.; Agarwal, R. Multitargeted therapy of cancer by silymarin. Cancer Lett. 2008, 269, 352–362. [Google Scholar] [CrossRef] [Green Version]
  171. Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, Á.; Esquivel-Soto, J.; Esquivel-Chirino, C.; y González-Rubio, M.G.L.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective effect of silymarin. World J. Hepatol. 2014, 6, 144–149. [Google Scholar] [CrossRef]
  172. Dixit, N.; Baboota, S.; Kohli, K.; Ahmad, S.; Ali, J. Silymarin: A review of pharmacological aspects and bioavailability enhancement approaches. Indian J. Pharmacol. 2007, 39, 172. [Google Scholar] [CrossRef] [Green Version]
  173. Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran. J. Basic Med. Sci. 2011, 14, 308. [Google Scholar]
  174. He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
  175. Chapela, I.H.; Petrini, O.; Hagmann, L. Monolignol glucosides as specific recognition messengers in fungus-plant symbioses. Physiol. Mol. Plant Pathol. 1991, 39, 289–298. [Google Scholar] [CrossRef]
  176. Kong, P.; Zhang, L.; Guo, Y.; Lu, Y.; Lin, D. Phillyrin, a natural lignan, attenuates tumor necrosis factor α-mediated insulin resistance and lipolytic acceleration in 3T3-L1 adipocytes. Planta Med. 2014, 80, 880–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  177. Zhang, Q.; Wei, X.; Wang, J. Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 2012, 83, 1500–1505. [Google Scholar] [CrossRef] [PubMed]
  178. Yang, X.; Guo, S.; Zhang, L.; Shao, H. Select of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat. Prod. Res. Dev. 2003, 15, 419–422. [Google Scholar]
  179. Zeng, S.; Shao, H.; Zhang, L. An endophytic fungus producing a substance analogous to podophyllotoxin isolated from Diphylleia sinensis. J. Microbiol. 2004, 24, 1–2. [Google Scholar]
  180. Lu, L.; He, J.; Yu, X.; Li, G.; Zhang, X. Studies on isolation and identification of endophytic fungi strain SC13 from pharmaceutical plant Sabina vulgaris Ant. and metabolites. Acta Agric. Boreali-Occident. Sin. 2006, 15, 85–89. [Google Scholar]
  181. Eyberger, A.L.; Dondapati, R.; Porter, J.R. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J. Nat. Prod. 2006, 69, 1121–1124. [Google Scholar] [CrossRef]
  182. Puri, S.C.; Nazir, A.; Chawla, R.; Arora, R.; Riyaz-ul-Hasan, S.; Amna, T.; Ahmed, B.; Verma, V.; Singh, S.; Sagar, R.; et al. The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J. Biotechnol. 2006, 122, 494–510. [Google Scholar] [CrossRef]
  183. Cao, L.; Huang, J.; Li, J. Fermentation conditions of Sinopodophyllumhexandrum endophytic fungus on production of podophyllotoxin. Food Ferment. Ind. 2007, 33, 28–32. [Google Scholar]
  184. Kour, A.; Shawl, A.S.; Rehman, S.; Sultan, P.; Qazi, P.H.; Suden, P.; Khajuria, R.K.; Verma, V. Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World. J. Microbiol. Biotechnol. 2008, 24, 1115–1121. [Google Scholar] [CrossRef]
  185. Kusari, S.; Lamshöft, M.; Spiteller, M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J. Appl. Mmicrobiol. 2009, 107, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
  186. Nadeem, M.; Mauji, R.; Pravej, A.; Ahmad, M.M.; Mohammad, A.; Qurainy, F.A.; Khan, S.; Abdin, M.Z. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. Afr. J. Microbiol. Res. 2012, 6, 2493–2499. [Google Scholar]
  187. Arneaud, S.L.; Porter, J.R. Investigation and expression of the secoisolariciresinol dehydrogenase gene involved in podophyllotoxin biosynthesis. Mol. Biotechnol. 2015, 57, 961–973. [Google Scholar] [CrossRef]
  188. Liang, Z.; Zhang, J.; Zhang, X.; Li, J.; Zhang, X.; Zhao, C. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces Podophyllotoxin. J. Chromatogr. Sci. 2016, 54, 175–178. [Google Scholar]
  189. Tan, X.; Zhou, Y.; Zhou, X.; Xia, X.; Wei, Y.; He, L.; Tang, H.; Yu, L. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci. Rep. 2018, 8, 5929. [Google Scholar] [CrossRef]
  190. Cheng, M.J.; Wu, M.D.; Chen, J.J.; Hsieh, S.Y.; Yuan, G.F.; Chen, I.S.; Chang, C.W. Secondary metabolites from the endophytic fungus of Annulohypoxylon ilanense. Chem. Nat. Compd. 2013, 49, 523–525. [Google Scholar] [CrossRef]
  191. Krishnan, S.S.C.; Subramanian, I.P.; Subramanian, S.P. Isolation, characterization of syringin, phenylpropanoid glycoside from Musa paradisiaca tepal extract and evaluation of its antidiabetic effect in streptozotocin-induced diabetic rats. Biomed. Prev. Nutr. 2014, 4, 105–111. [Google Scholar] [CrossRef]
  192. Canel, C.; Moraes, R.M.; Dayan, F.E.; Ferreira, D. Podophyllotoxin. Phytochemistry 2000, 54, 115–120. [Google Scholar] [CrossRef]
  193. Zhou, L.; Cao, X.; Yang, C.; Wu, X.; Zhang, L. Endophytic fungi of Paris polyphylla var. yunnanensis and steroid analysis in the fungi. Nat. Prod. Res. Dev. 2004, 16, 198–200. [Google Scholar]
  194. Cao, X.; Li, J.; Zhou, L.; Xu, L.; Li, J.; Zhao, J. Determination of diosgenin content of the endophytic fungi from Paris polyphylla var. yunnanensis by using an optimum ELISA. Nat. Prod. Res. Dev. 2007, 19, 1020–1023. [Google Scholar]
  195. Ding, C.H.; Du, X.W.; Xu, Y.; Xu, X.M.; Mou, J.C.; Yu, D.; Wu, J.K.; Meng, F.J.; Liu, Y.; Wang, W.L.; et al. Screening for differentially expressed genes in endophytic fungus strain 39 during co-culture with herbal extract of its host Dioscorea nipponica Makino. Curr. Microbiol. 2014, 69, 517–524. [Google Scholar] [CrossRef] [PubMed]
  196. Wu, H.; Yang, H.; You, X.; Li, Y. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China. Int. J. Mol. Sci. 2012, 13, 16255–16266. [Google Scholar] [CrossRef] [PubMed]
  197. Wu, H.; Yang, H.Y.; You, X.L.; Li, Y.H. Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2013, 2, 107. [Google Scholar] [CrossRef] [Green Version]
  198. Jin, Z.; Gao, L.; Zhang, L.; Liu, T.; Yu, F.; Zhang, Z.; Guo, Q.; Wang, B. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng. Nat. Prod. Res. 2017, 31, 2700–2703. [Google Scholar] [CrossRef]
  199. Parthasarathy, R.; Sathiyabama, M. Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R. Br. Appl. Biochem. Biotechnol. 2014, 172, 3141–3152. [Google Scholar] [CrossRef]
  200. Govindappa, M.; Bharath, N.; Shruthi, H.B.; Santoyo, G. In vitro antioxidant activity and phytochemical screening of endophytic extracts of Crotalaria pallida. Free Radic. Antioxid. 2011, 1, 79–86. [Google Scholar] [CrossRef] [Green Version]
  201. Govindappa, M.; Channabasava, R.; Sowmya, D.V.; Meenakshi, J.; Shreevidya, M.R.; Lavanya, A.; Santoyo, G.; Sadananda, T.S. Phytochemical screening, antimicrobial and in vitro anti-inflammatory activity of endophytic extracts from Loranthus sp. Pharmaco. J. 2011, 3, 82–90. [Google Scholar] [CrossRef] [Green Version]
  202. Sadananda, T.S.; Nirupama, R.; Chaithra, K.; Govindappa, M.; Chandrappa, C.P.; Vinay Raghavendra, B. Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol). J. Med. Plants Res. 2011, 5, 3643–3652. [Google Scholar]
  203. Dhankhar, S.; Kumar, S.; Dhankhar, S.; Yadav, J.P. Antioxidant activity of fungal endophytes isolated from Salvadoraoleoides Decne. Int. J. Pharm. Pharm. Sci. 2012, 4, 381–385. [Google Scholar]
  204. Prabavathy, D.; Nachiyar, C. Cytotoxic potential and phytochemical analysis of Justicia beddomei and its endophytic Aspergillus sp. Asian J. Pharm. Clin. Res. 2013, 6, 159–161. [Google Scholar]
  205. Pragathi, D.; Vijaya, T.; Mouli, K.C.; Anitha, D. Diversity of fungal endophytes and their bioactive metabolites from endemic plants of Tirumala hills-Seshachalam biosphere reserve. Afr. J. Biotechnol. 2013, 12, 4317–4323. [Google Scholar]
  206. Saraswaty, V.; Srikandace, Y.; Simbiyani, N.A.; Setiyanto, H.; Udin, Z. Antioxidant activity and total phenolic content of endophytic fungus Fennellia nivea NRRL 5504. Pakistan J. Biol. Sci. 2013, 16, 1574–1578. [Google Scholar] [CrossRef] [PubMed]
  207. Karunai Selvi, B.; Balagengatharathilagam, P. Isolation and screening of endophytic fungi from medicinal plants of Virudhunagar district for antimicrobial activity. Int. J. Sci. Nat. 2014, 5, 147–155. [Google Scholar]
  208. Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014, 7, 256–261. [Google Scholar] [CrossRef] [Green Version]
  209. Nath, A.; Chattopadhyay, A.; Joshi, S.R. Biological activity of endophytic fungi of Rauwolfia serpentine Benth: An ethnomedicinal plant used in folk medicines in Northeast India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 233–240. [Google Scholar] [CrossRef]
  210. Jesus, M.; Martins, A.P.; Gallardo, E.; Silvestre, S. Diosgenin: Recent highlights on pharmacology and analytical methodology. J. Anal. Methods Chem. 2016, 2016, 1–16. [Google Scholar] [CrossRef]
  211. Gardner, D.R.; Panter, K.E.; Stegelmeier, B.L. Implication of agathic acid from Utah juniper bark as an abortifacient compound in cattle. J. Appl. Toxicol. 2010, 30, 115–119. [Google Scholar] [CrossRef]
  212. Izumi, E.; Ueda-Nakamura, T.; Veiga, V.F., Jr.; Pinto, A.C.; Nakamura, C.V. Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. J. Med. Chem. 2012, 55, 2994–3001. [Google Scholar] [CrossRef]
  213. Yuan, L.; Zhao, P.J.; Ma, J.; Lu, C.H.; Shen, Y.M. Labdane tetranorlabdane diterpenoids from Botryosphaeria sp. MHF, an endophytic fungus of Maytenus hookeri. Helv. Chim. Acta 2009, 92, 1118–1125. [Google Scholar] [CrossRef]
  214. Kamdem, R.S.; Wang, H.; Wafo, P.; Ebrahim, W.; Özkaya, F.C.; Makhloufi, G.; Janiak, C.; Sureechatchaiyan, P.; Kassack, M.U.; Lin, W.; et al. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 2018, 124, 132–136. [Google Scholar] [CrossRef] [PubMed]
  215. Yan, C.; Liu, W.; Li, J.; Deng, Y.; Chen, S.; Liu, H. Bioactive terpenoids from Santalum album derived endophytic fungus Fusarium sp. YD-2. RSC Adv. 2018, 8, 14823–14828. [Google Scholar] [CrossRef] [Green Version]
  216. Huang, W.Y.; Cai, Y.Z.; Xing, J.; Corke, H.; Sun, M. A potential antioxidant resource: Endophytic fungi from medicinal plants. Econ. Bot. 2007, 61, 14–30. [Google Scholar] [CrossRef]
  217. Gupta, S.; Bhatt, P.; Chaturvedi, P. Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World J. Microbiol. Biotechnol. 2018, 34, 111. [Google Scholar] [CrossRef] [PubMed]
  218. Kusari, S.; Verma, V.C.; Lamshoeft, M.; Spiteller, M. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J. Microbiol. Biotechnol. 2012, 28, 1287–1294. [Google Scholar] [CrossRef]
  219. Qian, Y.X.; Kang, J.C.; Luo, Y.K.; Zhao, J.J.; He, J.; Geng, K. A Bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Curr. Microbiol. 2016, 73, 280–286. [Google Scholar] [CrossRef]
  220. Chen, M.; Yang, L.; Li, Q.; Shen, Y.; Shao, A.; Lin, S.; Huang, L. Volatile metabolites analysis and molecular identification of endophytic fungi bn12 from Cinnamomum camphora var. borneol. Chin. J. Chin. Mater. Med. 2011, 36, 3217–3221. [Google Scholar]
  221. Suwannarach, N.; Kumla, J.; Bussaban, B.; Nuangmek, W.; Matsui, K.; Lumyong, S. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop. Prot. 2013, 45, 63–70. [Google Scholar] [CrossRef]
  222. Tomsheck, A.R.; Strobel, G.A.; Booth, E.; Geary, B.; Spakowicz, D.; Knighton, B.; Floerchinger, C.; Sears, J.; Liarzi, O.; Ezra, D. Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb. Ecol. 2010, 60, 903–914. [Google Scholar] [CrossRef]
  223. Hassan, S.R.; Strobel, G.A.; Geary, B.; Sears, J. An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J. Microbiol. Biotechnol. 2013, 23, 29–35. [Google Scholar] [CrossRef] [Green Version]
  224. Nigg, J.; Strobel, G.; Knighton, W.B.; Hilmer, J.; Geary, B.; Riyaz-Ul-Hassan, S.; Harper, J.K.; Valenti, D.; Wang, Y. Functionalized para-substituted benzenes as 1, 8-cineole production modulators in an endophytic Nodulisporium species. Microbiology 2014, 160, 1772–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  225. Wang, K.Y.; Strobel, G.A.; Yan, D.H. The production of 1, 8-cineole, a potential biofuel, from an endophytic strain of Annulohypoxylon sp. FPYF3050 when grown on agricultural residues. J. Sustain. Bioenergy Syst. 2017, 7, 65–84. [Google Scholar] [CrossRef] [Green Version]
  226. Cui, Y.; Yi, D.; Bai, X.; Sun, B.; Zhao, Y.; Zhang, Y. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba. Fitoterapia 2012, 83, 913–920. [Google Scholar] [CrossRef] [PubMed]
  227. Wu, M.D.; Cheng, M.J.; Chen, I.S.; Su, Y.S.; Hsieh, S.Y.; Chang, H.S.; Chang, C.W.; Yuan, G.F. Phytochemical investigation of Annulohypoxylon ilanense, an endophytic fungus derived from Cinnamomum species. Chem. Biodivers. 2013, 10, 493–505. [Google Scholar] [CrossRef] [PubMed]
  228. Caruso, M.; Colombo, A.L.; Fedeli, L.; Pavesi, A.; Quaroni, S.; Saracchi, M.; Ventrella, G. Isolation of endophytic fungi and actinomycetes taxane producers. Ann. Microbiol. 2000, 50, 3–14. [Google Scholar]
  229. Staniek, A.; Woerdenbag, H.J.; Kayser, O. Screening the endophytic flora of Wollemia nobilis for alternative paclitaxel sources. J. Plant Interact. 2010, 5, 189–195. [Google Scholar] [CrossRef] [Green Version]
  230. Qiu, D.; Huang, M.; Fang, X.; Zhu, C.; Zhu, Z. Isolation of an endophytic fungus associated with Taxus yunnanensis Cheng et LK Fu. Acta Mycol. Sin. 1994, 13, 314. [Google Scholar]
  231. Li, J.Y.; Strobel, G.A.; Sidhu, R.; Hess, W.M.; Ford, E.J. Endophytitaxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 1996, 142, 2223–2226. [Google Scholar] [CrossRef] [Green Version]
  232. Strobel, G.A.; Hess, W.M.; Ford, E.; Sidhu, R.S.; Yang, X. Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. Biotechnol. 1996, 17, 417–423. [Google Scholar] [CrossRef]
  233. Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 435–440. [Google Scholar] [CrossRef] [Green Version]
  234. Strobel, G.A.; Hess, W.M.; Li, J.Y.; Ford, E.; Sears, J.; Sidhu, R.S.; Summerell, B. Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis. Aust. J. Bot. 1997, 45, 1073–1082. [Google Scholar] [CrossRef]
  235. Li, J.Y.; Sidhu, R.S.; Ford, E.J.; Long, D.M.; Hess, W.M.; Strobel, G.A. The induction of taxol production in the endophytic fungus-Periconia sp. from Torreya grandifolia. J. Ind. Microbiol. Biotechnol. 1998, 20, 259–264. [Google Scholar] [CrossRef]
  236. Bashyal, B. Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallachiana). Mycotaxon 1999, 72, 33–42. [Google Scholar]
  237. Kim, S.U.; Strobel, G.A.; Ford, E. Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea. Agric. Chem. Biotechnol. 1999, 42, 97–99. [Google Scholar]
  238. Stierle, A.; Stierle, D.; Stierle, S. Bioactive compounds from four endophytic Penicillium sp. of a northwest pacific yew tree. Nat. Prod. Chem. 2000, 24, 933–977. [Google Scholar]
  239. Wang, J.; Li, G.; Lu, H.; Zheng, Z.; Huang, Y.; Su, W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 2000, 193, 249–253. [Google Scholar] [CrossRef] [Green Version]
  240. Strobel, G.A.; Hess, W.M.; Baird, G.; Ford, E.; Li, J.Y.; Sidhu, R.S. Stegolerium kukenani gen. et sp. nov. an endophytic, taxol producing fungus from the Roraima and Kukenan tepuis of Venezuela. Mycotaxon 2001, 78, 353–361. [Google Scholar]
  241. Wan, B.; Li, A.M.; Wang, X.L. Separation of a fungus producing taxol. Sci. China Ser. C 2001, 44, 156–160. [Google Scholar] [CrossRef] [Green Version]
  242. Shrestha, K.; Strobel, G.A.; Shrivastava, S.P.; Gewali, M.B. Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepal. Planta Med. 2001, 67, 374–376. [Google Scholar] [CrossRef]
  243. Zhao, K.; Zhou, D.P.; Ping, W.X.; Ge, J. Study on the preparation and regeneration of protoplast from taxol-producing fungus Nodulisporium sylviforme. Nat. Sci. 2004, 2, 52–59. [Google Scholar]
  244. Guo, B.H.; Wang, Y.C.; Zhou, X.W.; Hu, K.; Tan, F.; Miao, Z.Q.; Tang, K.X. An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 2006, 5, 875–877. [Google Scholar]
  245. Hu, K.; Tan, F.; Tang, K.; Zhu, S.; Wang, W. Isolation and screening of endophytic fungi synthesizing taxol from Taxus chinensis var. mairei. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2006, 31, 134–137. [Google Scholar]
  246. Liu, J.J.; Gong, H.X.; Yang, D.L.; Chen, S.J.; Yang, L. Study on endophytic fungi producing taxol isolated from Taxus yunnanensis. Prog. Mod. Biomed. 2006, 6, 53–55. [Google Scholar]
  247. Xu, F.; Tao, W.; Chang, L.; Guo, L. Strain improvement and optimization of the media of taxol-producing fungus Fusarium mairei. Biochem. Eng. J. 2006, 31, 67–73. [Google Scholar] [CrossRef]
  248. Gangadevi, V.; Muthumary, J. Endophytic fungal diversity from young, mature and senescent leaves of Ocimum basilicum L. with special reference to taxol production. Indian J. Sci. Technol. 2007, 1, 1–12. [Google Scholar] [CrossRef]
  249. Zhou, X.; Wang, Z.; Jiang, K.; Wei, Y.; Lin, J.; Sun, X.; Tang, K. Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Appl. Biochem. Microbiol. 2007, 43, 439–443. [Google Scholar] [CrossRef]
  250. Chakravarthi, B.V.; Das, P.; Surendranath, K.; Karande, A.A.; Jayabaskaran, C. Production of paclitaxel by Fusarium solani isolated from Taxus celebica. J. Biosci. 2008, 33, 259–267. [Google Scholar] [CrossRef]
  251. Gangadevi, V.; Murugan, M.; Muthumary, J. Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin. J. Biotechnol. 2008, 24, 1433–1438. [Google Scholar] [CrossRef]
  252. Gangadevi, V.; Muthumary, J. Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J. Microbiol. Biotechnol. 2008, 24, 717–724. [Google Scholar] [CrossRef]
  253. Gangadevi, V.; Muthumary, J. Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol. Balc. 2008, 5, 1–4. [Google Scholar]
  254. Gogoi, D.K.; Deka Boruah, H.P.; Saikia, R.; Bora, T.C. Optimization of process parameters for improved production of bioactive metabolite by a novel endophytic fungus Fusarium sp. DF2 isolated from Taxus wallichiana of North East India. World J. Microbiol. Biotechnol. 2008, 24, 79–87. [Google Scholar] [CrossRef]
  255. Kumaran, R.S.; Muthumary, J.; Hur, B.K. Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J. Biosci. Bioeng. 2008, 106, 103–106. [Google Scholar] [CrossRef] [PubMed]
  256. Kumaran, R.S.; Muthumary, J.; Hur, B.K. Isolation and identification of taxol, an anticancer drug from Phyllosticta melochiae Yates, an endophytic fungus of Melochia corchorifolia L. Food Sci. Biotechnol. 2008, 17, 1246–1253. [Google Scholar]
  257. Kumaran, R.S.; Muthumary, J.; Hur, B. Production of taxol from Phyllosticta spinarum, an endophytic fungus of Cupressus sp. Eng. Life Sci. 2008, 8, 438–446. [Google Scholar] [CrossRef]
  258. Li, C.T.; Li, Y.; Wang, Q.J.; Sung, C.K. Taxol production by Fusarium arthrosporioides isolated from yew, Taxus cuspidata. J. Med. Biochem. 2008, 27, 454–458. [Google Scholar] [CrossRef] [Green Version]
  259. Sun, D.; Ran, X.; Wang, J. Isolation and identification of a taxol producing endophytic fungus from Podocarpus. Acta Microbiol. Sin. 2008, 48, 589–595. [Google Scholar]
  260. Venkatachalam, R.; Subban, K.; Paul, M.J. Taxol from Botryodiplodia theobromae (BT 115)-an endophytic fungus of Taxus baccata. J. Biotechnol. 2008, 136, 189–190. [Google Scholar] [CrossRef]
  261. Zhao, K.; Zhao, L.; Jin, Y.; Wei, H.; Ping, W.; Zhou, D. Isolation of a taxol-producing endophytic fungus and inhibiting effect of the fungus metabolites on HeLa cell. Mycosystema 2008, 27, 735–744. [Google Scholar]
  262. Deng, B.W.; Liu, K.H.; Chen, W.Q.; Ding, X.W.; Xie, X.C. Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J. Microb. Biotechnol. 2009, 25, 139–143. [Google Scholar] [CrossRef]
  263. Gangadevi, V.; Muthumary, J. A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl. Biochem. Biotechnol. 2009, 158, 675–684. [Google Scholar] [CrossRef]
  264. Gangadevi, V.; Muthumary, J. Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol. Appl. Biochem. 2009, 52, 9–15. [Google Scholar] [CrossRef]
  265. Kumaran, R.S.; Hur, B.K. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol. Appl. Biochem. 2009, 54, 21–30. [Google Scholar] [CrossRef] [PubMed]
  266. Kumaran, R.S.; Muthumary, J.; Kim, E.K.; Hur, B.K. Production of taxol from Phyllosticta dioscoreae, a leaf spot fungus isolated from Hibiscus rosa-sinensis. Biotechnol. Bioprocess 2009, 14, 76–83. [Google Scholar] [CrossRef]
  267. Liu, K.; Ding, X.; Deng, B.; Chen, W. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J. Ind. Microbiol. Biotechnol. 2009, 36, 1171–1177. [Google Scholar] [CrossRef] [PubMed]
  268. Miao, Z.; Wang, Y.; Yu, X.; Guo, B.; Tang, K. A new endophytic taxane production fungus from Taxus chinensis. Appl. Biochem. Microbiol. 2009, 45, 81–86. [Google Scholar] [CrossRef]
  269. Nithya, K.; Muthumary, J. Growth studies of Colletotrichum gloeosporioides (Penz.) Sacc.—A taxol producing endophytic fungus from Plumeria acutifolia. Indian J. Sci. Technol. 2009, 2, 14–19. [Google Scholar] [CrossRef]
  270. Sreekanth, D.; Syed, A.; Sarkar, S.; Sarkar, D.; Santhakumari, B.; Ahmad, A.; Khan, I. Production, purification and characterization of taxol and 10DAB III from a new endophytic fungus Gliocladium sp. isolated from the Indian yew tree, Taxus baccata. J. Microbiol. Biotechnol. 2009, 19, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
  271. Srinivasan, K.; Muthumary, J. Taxol production from Pestalotiopsis sp. an endophytic fungus isolated from Catharanthus roseus. J. Ecobiotechnol. 2009, 1, 28–31. [Google Scholar]
  272. Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol. Lett. 2009, 293, 155–159. [Google Scholar] [CrossRef] [Green Version]
  273. Zhang, P.; Zhou, P.P.; Yu, L.J. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr. Microbiol. 2009, 59, 227–232. [Google Scholar] [CrossRef]
  274. Zhao, K.; Ping, W.; Li, Q.; Hao, S.; Zhao, L.; Gao, T.; Zhou, D. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J. Appl. Microbiol. 2009, 107, 1202–1207. [Google Scholar] [CrossRef]
  275. Zhou, X.; Zheng, W.; Zhu, H. Identification of a taxol-producing endophytic fungus EFY-36. Afr. J. Biotechnol. 2009, 8, 2623–2625. [Google Scholar]
  276. Kumaran, R.S.; Kim, H.J.; Hur, B.K. Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J. Biosci. Bioeng. 2010, 110, 541–546. [Google Scholar] [CrossRef] [PubMed]
  277. Vennila, R.; Thirunavukkarasu, S.V.; Muthumary, J. In-vivo studies on anticancer activity of taxol isolated from an endophytic fungus Pestalotiopsis pauciseta Sacc. VM1. Asian J. Pharm. Clin. Res. 2010, 3, 30–34. [Google Scholar]
  278. Pandi, M.; Kumaran, R.S.; Choi, Y.K.; Kim, H.J.; Muthumary, J. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr. J. Biotechnol. 2011, 10, 1428–1435. [Google Scholar]
  279. Soca-Chafre, G.; Rivera-Orduña, F.N.; Hidalgo-Lara, M.E.; Hernandez-Rodriguez, C.; Marsch, R.; Flores-Cotera, L.B. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol. 2011, 115, 143–156. [Google Scholar] [CrossRef]
  280. Soliman, S.S.M.; Tsao, R.; Raizada, M.N. Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J. Nat. Prod. 2011, 74, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
  281. Wang, Y.; Tang, K. A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 2011, 10, 16379–16386. [Google Scholar]
  282. Mirjalili, M.H.; Farzaneh, M.; Bonfill, M.; Rezadoost, H.; Ghassempour, A. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol. Lett. 2012, 328, 122–129. [Google Scholar] [CrossRef] [Green Version]
  283. Senthilkumar, N.; Murugesan, S.; Mohan, V.; Muthumary, J. Taxol producing fungal endophyte, Colletotrichum gleospoiroides (Penz.) from Tectona grandis L. Curr. Biotica. 2013, 7, 8–15. [Google Scholar]
  284. Wu, L.S.; Hu, C.L.; Han, T.; Zheng, C.J.; Ma, X.Q.; Rahman, K.; Qin, L.P. Cytotoxic metabolites from Perenniporiatephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl. Microbiol. Biotechnol. 2013, 97, 305–315. [Google Scholar] [CrossRef] [PubMed]
  285. Xiong, Z.Q.; Yang, Y.Y.; Zhao, N.; Wang, Y. Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol. 2013, 13, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  286. Kumaran, R.S.; Choi, Y.K.; Lee, S.; Jeon, H.J.; Jung, H.; Kim, H.J. Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr. J. Biotechnol. 2014, 11, 950–960. [Google Scholar]
  287. Michalczyk, A.; Cieniecka-Rosłonkiewicz, A.; Cholewińska, M. Plant endophytic fungi as a source of paclitaxel. Herba Pol. J. 2014, 60, 22–33. [Google Scholar] [CrossRef] [Green Version]
  288. Raj, K.G.; Rajapriya, P.; Muthumary, J.; Pandi, M. Molecular identification and characterization of the taxol-producing Colletotrichum gloeosporioides from Moringa oleifera Linn. In Microbial Diversity and Biotechnology in Food Security; Kharwar, R.N., Upadhyay, R., Dubey, N., Raghuwanshi, R., Eds.; Springer: New Delhi, India, 2014; pp. 111–120. [Google Scholar]
  289. Wang, Y.; Ma, Z.; Hu, F.; Fan, M.; Li, Z. Isolation and screening of endophytic fungi producing taxol from Taxus chinensis of Huangshan. Nat. Prod. Res. Dev. 2014, 26, 1624–1627. [Google Scholar]
  290. Yang, Y.; Zhao, H.; Barrero, R.A.; Zhang, B.; Sun, G.; Wilson, I.W.; Xie, F.; Walker, K.D.; Parks, J.W.; Bruce, R.; et al. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom. 2014, 15, 69. [Google Scholar] [CrossRef] [Green Version]
  291. Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
  292. Zhao, J.; Shan, T.; Mou, Y.; Zhou, L. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 2011, 11, 159–168. [Google Scholar] [CrossRef]
  293. Sathiyabama, M.; Parthasarathy, R. Withanolide production by fungal endophyte isolated from Withania somnifera. Nat. Prod. Res. 2018, 32, 1573–1577. [Google Scholar] [CrossRef]
  294. Nibret, E.; Youns, M.; Krauth-Siegel, R.L.; Wink, M. Biological activities of xanthatin from Xanthium strumarium leaves. Phytother. Res. 2011, 25, 1883–1890. [Google Scholar] [CrossRef]
  295. Xu, L.L.; Han, T.; Wu, J.Z.; Zhang, Q.Y.; Zhang, H.; Huang, B.K.; Rahman, K.; Qin, L.P. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 2009, 16, 609–616. [Google Scholar] [CrossRef] [PubMed]
  296. Woodrow, C.J.; Haynes, R.K.; Krishna, S. Artemisinins. Postgrad Med. J. 2005, 81, 71–78. [Google Scholar] [CrossRef] [PubMed]
  297. Q&A on Artemisinin Resistance. Available online: https://www.who.int/malaria/media/artemisinin_resistance_qa/en/ (accessed on 17 September 2020).
  298. Das, A.K. Anticancer effect of antimalarial artemisinin compounds. Ann. Med. Health Sci. Res. 2015, 5, 93–102. [Google Scholar] [CrossRef] [PubMed]
  299. O’neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin—The debate continues. Molecules 2010, 15, 1705–1721. [Google Scholar] [CrossRef] [PubMed]
  300. Bridgford, J.L.; Xie, S.C.; Cobbold, S.A.; Pasaje, C.F.; Herrmann, S.; Yang, T.; Gillett, D.L.; Dick, L.R.; Ralph, S.A.; Dogovski, C.; et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
  301. Usai, S.; Grazzi, L.; Bussone, G. Gingkolide B as migraine preventive treatment in young age: Results at 1-year follow-up. Neurol. Sci. 2011, 1, 197–199. [Google Scholar] [CrossRef] [Green Version]
  302. Nutrition Business Journal Annual Report. Nutr. Bus. J. 2012. Available online: http://nutritionbusinessjournal.com/ (accessed on 9 December 2014).
  303. Kiewert, C.; Kumar, V.; Hildmann, O.; Hartmann, J.; Hillert, M.; Klein, J. Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide. Brain Res. 2008, 27, 143–150. [Google Scholar] [CrossRef]
  304. Michelle, G.; Sharron, D. Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats. Behav. Pharmacol. 2013, 24, 298–306. [Google Scholar]
  305. Baker, M.A.; Demoret, R.M.; Ohtawa, M.; Shenvi, R.A. Concise asymmetric synthesis of (−)-bilobalide. Nature 2019, 575, 643–646. [Google Scholar] [CrossRef]
  306. Guo, M.; Suo, Y.; Gao, Q.; Du, H.; Zeng, W.; Wang, Y.; Hu, X.; Jiang, X. The protective mechanism of Ginkgolides and Ginkgo flavonoids on the TNF-α induced apoptosis of rat hippocampal neurons and its mechanisms in vitro. Heliyon 2015, 1, e00020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  307. Feng, Z.; Sun, Q.; Chen, W.; Bai, Y.; Hu, D.; Xie, X. The neuroprotective mechanisms of ginkgolides and bilobalide in cerebral ischemic injury: A literature review. Mol. Med. 2019, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
  308. Wani, M.C.; Horwitz, S.B. Nature as a remarkable chemist: A personal story of the discovery and development of Taxol. Anticancer Drugs 2014, 25, 482–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  309. Brito, D.A.; Yang, Z.; Rieder, C.L. Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied. J. Cell Biol. 2008, 182, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  310. Wang, Q.; Fu, Y.; Gao, J.; Wang, Y.; Li, X.; Zhang, A. Preliminary isolation and screening of the endophytic fungi from Melia azedarach L. Acta Agric. Boreali-Occident. Sin. 2007, 16, 224–227. [Google Scholar]
  311. Jin, Y.H.; Kwon, S.; Choi, J.G.; Cho, W.K.; Lee, B.; Ma, J.Y. Toosendanin from Melia fructus suppresses influenza a virus infection by altering nuclear localization of viral polymerase PA protein. Front. Pharmacol. 2019, 10, 25. [Google Scholar] [CrossRef]
  312. Zhang, T.; Li, J.; Yin, F.; Lin, B.; Wang, Z.; Xu, J.; Wang, H.; Zuo, D.; Wang, G.; Hua, Y.; et al. Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3. Oncogene 2017, 36, 6627–6639. [Google Scholar] [CrossRef] [Green Version]
  313. Zhang, S.; Cao, L.; Wang, Z.; Li, Z.; Ma, J. Anti-cancer effect of toosendanin and its underlying mechanisms. J. Asian Nat. Prod. Res. 2019, 21, 270–283. [Google Scholar] [CrossRef]
  314. Gao, T.; Xie, A.; Liu, X.; Zhan, H.; Zeng, J.; Dai, M.; Zhang, B. Toosendanin induces the apoptosis of human Ewing’s sarcoma cells via the mitochondrial apoptotic pathway. Mol. Med. Rep. 2019, 20, 135–140. [Google Scholar] [CrossRef] [Green Version]
  315. Kovács, A.; Vasas, A.; Forgo, P.; Réthy, B.; Zupkó, I.; Hohmann, J. Xanthanolides with antitumour activity from Xanthium italicum. Z. Naturforsch. C 2009, 64, 343–349. [Google Scholar] [CrossRef]
  316. Sun, P.; Huo, J.; Kurtan, T.; Mandi, A.; Antus, S.; Tang, H.; Draeger, S.; Schulz, B.; Hussain, H.; Krohn, K.; et al. Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp. Chirality 2013, 25, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  317. Yang, Y.; Yan, Y.M.; Wei, W.; Luo, J.; Zhang, L.S.; Zhou, X.J.; Wang, P.C.; Yang, Y.X.; Cheng, Y.X. Anthraquinone derivatives from Rumex plants and endophytic Aspergillus fumigatus and their effects on diabetic nephropathy. Bioorg. Medicin. Chem. Lett. 2013, 23, 3905–3909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  318. Jayasuriya, H.; Koonchanok, N.M.; Geahlen, R.L.; McLaughlin, J.L.; Chang, C.J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J. Nat. Prod. 1992, 55, 696–698. [Google Scholar] [CrossRef] [PubMed]
  319. Marinho, A.M.; Rodrigues-Filho, E.; Moitinho, M.D.; Santos, L.S. Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J. Braz. Chem. Soc. 2005, 16, 280–283. [Google Scholar] [CrossRef] [Green Version]
  320. Liu, F.; Cai, X.L.; Yang, H.; Xia, X.K.; Guo, Z.Y.; Yuan, J.; Li, M.F.; She, Z.G.; Lin, Y.C. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med. 2010, 76, 185–189. [Google Scholar] [CrossRef] [Green Version]
  321. Hawas, U.W.; El-Beih, A.A.; El-Halawany, A.M. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch. Pharm. Res. 2012, 35, 1749–1756. [Google Scholar] [CrossRef]
  322. You, X.; Feng, S.; Luo, S.; Cong, D.; Yu, Z.; Yang, Z.; Zhang, J. Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 2013, 85, 161–168. [Google Scholar] [CrossRef]
  323. Zin, W.W.; Buttachon, S.; Dethoup, T.; Pereira, J.A.; Gales, L.; Inacio, A.; Costa, P.M.; Lee, M.; Sekeroglu, N.; Silva, A.M.; et al. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 2017, 141, 86–97. [Google Scholar] [CrossRef]
  324. Vigneshwari, A.; Rakk, D.; Németh, A.; Kocsubé, S.; Kiss, N.; Csupor, D. Host metabolite producing endophytic fungi isolated from Hypericum perforatum. PLoS ONE 2019, 14, e0217060. [Google Scholar] [CrossRef]
  325. Chomcheon, P.; Wiyakrutta, S.; Sriubolmas, N.; Ngamrojanavanich, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Metabolites from the endophytic mitosporic Dothideomycete sp. LRUB20. Phytochemistry 2009, 70, 121–127. [Google Scholar] [CrossRef]
  326. Kusari, S.; Lamshöft, M.; Zühlke, S.; Spiteller, M. An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod. 2008, 71, 159–162. [Google Scholar] [CrossRef] [PubMed]
  327. Kusari, S.; Zühlke, S.; Kosuth, J.; Cellárová, E.; Spiteller, M. Light independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. J. Nat. Prod. 2009, 72, 1825–1835. [Google Scholar] [CrossRef]
  328. Channabasava, R.; Govindappa, M. First report of anticancer agent, lapachol producing endophyte, Aspergillus niger of Tabebuia argentea and its in vitro cytotoxicity assays. Bangladesh J. Pharmacol. 2014, 9, 129–139. [Google Scholar] [CrossRef] [Green Version]
  329. Sarang, H.; Rajani, P.; Vasanthakumari, M.M.; Kumara, P.M.; Siva, R.; Ravikanth, G.; Shaanker, R.U. An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie Van Leeuwenhoek 2017, 110, 853–862. [Google Scholar] [CrossRef]
  330. Borges, W.D.; Pupo, M.T. Novel anthraquinone derivatives produced by Phoma sorghina, an endophyte found in association with the medicinal plant Tithonia diversifolia (Asteraceae). J. Braz. Chem. Soc. 2006, 17, 929–934. [Google Scholar] [CrossRef]
  331. Liu, J.Y.; Song, Y.C.; Zhang, Z.; Wang, L.; Guo, Z.J.; Zou, W.X.; Tan, R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol. 2004, 114, 279–287. [Google Scholar] [CrossRef] [PubMed]
  332. Ge, H.M.; Song, Y.C.; Shan, C.Y.; Ye, Y.H.; Tan, R.X. New and cytotoxic anthraquinones from Pleospora sp. IFB-E006, an endophytic fungus in Imperata cylindrical. Planta Med. 2005, 71, 1063–1065. [Google Scholar] [CrossRef] [Green Version]
  333. Wang, F.W.; Hou, Z.M.; Wang, C.R.; Li, P.; Shi, D.H. Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J. Microbiol. Biotechnol. 2008, 24, 2143–2147. [Google Scholar] [CrossRef]
  334. Wu, S.H.; Chen, Y.W.; Qin, S.; Huang, R. A new spiroketal from Aspergillus terreus, an endophytic fungus in Opuntia ficus-indica Mill. J. Basic Microbiol. 2008, 48, 140–142. [Google Scholar] [CrossRef]
  335. Zhang, Q.; Guo, W.J.; Fu, C.L.; Ma, S.; Zhu, M.Q. Chemical constituents from an endophyte, Cercosporella sp. Chem. Nat. Compd. 2013, 49, 117–118. [Google Scholar] [CrossRef]
  336. Law, K.K.; Chan, T.L.; Tam, S.W.; Shatin, N.T. Synthesis of pinselic acid and pinselin. J. Org. Chem. 1979, 44, 4452–4453. [Google Scholar] [CrossRef]
  337. Song, X.Q.; Zhang, X.; Han, Q.J.; Li, X.B.; Li, G.; Li, R.J.; Jiao, Y.; Zhou, J.C.; Lou, H.X. Xanthone derivatives from Aspergillus sydowii, an endophytic fungus from the liverwort Scapania ciliata S. Lac and their immunosuppressive activities. Phytochem. Lett. 2013, 6, 318–321. [Google Scholar] [CrossRef]
  338. Yang, H.Y.; Gao, Y.H.; Niu, D.Y.; Yang, L.Y.; Gao, X.M.; Du, G.; Hu, Q.F. Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Fitoterapia 2013, 1, 189–193. [Google Scholar] [CrossRef]
  339. Yuan, L.; Huang, W.; Du, G.; Gao, X.; Yang, H.; Hu, Q.; Ma, Y. Isolation of Xanthones from the Fermentation Products of the Endophytic Fungus of Phomopsis amygdali. Chem. Nat. Compd. 2015, 51, 460–463. [Google Scholar] [CrossRef]
  340. Liu, H.; Chen, S.; Liu, W.; Liu, Y.; Huang, X.; She, Z. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Drugs 2016, 14, 217. [Google Scholar] [CrossRef] [Green Version]
  341. Venkateswarulu, N.; Shameer, S.; Bramhachari, P.V.; Basha, S.T.; Nagaraju, C.; Vijaya, T. Isolation and characterization of plumbagin (5-hydroxyl-2-methylnaptalene-1, 4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol. Rep. 2018, 20, e00282. [Google Scholar] [CrossRef]
  342. Li, D.L.; Li, X.M.; Wang, B.G. Natural anthraquinone derivatives from a marine mangrove plant-derived endophytic fungus Eurotium rubrum, structural elucidation and DPPH radical scavenging activity. J. Microbiol. Biotechnol. 2009, 19, 675–680. [Google Scholar] [PubMed]
  343. Du, F.Y.; Li, X.M.; Song, J.Y.; Li, C.S.; Wang, B.G. Anthraquinone derivatives and an orsellinic acid ester from the marine alga-derived endophytic fungus Eurotium cristatum EN-220. Helv. Chim. Acta 2014, 97, 973–978. [Google Scholar] [CrossRef]
  344. Ren-Yi, G.; Lei, X.; Yi, K.; Iii-Ming, C.; Jian-Chun, Q.; Li, L.; Sheng-Xiang, Y.; Li-Chun, Z. Chaetominine, (+)-alantrypinone, questin, isorhodoptilometrin, and 4-hydroxybenzaldehyde produced by the endophytic fungus Aspergillus sp. YL-6 inhibit wheat (Triticum aestivum) and radish (Raphanus sativus) germination. J. Plant Interact. 2015, 10, 87–92. [Google Scholar] [CrossRef] [Green Version]
  345. Xia, X.; Kim, S.; Bang, S.; Lee, H.J.; Liu, C.; Park, C.I.; Shim, S.H. Barceloneic acid C, a new polyketide from an endophytic fungus Phoma sp. JS752 and its antibacterial activities. J. Antibiot. 2015, 68, 139–141. [Google Scholar] [CrossRef]
  346. Hammerschmidt, L.; Wray, V.; Lin, W.; Kamilova, E.; Proksch, P.; Aly, A.H. New styrylpyrones from the fungal endophyte Penicillium glabrum isolated from Punica granatum. Phytochem. Lett. 2012, 5, 600–603. [Google Scholar] [CrossRef]
  347. Dzoyem, J.P.; Melong, R.; Tsamo, A.T.; Maffo, T.; Kapche, D.G.; Ngadjui, B.T.; McGaw, L.J.; Eloff, J.N. Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev. Brasil. Farm 2017, 27, 251–253. [Google Scholar] [CrossRef]
  348. Movahhedin, N.; Albadry, M.; Hamann, M.T. Isolation and characterization of cytotxic compounds from endophytes of an endangered American cactus, Mammillaria hahniana. Planta Med. 2014, 80, PD136. [Google Scholar] [CrossRef]
  349. Mollaei, S.; Khanehbarndaz, O.; Gerami-Khashal, Z.; Ebadi, M. Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin. Phytochemistry 2019, 168, 112–116. [Google Scholar] [CrossRef] [PubMed]
  350. Ma, C.; Jiang, D.; Wei, X. Mutation breeding of Emericella foeniculicola TR21 for improved production of tanshinone IIA. Proc. Biochem. 2011, 46, 2059–2063. [Google Scholar] [CrossRef]
  351. Ming, Q.L.; Han, T.; Li, W.; Zhang, Q.Y.; Zhang, H.; Zheng, C.J.; Huang, F.; Rahman, K.; Qin, L.P. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine 2012, 19, 330–333. [Google Scholar] [CrossRef] [PubMed]
  352. Li, X.; Zhai, X.; Shu, Z.; Dong, R.; Ming, Q.; Qin, L.; Zheng, C. Phoma glomerata D14: An endophytic fungus from Salvia miltiorrhiza that produces salvianolic acid C. Curr. Microbiol. 2016, 73, 31–37. [Google Scholar] [CrossRef] [PubMed]
  353. Lou, J.; Yu, R.; Wang, X.; Mao, Z.; Fu, L.; Liu, Y.; Zhou, L. Alternariol 9-methyl ether from the endophytic fungus Alternaria sp. Samif01 and its bioactivities. Braz. J. Microbiol. 2016, 47, 96–101. [Google Scholar] [CrossRef] [Green Version]
  354. Lee, J.C.; Strobel, G.A.; Lobkovsky, E.; Clardy, J. Torreyanic acid: A selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J. Org. Chem. 1996, 61, 3232–3233. [Google Scholar] [CrossRef]
  355. Pizzorno, J.E.; Murray, M.T.; Joiner-Bey, H. The Clinician’s Handbook of Natural Medicine E-Book, 3rd ed.; Elsevier Health Sciences: St Lois, MO, USA, 2016. [Google Scholar]
  356. Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the light and in the dark: Two sides of the same coin. Front. Plant Sci. 2016, 7, 560. [Google Scholar] [CrossRef] [Green Version]
  357. Furuya, T.; Kojima, H.; Katsuta, T. 3-Methylpurpurin and other anthraquinones from callus tissue of Digitalis lanata. Phytochemistry 1972, 11, 1073–1076. [Google Scholar] [CrossRef]
  358. Fujii, N.; Yamashita, Y.; Arima, Y.; Nagashima, M.; Nakano, H. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin. Antimicrob. Agents Chemother. 1992, 36, 2589–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  359. Checker, R.; Patwardhan, R.S.; Sharma, D.; Sandur, S.K. Chemopreventive and anticancer effects of plumbagin: Novel mechanism (s) via modulation of cellular redox. In Role of Nutraceuticals in Cancer Chemosensitization; Bharti, A.C., Aggarwal, B.B., Eds.; Academic Press; Elsevier: San Diego, CA, USA, 2018; pp. 325–341. ISSN 2468-3183. [Google Scholar]
  360. Cao, Y.Y.; Yu, J.; Liu, T.T.; Yang, K.X.; Yang, L.Y.; Chen, Q.; Shi, F.; Hao, J.J.; Cai, Y.; Wang, M.R.; et al. Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  361. Gong, K.; Li, W. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma. Free Rad. Biol. Med. 2011, 51, 2259–2271. [Google Scholar] [CrossRef] [PubMed]
  362. Sheng, X.; Wang, M.; Lu, M.; Xi, B.; Sheng, H.; Zang, Y.Q. Rhein ameliorates fatty liver disease through negative energy balance, hepatic lipogenic regulation, and immunomodulation in diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 2011, 300, 886–893. [Google Scholar] [CrossRef]
  363. Mendes, A.F.; Caramona, M.M.; de Carvalho, A.P.; Lopes, M.C. Diacerhein and rhein prevent interleukin-1beta-induced nuclear factor-kappaB activation by inhibiting the degradation of inhibitor kappaB-alpha. Pharmacol. Toxicol. 2002, 91, 22–28. [Google Scholar] [CrossRef]
  364. Sun, H.; Luo, G.; Chen, D.; Xiang, Z. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient. Front. Pharmacol. 2016, 7, 247. [Google Scholar] [CrossRef] [Green Version]
  365. Fernand, V.E.; Losso, J.N.; Truax, R.E.; Villar, E.E.; Bwambok, D.K.; Fakayode, S.O.; Lowry, M.; Warner, I.M. Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro. Chem. Biol. Interact. 2011, 192, 220–232. [Google Scholar] [CrossRef]
  366. Jiang, Z.; Gao, W.; Huang, L. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front. Pharmacol. 2019, 10, 202. [Google Scholar] [CrossRef]
  367. Ming, Q.; Su, C.; Zheng, C.; Jia, M.; Zhang, Q.; Zhang, H.; Rahman, K.; Han, T.; Qin, L. Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J. Experiment. Bot. 2013, 64, 5687–5694. [Google Scholar] [CrossRef] [Green Version]
  368. Zhai, X.; Luo, D.; Li, X.; Han, T.; Jia, M.; Kong, Z.; Ji, J.; Rahman, K.; Qin, L.; Zheng, C. Endophyte Chaetomium globosum D38 promotes bioactive constituents accumulation and root production in Salvia miltiorrhiza. Front. Microbiol. 2018, 8, 2694. [Google Scholar] [CrossRef]
  369. Schwarz, M.; Köpcke, B.; Weber, R.W.; Sterner, O.; Anke, H. 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 2004, 65, 2239–2245. [Google Scholar] [CrossRef] [PubMed]
  370. Chomcheon, P.; Wiyakrutta, S.; Sriubolmas, N.; Ngamrojanavanich, N.; Isarangkul, D.; Kittakoop, P. 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: Is 3-NPA in some plants produced by endophytes? J. Nat. Prod. 2005, 68, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
  371. Flores, A.C.; Pamphile, J.A.; Sarragiotto, M.H.; Clemente, E. Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS and evaluation of biological activity. World J. Microbiol. Biotechnol. 2013, 29, 923–932. [Google Scholar] [CrossRef] [PubMed]
  372. Saxena, S.; Meshram, V.; Kapoor, N. Muscodor tigerii sp. nov.-Volatile antibiotic producing endophytic fungus from the Northeastern Himalayas. Ann. Microbial. 2015, 65, 47–57. [Google Scholar] [CrossRef]
  373. Gu, X.J.; Ren, K.; Yao, N.; Yan, S.; Zhao, J.F.; Jiang, X.Y.; Lian, Q. Chemical constituents from endophytic fungus Plectosphaerella cucumerina YCTA2Z1 of Cynanchum auriculatum. Chin. Herb. Med. 2018, 10, 95–98. [Google Scholar] [CrossRef]
  374. Kamat, S.; Kumari, M.; Taritla, S.; Jayabaskaran, C. Endophytic fungi of marine alga from Konkan coast, India—A rich source of bioactive material. Front. Mar. Sci. 2020, 7, 31. [Google Scholar] [CrossRef]
  375. Guo, B.; Dai, J.R.; Ng, S.; Huang, Y.; Leong, C.; Ong, W.; Carte, B.K. Cytonic acids A and B: Novel tridepside inhibitors of hCMV protease from the endophytic fungus Cytonaema species. J. Nat. Prod. 2000, 63, 602–604. [Google Scholar] [CrossRef]
  376. Zhao, J.; Fu, Y.; Luo, M.; Zu, Y.; Wang, W.; Zhao, C.; Gu, C. Endophytic fungi from pigeon pea (Cajanus cajan (L.) Millsp.) produce antioxidant cajaninstilbene acid. J. Agric. Food Chem. 2012, 60, 4314–4319. [Google Scholar] [CrossRef]
  377. Chen, X.; Sang, X.; Li, S.; Zhang, S.; Bai, L. Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J. Ind. Microbiol. Biotechnol. 2010, 37, 447–454. [Google Scholar] [CrossRef]
  378. Kaul, S.; Wani, M.; Dhar, K.L.; Dhar, M.K. Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann. Microbiol. 2008, 58, 443. [Google Scholar] [CrossRef]
  379. Cheng, M.J.; Wu, M.D.; Chen, J.J.; Cheng, Y.C.; Hsieh, M.T.; Hsieh, S.Y.; Yuan, G.F.; Su, Y.S. Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chem. Nat. Compd. 2014, 50, 237–241. [Google Scholar] [CrossRef]
  380. Faisal, M.P.; Prasad, L.A. Potential source of methyl-eugenol from secondary metabolite of Rhizopus oryzae 6975. Int. J. Appl. Biol. Pharm. Technol. 2016, 7, 187–192. [Google Scholar]
  381. Tanapichatsakul, C.; Khruengsai, S.; Monggoot, S.; Pripdeevech, P. Production of eugenol from fungal endophytes Neopestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. PeerJ 2019, 7, e6427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  382. Kaul, S.; Ahmed, M.; Zargar, K.; Sharma, P.; Dhar, M.K. Prospecting endophytic fungal assemblage of Digitalis lanata Ehrh. (foxglove) as a novel source of digoxin: A cardiac glycoside. 3 Biotech 2013, 3, 335–340. [Google Scholar] [CrossRef] [Green Version]
  383. Mir, R.A.; Kaushik, S.P.; Chowdery, R.A.; Anuradha, M. Elicitation of forskolin in cultures of Rhizactonia bataticola-a phytochemical synthesizing endophytic fungi. Int. J. Pharm. Pharma. Sci. 2015, 7, 185–189. [Google Scholar]
  384. Seger, C.; Godejohann, M.; Tseng, L.H.; Spraul, M.; Girtler, A.; Sturm, S.; Stuppner, H. LC-DAD-MS/SPE-NMR hyphenation. A tool for the analysis of pharmaceutically used plant extracts: Identification of isobaric irid glycoside regioisomers from Harpagophytum procumbens. Anal. Chem. 2005, 77, 878–885. [Google Scholar] [CrossRef]
  385. Shen, Z.Y.; Zhu, B.; Zhang, Q.L.; Qin, L.P. Isolation and identification of endophytic fungi producing harpagoside and harpagide from Scrophularia ningpoensis. China J. Chin. Mat. Med. 2019, 44, 2046–2050. [Google Scholar]
  386. Nicoletti, R.; Ferranti, P.; Caira, S.; Misso, G.; Castellano, M.; Di Lorenzo, G.; Caraglia, M. Myrtucommulone production by a strain of Neofusicoccum australe endophytic in myrtle (Myrtus communis). World J. Microbiol. Biotechnol. 2014, 30, 1047–1052. [Google Scholar] [CrossRef] [Green Version]
  387. Ruangrungsi, N.; Wongpanich, V.; Tantivatana, P.; Cowe, H.J.; Cox, P.J.; Funayama, S.; Cordell, G.A. Traditional medicinal plants of Thailand, V. Ancistrotectorine, a new naphthalene-isoquinoline alkaloid from Ancistrocladus tectorius. J. Nat. Prod. 1985, 48, 529–535. [Google Scholar] [CrossRef]
  388. Daisy, B.H.; Strobel, G.A.; Castillo, U.; Ezra, D.; Sears, J.; Weaver, D.K.; Runyon, J.B. Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 2002, 148, 3737–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  389. Dai, J.; Krohn, K.; Draeger, S.; Schulz, B. New naphthalene-chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. Eur. J. Org. Chem. 2009, 2009, 1564–1569. [Google Scholar] [CrossRef]
  390. Gond, S.K.; Mishra, A.; Sharma, V.K.; Verma, S.K.; Kharwar, R.N. Isolation and characterization of antibacterial naphthalene derivative from Phoma herbarum, an endophytic fungus of Aegle marmelos. Curr. Sci. 2013, 105, 167–169. [Google Scholar]
  391. Shi, J.; Zeng, Q.; Liu, Y.; Pan, Z. Alternaria sp. MG1, a resveratrol-producing fungus: Isolation, identification, and optimal cultivation conditions for resveratrol production. Appl. Microbiol. Biotechnol. 2012, 95, 369–379. [Google Scholar] [CrossRef] [PubMed]
  392. Cui, J.; Guo, T.; Chao, J.; Wang, M.; Wang, J. Potential of the endophytic fungus Phialocephala fortinii Rac56 found in Rhodiola plants to produce salidroside and p-tyrosol. Molecules 2016, 21, 502. [Google Scholar] [CrossRef] [Green Version]
  393. Xu, J.; Luo, X.; Zhong, W.; Zhang, J.; Tan, R. Characterization of volatile constituents from an endophytic Aspergillus fumigatus strain. J. Chem. Pharm. Res. 2014, 6, 893–897. [Google Scholar]
  394. Liang, L.; Luo, M.; Fu, Y.; Zu, Y.; Wang, W.; Gu, C.; Zhao, C.; Li, C.; Efferth, T. Cajaninstilbene acid (CSA) exerts cytoprotective effects against oxidative stress through the Nrf2-dependent antioxidant pathway. Toxicol. Lett. 2013, 219, 254–261. [Google Scholar] [CrossRef]
  395. Huang, M.Y.; Lin, J.; Lu, K.; Xu, H.G.; Geng, Z.Z.; Sun, P.H.; Chen, W.M. Anti-inflammatory effects of cajaninstilbene acid and its derivatives. J. Agric. Food Chem. 2016, 64, 2893–2900. [Google Scholar] [CrossRef]
  396. Wang, L.S.; Tao, X.; Liu, X.M.; Zhou, Y.F.; Zhang, M.D.; Liao, Y.H.; Pan, R.L.; Chang, Q. Cajaninstilbene acid ameliorates cognitive impairment induced by intrahippocampal injection of amyloid-β1-42 oligomers. Front. Pharmacol. 2019, 10, 1084. [Google Scholar] [CrossRef]
  397. Ren, Y.; Ribas, H.T.; Heath, K.; Wu, S.; Ren, J.; Shriwas, P.; Chen, X.; Johnson, M.E.; Cheng, X.; Burdette, J.E.; et al. Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. J. Nat. Prod. 2020, 83, 638–648. [Google Scholar] [CrossRef]
  398. Pateraki, I.; Andersen-Ranberg, J.; Jensen, N.B.; Wubshet, S.G.; Heskes, A.M.; Forman, V.; Hallström, B.; Hamberger, B.; Motawia, M.S.; Olsen, C.E.; et al. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife 2017, 6, e23001. [Google Scholar] [CrossRef] [PubMed]
  399. Laurenza, A.; Sutkowski, E.M.; Seamon, K.B. Forskolin: A specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol. Sci. 1989, 10, 442–447. [Google Scholar] [CrossRef]
  400. Chiang, H.M.; Chen, H.C.; Wu, C.S.; Wu, P.Y.; Wen, K.C. Rhodiola plants: Chemistry and biological activity. J. Food Drug Anal. 2015, 23, 359–369. [Google Scholar] [CrossRef] [Green Version]
  401. Lee, S.Y.; Shi, L.S.; Chu, H.; Li, M.H.; Ho, C.W.; Lai, F.Y.; Huang, C.Y.; Chang, T.C. Rhodiola crenulata and its bioactive components, salidroside and tyrosol, reverse the hypoxia-induced reduction of plasma-membrane-associated Na, K-ATPase expression via inhibition of ROS-AMPK-PKCξ pathway. Evid. Based Complement. Alternat. Med. 2013, 2013, 1–15. [Google Scholar]
  402. Zhong, Z.; Han, J.; Zhang, J.; Xiao, Q.; Hu, J.; Chen, L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des. Devel. Ther. 2018, 12, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  403. Potterat, O.; Hamburger, M. Concepts and technologies for tracking bioactive compounds in natural product extracts: Generation of libraries, and hyphenation of analytical processes with bioassays. Nat. Prod. Rep. 2013, 30, 546–564. [Google Scholar] [CrossRef] [PubMed]
  404. Kharwar, R.N.; Sharma, V.K.; Mishra, A.; Kumar, J.; Singh, D.K.; Verma, S.K.; Gond, S.K.; Kumar, A.; Kaushik, N.; Revuru, B.; et al. Harnessing the phytotherapeutic treasure troves of the ancient medicinal plant Azadirachta indica (Neem) and associated endophytic microorganisms. Planta Med. 2020, 86, 906–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  405. Hillman, E.T.; Readnour, L.R.; Solomon, K.V. Exploiting the natural product potential of fungi with integrated-omics and synthetic biology approaches. Curr. Opin. Syst. Biol. 2017, 5, 50–56. [Google Scholar] [CrossRef]
  406. Hautbergue, T.; Jamin, E.L.; Debrauwer, L.; Puel, O.; Oswald, I.P. From genomics to metabolomics, moving toward an integrated strategy for the discovery of fungal secondary metabolites. Nat. Prod. Rep. 2018, 35, 147–173. [Google Scholar] [CrossRef]
  407. Swift, C.L.; Podolsky, I.A.; Lankiewicz, T.S.; Seppälä, S.; O’Malley, M.A. Linking ‘omics’ to function unlocks the biotech potential of non-model fungi. Curr. Opin. Syst. Biol. 2019, 14, 9–17. [Google Scholar]
  408. Romano, S.; Jackson, S.A.; Patry, S.; Dobson, A.D. Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Mar. Drugs 2018, 16, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  409. Pan, R.; Bai, X.; Chen, J.; Zhang, H.; Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. Front. Microbiol. 2019, 10, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  410. Ariantari, N.P.; Daletos, G.; Mándi, A.; Kurtán, T.; Müller, W.E.; Lin, W.; Ancheeva, E.; Proksch, P. Expanding the chemical diversity of an endophytic fungus Bulgaria inquinans, an ascomycete associated with mistletoe, through an OSMAC approach. RSC Adv. 2019, 9, 25119–25132. [Google Scholar] [CrossRef] [Green Version]
  411. Amirkia, V.; Heinrich, M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Phamacol. 2015, 6, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  412. Jiang, D.; Zhu, W.; Wang, Y.; Sun, C.; Zhang, K.Q.; Yang, J. Molecular tools for functional genomics in filamentous fungi: Recent advances and new strategies. Biotechnol. Adv. 2013, 31, 1562–1574. [Google Scholar] [CrossRef]
  413. Singh, B.N.; Upreti, D.K.; Gupta, V.K.; Dai, X.F.; Jiang, Y. Endolichenic fungi: A hidden reservoir of next generation biopharmaceuticals. Trends Biotechnol. 2017, 35, 808–813. [Google Scholar] [CrossRef]
Table 1. Plant-derived alkaloids produced by endophytic fungi.
Table 1. Plant-derived alkaloids produced by endophytic fungi.
Plant-Derived AlkaloidsActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
AconitineAnticancer, anti-inflammatory, anti-neuralgic, cardiotoxicAconitum spp.Cladosporium cladosporioidesAconitum leucostomum[26]
BerberineAntibiotic, antidiabetic, antihypertensive, antiproliferative hepatoprotective, hypolipidemic, vasodilatorBerberis spp.,
Coscinium fenestratum, Hydrastis canadensis, Phellodendron amurense
Alternaria sp.Phellodendron amurense[27]
Fusarium solaniCoscinium fenestratum[28,29]
CaffeineCNS stimulantCoffea spp.,
Theobroma cacao
Anonymous endophytes Osbeckia chinensis,
Osbeckia stellata,
Potentilla fulgens
[30]
CamptothecinAntitumorCamptotheca acuminata,
Miquelia dentata,
Nothapodytes nimmoniana,
Ophiorrhiza spp.
Entrophospora infrequensNothapodytes foetida[31]
Entrophospora infrequensNothapodytes foetida[32]
Neurospora sp.Nothapodytes foetida[33]
Valsa maliCamptotheca acuminata[34]
Nodulisporium sp.Nothapodytes foetida[35]
Fusarium solaniCamptotheca acuminata[36]
Botryosphaeria parva,
Diaporthe conorum,
Fusarium oxysporum,
Fusarium sacchari,
Fusarium solani,
Fusarium subglutinans,
Fusarium verticillioides, Galactomyces sp.,
Irpex lacteus, Phomopsis sp.,
Fusarium sp.
Nothapodytes nimmoniana[37]
Xylaria sp.Camptotheca acuminata[38]
Fusarium solaniApodytes dimidiata[39]
Botryosphaeria dothideaCamptotheca acuminata[40]
Alternaria alternata,
Fomitopsis sp., Phomopsis sp.
Miquelia dentata[41]
Trichoderma atrovirideCamptotheca acuminata[42]
Aspergillus sp.Camptotheca acuminata[36]
Fusarium oxysporumNothapodytes foetida[43]
CapsaicinAnti-inflammatory, gastro-stimulatoryCapsicum annuumAlternaria alternataCapsicum annuum[44]
HomoharringtonineAnticancerCephalotaxus spp.Alternaria tenuissimaCephalotaxus sp.[45]
Huperzine AAcetylcholinesterase inhibitor, Alzheimer’s treatmentHuperzia serrataAcremonium sp.Huperzia serrata (syn. Lycopodium serratum)[46]
Blastomyces sp., Botrytis sp.Phlegmariurus cryptomerianus[47]
Penicillium chrysogenumHuperzia serrata[48]
Shiraia sp.Huperzia serrata[49]
Cladosporium cladosporioidesHuperzia serrata[50]
Colletotrichum sp.,
Trichoderma sp.
Huperzia serrata[51]
Paecilomyces tenuisHuperzia serrata[52]
Aspergillus flavus, Mycoleptodiscus terrestris, Penicillium griseofulvumHuperzia serrata[53]
Penicillium sp.Huperzia serrata[54]
Fusarium sp.Phlegmariurus taxifolius[55]
Fusarium sp.Huperzia serrata[56]
Peimisine,
Imperialine-3b-D-glucoside
Antiasthmatic,
antitumor,
expectorant
Fritillaria spp.Fusarium sp.Fritillaria unibracteata
var. wabuensis
[57,58]
Fusarium redolensFritillaria unibracteata
var. wabuensis
[59]
PiperineAnti-inflammatory, anticancer,
antimicrobial, antidepressant, hepatoprotective
Piper longum,
Piper nigrum
Periconia sp. Piper longum[60]
Colletotrichum gloeosporioidesPiper nigrum[61]
Mycosphaerella sp.Piper nigrum[62]
Phomopsis sp.Oryza sativa[63]
Cinchona alkaloids:
Quinine,
Quinidine, Cinchonidine, Cinchonine
Antimalarial,
antiarrhythmic,
analgesic
Cinchona spp.Arthrinium, Fomitopsis, Diaporthe, Penicillium, Phomopsis, SchizophyllumCinchona ledgeriana[64]
Fusarium incarnatum, Fusarium oxysporum (only quinine and cinchonidine) Fusarium solani
(only quinine)
Cinchona calisaya[65]
RohitukineAnticancer,
CDK inhibitor,
cytotoxic
Amoora rohituka
Dysoxylum binectariferum,
Fusarium proliferatumDysoxylum binectariferum[66]
Fusarium oxysporum,
Fusarium solani
Dysoxylum binectariferum[67]
Gibberella fujikuroiAmoora rohituka[67]
SanguinarineAnticancer, antimicrobial, anti-inflammatory antioxidant,
antihelmintic, neuroprotective
Macleaya cordata,
Sanguinaria canadensis
Fusarium proliferatumMacleaya cordata[28,68]
SipeimineAntibechic, anti-ulcerFritillaria spp.Cephalosporium cordaFritillaria ussuriensis[69]
SolamargineAnticancer, cytotoxicSolanum nigrumAspergillus flavusSolanum nigrum[70]
SwainsonineToxicosis in livestockAstragalus,
Oxytropis spp.,
Swainsona canescens
Embellisia sp.Astragalus, Oxytropis spp.[15,71]
Undifilum cinereum,
U. fulvum
Astragalus lentiginosus, Astragalus mollissimus[72]
Fusarium tricinctumOxytropis deflexa,
Oxytropis kansuensis
[73]
Undifilum sp.Swainsona canescens[74]
Vinblastine,
Vincristine
AntitumorCatharanthus roseus
(syn. Vinca rosea)
Alternaria sp.Catharanthus roseus[75]
Fusarium oxysporumCatharanthus roseus[76]
Fusarium oxysporumCatharanthus roseus[77]
Talaromyces radicusCatharanthus roseus[78]
Eutypella spp.Catharanthus roseus[79]
Geomyces sp.Nerium indicum[80]
VincamineAntihypertensive, vasodilatorVinca minorAnonymous Vinca minor[81]
Table 2. Plant-derived coumarins produced by endophytic fungi.
Table 2. Plant-derived coumarins produced by endophytic fungi.
Plant-Derived CoumarinsActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
Bergapten,
Meranzin
Antioxidant,
psoriasis treatment
Balanites aegyptiaca,
Citrus bergamia,
Grapefruit peel
Penicillium sp.Avicennia[103]
Botryodiplodia theobromaeDracaena draco[104]
IsofraxidinAnticancer, anti-obesity, cardioprotective, neuroprotective, hyper pigmentationAcanthopanax senticosus,
Sarcandra glabra
Annulohypoxylon bovei var. microsporaCinnamomum sp.[105,106]
MarmesinAnticancer, antihelmintic,
antioxidant, antisyphilitic, purgative
Ammi majus,
Balanites aegyptiaca
Fusarium sp.Mangrove[107]
MelleinAntibacterial, antifungal,
antihepatitis c, larvicidal,
phytotoxic
Alibertia macrophylla,
Litsea akoensis,
Garcinia bancana,
Moringa oleifera,
Stevia lucida
Septoria nodorumConifer[108]
Penicillium janczewskiiPrumnopitys andina[109]
Botryosphaeria mamaneAnonymous[110]
A xylariaceous fungusSapindus saponaria[111]
Annulohypoxylon bovei var. microsporaCinnamomum sp.[106]
Penicillium sp., Xylaria sp.Alibertia macrophylla,
Piper aduncum
[112]
Annulohypoxylon squamulosumCinnamomum sp.[113]
Nigrospora sp.Moringa oleifera[114]
Arthrinium (Apiospora montagnei)Anonymous[115]
Xylaria sp.Garcinia sp.[116]
Pezicula sp.Forsythia viridissima[117]
Xylaria cubensisLitsea akoensis[118]
Scopoletin,
Umbelliferone
Antifungal,
antioxidant, anti-inflammatory
Artemisia scoparia,
Scopolia carniolica
(syn. Scopolia japonica),
Viburnum prunifolium
Penicillium sp.Avicennia[103]
Table 3. Plant-derived flavonoids produced by endophytic fungi.
Table 3. Plant-derived flavonoids produced by endophytic fungi.
Plant-Derived FlavonoidsActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
ApigeninAntibacterial, anticancer,
antioxidant, antihyperglycaemic,
lipid peroxidation, sedative,
thyroid dysfunction
Cajanus cajan, Cephalotaxus harringtonia, Matricaria chamomilla, vegetablesColletotrichum sp.Ginkgo biloba[132,133,134]
Chaetomium globosumCajanus cajan[135]
Paraconiothyriu mvariabileCephalotaxus harringtonia[136]
CajanolAnticancer, antimicrobial, antiplasmodialCajanus cajanHypocrealixiiCajanus cajan[137]
ChalconeAntibacterial, antifungal,
antitumor, anti-inflammatory
Cleistocalyx operculatus,
Members of Leguminosae, Asteraceae, Moraceae
Ceriporia lacerataCleistocalyx operculatus (syns. Eugenia operculata, Syzygium operculatum)[138]
ChrysinAntiaging, anticonvulsant,
antidiabetic, anti-inflammatory,
antimicrobial, anxiolytic,
hepatoprotective
Passiflora incarnataAlternaria alternata, Colletotrichum capsici, Colletotrichum taiwanensePassiflora incarnata[139]
CurcuminAnti-inflammatory, antioxidant, antitumorCurcuma spp.Chaetomium globosumCurcuma wenyujin[140]
AnonymousCurcuma wenyujin[141]
KaempferolAntibacterial, antidiabetic,
anti-inflammatory, antioxidant, antitumor
Fruits, vegetables, medicinal herbsAnnulohypoxylonboveri var. microspora,
Annulohypoxylon squamulosum
Cinnamomum sp.[106,113]
Fusarium chlamydosporumTylophora indica[142]
Mucor fragilisPodophyllum hexandrum[143]
LuteolinAnti-inflammatory, antioxidant, immunomodulatoryFruits, vegetables,
medicinal herbs
Annulohypoxylon boveri var.
microspora
Cinnamomum sp.[106]
Aspergillus fumigatusCajanus cajan[144]
QuercetinAnticancer, anti-inflammatory
antioxidant
Fruits, vegetablesAspergillus nidulans,
Aspergillus oryzae
Ginkgo biloba[145]
Annulohypoxylon squamulosumCinnamomum sp.[113]
Nigrospora oryzaeLoranthus micranthus[146]
RotenoneInsecticide, pesticide, piscicide Derris ellipticaPenicillium sp.Derris elliptica[147]
RutinAntioxidant, cardioprotective, neuroprotectiveAegle marmelos
Ginkgo biloba,
Nerium oleander,
Pteris multifida,
fruits, vegetables
AnonymousPteris multifida[148]
Chaetomium sp.Nerium oleander[149]
Xylaria sp.Ginkgo biloba[150]
Aspergillus flavusAegle marmelos[151]
SilymarinAnticancer, antioxidant, anti-inflammatory, cardioprotective,
hepatoprotective
Silybum marianumAspergillus iizukaeSilybum marianum[152]
Vitexin Antioxidant, antitumor,
neuroprotective
Cajanus cajan,
Vitex agnus-castus
Colletotrichum sp.Ginkgo biloba[134]
Dichotomopilus funicolaCajanus cajan[153]
Table 4. Plant-derived lignans produced by endophytic fungi.
Table 4. Plant-derived lignans produced by endophytic fungi.
Plant-Derived LignansActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
ConiferinAntidiabeticAngelica archangelica, ConifersMembers of xylariaceaeAngelica archangelica[175]
PhillyrinAntioxidant, antidiabetic,
anti-inflammatory,
anti-obesity, antipyretic
Forsythia suspensa, PhyllireaColletotrichum gloeosporioidesForsythia suspensa[176,177]
PodophyllotoxinAntitumor, antivirusDiphylleia sp.,
Dysosma sp.,
Juniperus sp.,
Podophyllum spp.
Alternaria sp., Penicillium spp.Podophyllum hexandrum[178]
Monilia sp., Penicillium sp.Dysosma veitchii[178]
Penicillium sp.Diphylleia sinensis[178]
Penicillium implicatumDiphylleia sinensis[179]
Alternaria sp.Juniperus vulgaris[180]
Phialocephala fortiniiPodophyllum peltatum[181]
Trametes hirsutaPodophyllum hexandrum[182]
Alternaria neesexPodophyllum hexandrum[183]
Fusarium oxysporumJuniperus recurva[184]
Aspergillus fumigatusJuniperus communis[185]
Fusarium solaniPodophyllum hexandrum[186]
Mucor fragilisPodophyllum hexandrum[143]
Phialocephala podophylliPodophyllum peltatum[187]
Alternaria tenuissimaPodophyllum emodi[188]
Fusarium sp.Dysosma versipellis[189]
Sesamin, Syringaresinol, KetopinoresinolAntioxidant,
anti-inflammatory
Cinnamomum cassiaAnnulohypoxylon ilanenseCinnamomum sp.[190]
SyringinAntidiabetic Syringa vulgaris, Eleutherococcus senticosus,
Magnolia sieboldii,
Musa paradisiaca
Members of xylariaceaeSyringa vulgaris[175,191]
Table 5. Plant-derived saponins produced by endophytic fungi.
Table 5. Plant-derived saponins produced by endophytic fungi.
Plant-Derived SaponinsActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
DiosgeninAnti-inflammatory,
antitumor,
cardiovascular protection
Dioscorea spp. Paecilomyces sp.Paris polyphylla var. yunnanensis[193]
Cephalosporium sp.Paris polyphylla var. yunnanensis[194]
Fusarium sp.Dioscorea nipponica[195]
GinsenosideAnti-inflammatory, antioxidation,
antitumor
PanaxCamarosporium sp., Dictyochaeta sp.,
Penicillium sp.
Aralia elata[196]
Aspergillus sp., Fusarium sp., Verticillium sp.Panax ginseng[197]
Aspergillus sp., Fusarium sp.Panax notoginseng[198]
Gymnemagenin AntidiabeticGymnema sylvestrePenicillium oxalicumGymnema sylvestre[199]
Other saponins Cardiovascular diseaseGynostemma pentaphyllum, Manilkara zapota,
Sapindus sp.,
Saponaria sp.
Aspergillus niger, F. oxysporumCrotalaria pallida[200]
Alternaria alternata, Aspergillus niger, Penicillium sp.Loranthus sp.[201]
Alternaria alternata,
Aspergillus flavus, Aspergillus niger, Colletotrichum gleosporioides, Trichoderma sp.
Tabebuia argentea[202]
Aspergillus sp.Salvadora oleoides[203]
Aspergillus sp.Justicia beddomei[204]
Cochliobolus lunatus (anamorph Curvularia lunata)Boswellia ovalifoliolata[205]
Monochaetia karstenii (syn. Pestalotiopsis maculans), Phyllosticta sp.Shorea thumbuggaia[205]
Aspergillus neoniveus (syn. Fennellia nivea) Typhonium divaricatum[206]
Alternaria alternata, Aspergillus flavus, Aspergillus niger, Cladosporium sp., Penicillium sp., Phomopsis sp., Trichoderma sp. Aegle marmelos[207]
Aspergillus niger, Aspergillus sp., Aspergillus terreus, Aspergillus tubingensis, Coprinopsis cinerea, Curvularia lunata, Fusarium sp. Eugenia jambolana[208]
Aspergillus awamori, Colletotrichum gleosporioidesRauwolfia
serpentina
[209]
Table 6. Plant-derived terpenes produced by endophytic fungi.
Table 6. Plant-derived terpenes produced by endophytic fungi.
Plant-Derived TerpenesActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
Agathic acidAbortifacient,
anti-inflammatory,
anticancer, trypanocidal
Agathis spp., Copaifera spp., Juniperus osteospermaBotryosphaeria sp.Maytenus hookeri[211,212,213]
Bionectria sp.Raphia taedigera[214]
Fusarium sp.Santalum album[215]
ArtemisininAntimalarialArtemisia spp.Anonymous Artemisia indica[216]
AsiaticosideAntidermatitic, anti-inflammatory, antioxidant, immunomodulatoryCentella asiaticaColletotrichum gloeosporioidesCentella asiatica[217]
AzadirachtinHepatoprotective, insecticidal Azadirachta indicaPenicillium (Eupenicillium) parvumAzadirachta indica[218]
BilobalideNeuroprotective,Ginkgo bilobaPestalotiopsis uvicolaGinkgo biloba[219]
BorneolAntiapoptotic, anti-inflammatory, antioxidant, neuroprotectiveCinnamomum camphora var. borneolCochliobolus nisikadoiCinnamomum camphora var. borneol[220]
CamphorAntimicrobial, topical skin preparationsCinnamomum camphoraNodulisporium sp.Lagerstroemia loudoni[221]
Cineole
(Eucalyptol)
Antimicrobial, respiratory illnessEucalyptus spp.Hypoxylon sp., Nodulisporium sp.Persea indica[222]
Nodulisporium sp.Lagerstroemia loudoni[221]
Nodulisporium sp.Thelypteris angustifolia[223]
Nodulisporium sp.Cassia fistula[224]
Annulohypoxylon sp.Neolitsea pulchella[225]
DihydrocumambrinAntibacterial, cytotoxicGlebionis coronaria (syn. Chrysanthemum coronarium)Botryodiplodia theobromaeDracaena draco[104]
GinkgolideAntiallergic, anti-inflammatoryGinkgo bilobaFusarium oxysporumGinkgo biloba[226]
Isocupressic acidAbortifacientConifersBotryosphaeria sp.Maytenus hookeri[212,213]
LoliolideHerbivore resistanceLolium perenneAnnulohypoxylon ilanenseCinnamomum sp.[227]
Taxane (other than taxol)AnticancerTaxus spp.Alternaria, Aspergillus,
Beauveria, Epicoccum,
Fusarium, Gelasinospora,
Geotrichum, Phoma, Phomopsis
Taxus baccata[228]
Cladosporium langeronii,
Phomopsis sp.
Wollemia nobilis[229]
Taxol AnticancerTaxus brevifoliaTaxomyces andreanaeTaxus brevifolia[11]
Taxomyces sp.Taxus yunnanensis[230]
Pestalotiopsis microsporaTaxodium distichum[231]
Alternaria sp., Pestalotiopsis microsporaTaxus cuspidata[232]
Fusarium lateritium, Monochaetia sp., Pestalotia biciliaTaxus baccata[232]
Pithomyces sp.Taxus sumatrana[232]
Pestalotiopsis microsporaTaxus wallichiana[233]
Pestalotiopsis guepiniiWollemia nobilis[234]
Periconia sp.Torreyagrandifolia[235]
Seimatoantlerium nepalenseTaxus wallichiana[236]
Alternaria sp., Pestalosiopsis sp.Ginkgo biloba[237]
Penicillium raistrickiiTaxus brevifolia[238]
Tubercularia sp.Taxus chinensis var. mairei[239]
Stegolerium kukenaniKukenan tepuis, Roraima[240]
Taxomyces sp.Taxus sp.[241]
Sporormia minima, Trichothecium sp.Taxus wallichiana[242]
Nodulisporium sylviformeTaxus cuspidata[243]
AnonymousTaxus chinensis var. mairei[244]
Botrytis sp.Taxus chinensis var. mairei[245]
Penicillium sp.Taxus yunnanensis[246]
Fusarium maireiRhizophora annamalayana[247]
Phyllosticta sp.Ocimum basilicum[248]
Alternaria alternata, Ectostromasp., Fusarium mairei, Ozoniumsp., Papulaspora sp.Taxus chinensis var. mairei[249]
Fusarium solaniTaxus celebica[250]
Pestalotiopsis paucisetaCardiospermum helicacabum[251]
Bartalinia robillardoidesAegle marmelos[252]
Colletotrichum gloeosporioidesJusticia gendarussa[253]
Fusarium sp.Taxus wallichiana[254]
Phyllosticta citricarpaCitrus medica[255]
Phyllosticta melochiaeMelochia corchorifolia[256]
Phyllosticta spinarumCupressus sp.[257]
Fusarium arthrosporioidesTaxus cuspidata[258]
Aspergillus fumigatusPodocarpus sp.[259]
Botryodiplodia theobromaeTaxus baccata[260]
Botrytis sp.Taxus cuspidata[261]
Fusarium solaniTaxus chinensis[262]
Chaetomella raphigeraTerminalia arjuna[263]
Pestalotiopsis terminaliaeTerminalia arjuna[264]
Phomopsis sp.Ginkgo biloba[265]
Phomopsis sp.Larix leptolepis[265]
Phomopsis sp.Taxus cuspidata[265]
Phyllosticta dioscoreaeHibiscus rosa-sinensis[266]
Aspergillus sp.,
Ceratobasidium sp.,
Cladosporium tenuissimum,
Coniothyrium diplodiella,
Epacris sp., Fusarium solani, Metarhizium anisopliae,
Paraconiothyrium brasiliense,
Pezicula sp., Phomopsis sp. Sordaria sp.,
Trichoderma sp., Xylaria sp.
Taxus chinensis[267]
Mucor rouxianusTaxus chinensis[268]
Colletotrichum gloeosporioidesPlumeria acutifolia[269]
Gliocladium sp.Taxus baccata[270]
Pestalotiopsis sp.Catharanthus roseus[271]
Aspergillus candidus,
Cladosporium cladosporioides
Taxus media[272,273]
Aspergillus niger var. taxiTaxus cuspidata[274]
Mucor sp.Taxus chinensis var. mairei[275]
Pestalotiopsis neglecta, Pestalotiopsis versicolorTaxus cuspidata[276]
Pestalotiopsis paucisetaTabebuia pentaphylla[277]
Lasiodiplodia theobromaeMorinda citrifolia[278]
Acremonium sp., Botryosphaeria sp., Fusarium sp., Gyromitra sp.,
Nigrosporasp., Penicillium sp.
Taxus globosa[279]
Paraconiothyrium sp.Taxus media[280]
Didymostilbe sp.Taxus chinensis var. mairei[281]
Stemphylium sedicolaTaxus baccata[282]
Colletotrichum gloeosporioidesTectona grandis[283]
Perenniporia tephroporaTaxus chinensis var. mairei[284]
Colletotrichum gloeosporioides, Fusarium proliferatum, Guignardia mangiferaeTaxus media[285]
Phoma betaeGinkgo biloba[286]
Alternaria sp.Corylus avellana[287]
Colletotrichum gloeosporioidesMoringa oleifera[288]
Penicillium sp.Taxus chinensis[289]
Penicillium aurantiogriseumCorylus avellana[290]
ToosendaninAnticancer, antifeedantMelia azedarachAnonymousMelia azedarach[291,292]
WithanolideAnticancer,
cardiovascular disease, Alzheimer’s disease treatment
Withaniasp.Taleromyces pinophilusWithania somnifera[293]
XanthatinAntitumorXanthium spp.Paecilomyces sp.Panax ginseng[294,295]
Table 7. Plant-derived quinones and xanthones produced by endophytic fungi.
Table 7. Plant-derived quinones and xanthones produced by endophytic fungi.
Plant-Derived Quinones and XanthonesActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
1,7-dihydroxyxanthoneAntioxidantWeddellina squamulosaPenicillium sp.Avicennia[103]
AnthraquinoneAnticancer, antioxidant,
laxative
Digitalis viridiflora,
Rumex spp.
Coniothyriumsp.Salsola oppostifolia[316]
Aspergillus fumigatusRumex nepalensis,
Rumex hastatus
[317]
Emodin Antibacterial, anti-inflammatory,
antitumor,
immunosuppressive
Hypericum perforatum, Polygonum cuspidatum, Rheum spp.Penicillium janthinellumMelia azedarach[318,319]
Talaromyces sp.Kandelia candel[320]
Aspergillus versicolorHalimeda opuntia[321]
Fusarium solaniRheum palmatum[322]
Eurotium chevalieriMangrove[323]
Alternaria alternataHypericum perforatum[324]
EugenitinGlucoamylase activationSyzygium aromaticumDothideomycetes sp.Leea rubra[325]
HypericinAnti-depressant, antimicrobial, antiretroviralHypericum perforatumChaetomium globosumHypericum perforatum[326]
Thielavia subthermophilaHypericum perforatum[327]
Epicoccum nigrumHypericum perforatum[324]
Lapachol Anticancer, antimicrobial, antiviral, anti-inflammatory, antiparasiticTabebuia avellanedaeAlternaria sp., Alternaria alternata, Penicillium sp. Tabebuia argentea[202]
Aspergillus nigerTabebuia argentea[328]
LawsoneCytotoxicLawsonia inermisGibberella moniliformisLawsonia inermis[329]
Pachybasin,
Phomarin
Antibacterial, antiviral, bioagricultural agentDigitalis spp.,
Isoplexis isabelliana
Phoma sorghinaTithonia diversifolia[330]
Coniothyrium sp.Salsola oppostifolia[316]
Physcion (Parietin)Antibiotics, antifungals, cytotoxicHopea hainanensis, Rheum officinaleAspergillus fumigatusCynodon dactylon[331]
Pleospora sp.Imperata cylindrical[332]
Penicillium sp.Hopea hainanensis[333]
Aspergillus terreusOpuntia ficus-indica[334]
Cercosporella sp.Schisandra chinensis[335]
EurotiumchevalieriMangrove[323]
Pinselin (Cassiollin)CytotoxicCassia occidentalisAspergillus sydowiiScapania ciliata[336,337]
Phomopsis sp.Paris polyphylla var.
yunnanensis
[338]
Phomopsis amygdaliParis axialis[339]
Penicillium sp.Sonneratia apetala[340]
PlumbaginAnticancerPlumbago zeylanicaCladosporium delicatulumTerminalia pallida[341]
QuestinAntioxidant, allelopathic, herbicideLeea rubraDothideomyceteLeea rubra[325]
Eurotium rubrumHibiscus tiliaceus[342]
Eurotium cristatumSargassum thunbergii[343]
Aspergillus sp.Pleioblastus amarus[344]
Phoma sp.Phragmites communis[345]
Eurotium chevalieriMangrove[323]
QuestinolAnti-inflammatory,
antibacterial
Cassia spp.,
Polygonum spp.
Eurotium rubrumHibiscus tiliaceus[342]
Penicillium glabrumPunica granatum[346]
Eurotium chevalieriMangrove[323]
QuinizarinCytotoxicity, antibacterialRubia tinctorumEpicoccum nigrumEntada abyssinica[347]
RheinAnticancer, anti-inflammatory, antimicrobial, antioxidant,
hepatoprotective, nephroprotective
Rheum palmatumFusarium solaniRheum palmatum[322]
ShikoninAnti-inflammatory, anti-HIV,
antimicrobial,
Lithospermum erythrorhizonAnonymousMammillaria hahniana[348]
Fusarium tricinctumLithospermum officinale[349]
Sterequinone CAnti-inflammatoryStereospermum spp.Penicillium sp.Avicennia[103]
TanshinoneAntibacterial, antifungal,
anti-inflammatory, antihypertensive,
antitumor
Salvia spp.Paecilomyces sp.Panax ginseng[295]
Emericella foeniculicolaSalvia spp.[350]
Trichoderma atrovirideSalvia miltiorrhiza[351]
Phoma glomerataSalvia miltiorrhiza[352]
Alternaria sp.Salvia miltiorrhiza[353]
Torreyanic acidAnticancer, cytotoxicTorreya taxifoliaPestalotiopsis microsporaTorreya taxifolia[354]
Table 8. Miscellaneous plant-derived compounds produced by endophytic fungi.
Table 8. Miscellaneous plant-derived compounds produced by endophytic fungi.
Plant-Derived CompoundsActivities/ApplicationsPlant SourceEndophytic SourceHost PlantReferences
3-Nitropropionic acid
(beta-Nitropropionic acid)
Antimycobacterial,
nematicidal, succinate dehydrogenase inhibitor
Astragalus falcatus, Coronilla viminalis,
Hippocrepis sp.,
Lotus, Scorpiurus sp.,
Securigera sp.
Melanconium betulinumBirches[369,370]
Phomopsis phaseoli
(syn. Diaporthe phaseolorum)
Rainforest tree[369]
Phomopsis spp.Costus sp.[370]
Phomopsis longicollaTrichilia elegans[371]
Asarone
(Phenyl propane)
AntimicrobialCinnamomum camphoraMuscodor tigeriiCinnamomum camphora[372]
Azelaic acid
(Saturated dicarboxylic acid)
Antimicrobial, anti-inflammatory, anticancerWheat, rye, barleyPlectosphaerella cucumerinaCynanchum auriculatum[373]
Aspergillus unguisEnteromorpha sp.[374]
Cajaninstilbene acidAntioxidant, anti-inflammatory,
hypoglycemic, neuroprotective
Cajanus cajanCytonaema sp.Quercus sp.[375]
Alternaria, Fusarium oxysporum, Fusarium solani, Fusarium proliferatum, Neonectria macrodidymCajanus cajan[376]
Chlorogenic acid
(5-O-caffeoylquinic acid)
(Cinnamate conjugates)
Antimicrobial,
antioxidant, antitumor, immunomodulatory, antiviral
Arnica spp., Arctium lappa,
Coffea canephora, Chrysanthemum coronarium, Schefflera heptaphylla
AnonymousArtemisia indica[216]
Sordariomycete sp.Eucommia ulmoides[377]
Eugenol
(Phenyl propane)
AntimicrobialSyzygium aromaticumAlternaria sp.Rosa damascaena[378]
Annulohypoxylon stygiumAnonymous[379]
Rhizopus oryzaeHolarrhena pubescens[380]
Diaporthe sp., Neopestalotiopsis sp. Cinnamomum loureiroi[381]
Digoxin Cardiac, anticancerDigitalis lanataAnonymousDigitalis lanata[382]
ForskolinAntiglaucoma, anti-HIV, antitumor Coleus forskohliiRhizoctonia bataticolaColeus forskohlii[383]
Harpagide
(Iridoid glycosides)
Anticancer, anti-inflammatory, LeishmanicidalHarpagophytum procumbensAlternaria alternataScrophularia ningpoensis[384,385]
Myrtucommulones
(Lactone)
Anticancer, anti-inflammatoryMyrtus communisNeofusicoccum australe
(teleomorph Botryosphaeria australis)
Myrtus communis[386]
Naphthalene
(Aromatic hydrocarbon)
Antibacterial, insect repellentAncistrocladus tectoriusMuscodor vitigenusPaullinia paullinioides[387,388]
Nodulisporium sp.Erica arborea[389]
Phoma herbarumAegle marmelos[390]
Panaxynol or Falcarinol or Carotatoxin
(Polyacetylene)
AnticancerPanax ginseng, Falcaria vulgaris,
Daucus carota, Hedera spp.
Paecilomyces sp.Panax ginseng[295]
Resveratrol
(Stilbene polyphenol)
Antioxidant, anticancer, epigenetic modulationVitis spp.Alternaria sp., Aspergillus sp., Botryosphaeria sp.,
Cephalosporium sp., Geotrichum sp.,
Mucor sp., Penicillium sp.
Polygonum cuspidatum, Vitis quinquangularis, Vitis vinifera[391]
Salidroside,
p-tyrosol
Antioxidant, antihypoxic, adaptogenicRhodiola roseaPhialocephala fortiniiRhodiola sp.[392]
Salvianolic acid
(Polyphenol)
Antioxidant,
cardiovascular, cerebrovascular diseases
Salvia miltiorrhizaPhoma glomerataSalvia miltiorrhiza[352]
Tocopherol
(Phenol)
Anti-influenza, antioxidantRibes sp.Aspergillus fumigatusCynodon dactylon[393]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021, 9, 197. https://doi.org/10.3390/microorganisms9010197

AMA Style

Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms. 2021; 9(1):197. https://doi.org/10.3390/microorganisms9010197

Chicago/Turabian Style

Singh, Archana, Dheeraj K. Singh, Ravindra N. Kharwar, James F. White, and Surendra K. Gond. 2021. "Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges" Microorganisms 9, no. 1: 197. https://doi.org/10.3390/microorganisms9010197

APA Style

Singh, A., Singh, D. K., Kharwar, R. N., White, J. F., & Gond, S. K. (2021). Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms, 9(1), 197. https://doi.org/10.3390/microorganisms9010197

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop