Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Hydrochemical Analysis
2.3. Microscopic Analysis and Petrography
2.4. DNA Extraction
2.5. Sequence Data Processing
3. Results
3.1. Hydrochemistry, Carbonate Fabrics and Isotopic Record
3.2. Microbial Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berner, R.A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nat. Cell Biol. 2003, 426, 323–326. [Google Scholar] [CrossRef]
- Fine, R.A.; Willey, D.A.; Millero, F.J. Global variability and changes in ocean total alkalinity from Aquarius satellite data. Geophys. Res. Lett. 2017, 44, 261–267. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Larkum, A.W.D. Calcification in algae: Mechanism and the role of metabolism. Crit. Rev. Plant Sci. 1987, 6, 1–45. [Google Scholar] [CrossRef]
- Arp, G.; Reimer, A.; Reitner, J. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 2001, 292, 1701–1704. [Google Scholar] [CrossRef] [Green Version]
- Arp, G.; Reimer, A.; Reitner, J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 2003, 73, 105–127. [Google Scholar] [CrossRef]
- Braissant, O.; Decho, A.W.; Dupraz, C.; Glunk, C.; Przekop, K.M.; Visscher, P.T. Exo-polymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 2007, 5, 401–411. [Google Scholar] [CrossRef]
- Mann, S. Molecular recognition in biomineralization. Nature 1988, 332, 119–124. [Google Scholar] [CrossRef]
- Riding, R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Kamennaya, N.A.; Ajo-Franklin, C.M.; Northen, T.; Jansson, C. Cyanobacteria as Biocatalysts for Carbonate Mineralization. Rev. Miner. 2012, 2, 338–364. [Google Scholar] [CrossRef]
- Arp, G.; Reimer, A.; Reitner, J. Microbial fabric formation in spring mounds (‘Microbialites’) of alkaline salt lakes in the Badain Jaran Sand sea, PR China. Palaios 1998, 13, 581. [Google Scholar] [CrossRef] [Green Version]
- Arp, G.; Reimer, A.; Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 1999, 126, 159–176. [Google Scholar] [CrossRef]
- Arp, G.; Helms, G.; Karlinska, K.; Schumann, G.; Reimer, A.; Reitner, J.; Trichet, J. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiol. J. 2012, 29, 29–65. [Google Scholar] [CrossRef]
- Bruni, J.; Canepa, M.; Chiodini, G.; Cioni, R.; Cipolli, F.; Longinelli, A.; Marini, L.; Ottonello, G.; Zuccolini, M. Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg-HCO3 and high-pH, Ca-OH spring waters of the Genova province, Italy. Appl. Geochem. 2002, 17, 455–474. [Google Scholar] [CrossRef]
- Cipolli, F.; Gambardella, B.; Marini, L.; Ottonello, G.; Zuccolini, M. Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Appl. Geochem. 2004, 19, 787–802. [Google Scholar] [CrossRef]
- Brazelton, W.J.; Thornton, C.N.; Hyer, A.; Twing, K.I.; Longino, A.A.; Lang, S.Q.; Lilley, M.D.; Früh-Green, G.L.; Schrenk, M.O. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. Peer J. 2017, 5, e2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, U.T. Monographiae Biologcae, Saline Lake Ecosystems of the World, 1st ed.; Springer: Berlin, Germany, 1986; p. 59. [Google Scholar]
- Quéméneur, M.; Palvadeau, A.; Postec, A.; Monnin, C.; Chavagnac, V.; Ollivier, B.; Erauso, G. Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy). Environ. Sci. Pollut. Res. 2015, 22, 13613–13624. [Google Scholar] [CrossRef]
- Boulart, C.; Chavagnac, V.; Monnin, C.; Delacour, A.; Ceuleneer, G.; Hoareau, G. Differences in gas venting from ultramafic-hosted warm springs: The example of Oman and Voltri ophiolites. Ofioliti 2013, 38, 142–156. [Google Scholar]
- Schwarzenbach, E.M.; Lang, S.Q.; Früh-Green, G.L.; Lilley, M.; Bernasconi, S.M.; Méhay, S. Sources and cycling of carbon in continental, serpentinite-hosted alkaline springs in the Voltri Massif, Italy. Lithos 2013, 177, 226–244. [Google Scholar] [CrossRef]
- Vignaroli, G.; Rossetti, F.; Rubatto, D.; Theye, T.; Lisker, F.; Phillips, D. Pressure-temperature-deformation-time (P-Td-t) exhumation history of the Voltri Massif HP complex, Ligurian Alps, Italy. Tectonics 2010, 29, 6009. [Google Scholar] [CrossRef] [Green Version]
- Preiner, M.; Igarashi, K.; Muchowska, K.B.; Yu, M.; Varma, S.J.; Kleinermanns, K.; Nobu, M.K.; Kamagata, Y.; Tüysüz, H.; Moran, J.; et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 2020, 4, 534–542. [Google Scholar] [CrossRef]
- Palandri, J.A.; Reed, M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 2004, 68, 1115–1133. [Google Scholar] [CrossRef]
- Giampouras, M.; Garrido, C.J.; Zwicker, J.; Vadillo, I.; Smrzka, D.; Bach, W.; Peckmann, J.; Jiménez, P.; Benavente, J.; García-Ruiz, J.M. Geochemistry and mineralogy of serpentinization-driven hyperalkaline springs in the Ronda peridotites. Lithos 2019, 350, 105215. [Google Scholar] [CrossRef]
- Tiago, I.; Chung, A.P.; Veríssimo, A. Bacterial diversity in a nonsaline alkaline environment: Heterotrophic aerobic populations. Appl Environ. Microbiol. 2004, 70, 7378–7387. [Google Scholar] [CrossRef] [Green Version]
- Tiago, I.; Verissimo, A. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ. Microbiol. 2012, 15, 1687–1706. [Google Scholar] [CrossRef]
- Soetaert, K.; Hofmann, A.F.; Middelburg, J.J.; Meysman, F.J.R.; Greenwood, J. Reprint of “The effect of biogeochemical processes on pH”. Mar. Chem. 2007, 106, 380–401. [Google Scholar] [CrossRef]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. Methods of Seawater Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3dA computer program for speciation, batch reaction, one dimensional transport, and Inverse geochemical calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Reitner, J. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia)-formation and concepts. Facies 1993, 29, 3–39. [Google Scholar] [CrossRef] [Green Version]
- Kokoschka, S.; Dreier, A.; Romoth, K.; Taviani, M.; Schafer, N.; Reitner, J.; Hoppert, M. Isolation of anaerobic bacteria from terrestrial mud volcanoes (Salse di Nirano, Northern Apennines, Italy). Geomicrobiol. J. 2015, 32, 355–364. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012, 41, e1. [Google Scholar] [CrossRef]
- Sambrook, J.; MacCallum, P.D.; Russel, D. Molecular Cloning. A Laboratory Manual, 3rd ed.; CSH Laboratory Press: Cold Spring Harbour, NY, USA, 2000. [Google Scholar]
- Andrews, S.; Lindenbaum, P.; Howard, B.; Ewels, P. FastQC [Computer Software]. 2015. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 22 December 2020).
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq. Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR. A fast and accurate Illumina Paired-End read merger. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Baeza, Y.; Pirrung, M.; Gonzalez, A.; Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience 2013, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Hulsen, T.; de Vlieg, J.; Alkema, W. BioVenn-A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 2008, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Shopov, Y.Y. Activators of luminescence in speleothems as source of major mistakes in interpretation of luminescent paleoclimatic records. Int. J. Speleol 2004, 33, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, E.; Früh-Green, G.; Bernasconi, S.; Alt, J.C.; Plas, A. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol. 2013, 351, 115–133. [Google Scholar] [CrossRef]
- Kelley, D.S.; Karson, J.A.; Früh-Green, G.L.; Yoerger, D.R.; Shank, T.M.; Butterfield, D.A.; Hayes, J.M.; Schrenk, M.O.; Olson, E.J.; Proskurowski, G.; et al. A serpentinite-hosted ecosystem: The Lost City Hydrothermal Field. Science 2005, 307, 1428–1434. [Google Scholar] [CrossRef]
- Quéméneur, M.; Bes, M.; Postec, A.; Mei, N.; Hamelin, J.; Monnin, C.; Chavagnac, V.; Payri, C.; Pelletier, B.; Guentas-Dombrowsky, L.; et al. Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia. Environ. Microbiol. Rep. 2014, 6, 665–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazelton, W.J.; Morrill, P.L.; Szponar, N.; Schrenk, M.O. Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl. Environ. Microbiol. 2013, 79, 3906–3916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Ishii, S.; Wu, A.; Cheung, A.; Tenney, A.; Wanger, G.; Kuenen, J.G.; Nealson, K.H. Microbial diversity in the Cedars, an ultrabasic, ultrareducing, and low salinity serpentinizing ecosystem. Proc. Natl. Acad. Sci. USA 2013, 110, 15336–15341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woycheese, K.M.; Meyer-Dombard, D.R.; Cardace, D.; Argayosa, A.M.; Arcilla, C.A. Out of the dark: Transitional subsurface-to-surface microbial diversity in a terrestrial serpentinizing seep (Manleluag, Pangasinan, the Philippines). Front. Microbiol. 2015, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Merino, N.; Kawai, M.; Boyd, E.S.; Colman, D.R.; McGlynn, S.E.; Nealson, K.H.; Kurokawa, K.; & Hongoh, Y. Single-cell genomics of novel Actinobacteria with the Wood-Ljungdahl pathway discovered in a serpentinizing system. Front. Microbiol. 2020, 11, 1031. [Google Scholar] [CrossRef]
- Cardace, D.; Hoehler, T.; McCollom, T.; Schrenk, M.; Carnevale, D.; Kubo, M.; Twing, K. Establishment of the Coast Range ophiolite microbial observatory (CROMO): Drilling objectives and preliminary outcomes. Sci. Drill. 2013, 16, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Medina, M.; Twing, K.I.; Kubo, M.D.Y.; Hoehler, T.M.; Cardace, D.; McCollom, T.; Schrenk, M.O. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach. Front. Microbiol. 2014, 5, 604. [Google Scholar] [CrossRef]
- Andreote, A.P.; Vaz, M.G.; Genuário, D.B.; Barbiero, L.; Rezende-Filho, A.T.; Fiore, M.F. Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. J. Phycol. 2014, 50, 675–684. [Google Scholar] [CrossRef]
- Hallenbeck, P.C.; Grogger, M.; Mraz, M.; Veverka, D. Draft Genome Sequence of a Thermophilic Cyanobacterium from the Family Oscillatoriales (Strain MTP1) from the Chalk River, Colorado. Genome Announc. 2016, 4, 01571-15. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, F.; Hanzawa, Y.; Okumura, T.; Tomioka, N.; Kodama, Y.; Suga, H.; Takahashi, Y.; Kano, A. Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.M. Simple conditions for growth of blue-green algae on plates. J. Phycol. 1968, 4, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Blank, J.G.; Green, S.J.; Blake, D.; Valley, J.W.; Kita, N.T.; Treiman, A.; Dobson, P.F. An alkaline spring system within the Del Puerto Ophiolite (California, USA): A Mars analog site. Planet. Space Sci. 2009, 57, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Dombard, D.A.R.; Woycheese, K.M.; Yargıçoğlu, E.N.; Cardace, D.; Shock, E.L.; Güleçal-Pektas, Y.; Temel, M. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey. Front. Microbiol. 2015, 5, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neubeck, A.; Sun, L.; Müller, B.; Ivarsson, M.; Hosgörmez, H.; Özcan, D.; Broman, C.; Schnürer, A. Microbial community structure of a serpentine-hosted abiotic gas seepage at the Chimaera ophiolite, Turkey. App Environ. Microbiol. 2017, 83, 03430-16. [Google Scholar] [CrossRef] [Green Version]
- Pentecost, A.; Franke, U. Photosynthesis and calcification of the stromatolitic freshwater cyanobacterium Rivularia. Eur. J. Phycol. 2010, 45, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Couradeau, E.; Roush, D.; Guida, B.S.; Garcia-Pichel, F. Diversity and mineral substrate preference in endolithic microbial communities from marine intertidal outcrops (Isla de Mona, Puerto Rico). Biogeosciences 2017, 14, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Friedmann, I.; Lipkin, Y.; Ocampus-Paus, R. Desert algae of the Negev (Israel). Phycologia 1967, 6, 185–200. [Google Scholar] [CrossRef]
- Friedmann, E.I.; Ocampo, R. Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science 1976, 193, 1247–1249. [Google Scholar] [CrossRef]
- Harel, Y.; Ohad, I.; Kaplan, A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol. 2004, 136, 3070–3079. [Google Scholar] [CrossRef] [Green Version]
- Kemmling, A.; Kämper, M.; Flies, C.; Schieweck, O.; Hoppert, M. Biofilms and extracellular matrices on geomaterials. Environ. Geol. 2004, 46, 429–435. [Google Scholar] [CrossRef]
- Omari, M.M.H.; Rahid, I.S.; Qinna, N.A.; Jaber, A.M.; Badwan, A.A. Calcium carbonate. In Profiles of Drug Substances, Excipients, and Related Methodology; Britain, H.G., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 41, pp. 31–132. [Google Scholar] [CrossRef]
- Müller, U.; Sengbusch, P.V. Interactions of species in an Anabaena flos-aquae association from the Plußsee (East-Holstein, Federal Republic of Germany). Oecologia 1983, 58, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Kämper, M.; Vetterkind, S.; Berker, R.; Hoppert, M. Methods for in situ detection and characterization of extracellular polymers in biofilms by electron microscopy. J. Microbiol. Methods 2004, 57, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Hmelo, L.R.; Van Mooy, B.A.S.; Mincer, T.J. Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquat. Microb. Ecol. 2012, 67, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Herbst, V.; Overbeck, J. Metabolic coupling between the alga Oscillatoria redekei and accompanying bacteria. Naturwissenschaften 1978, 65, 598–599. [Google Scholar] [CrossRef]
- De Philippis, R.; Vincenzini, M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 1998, 22, 151–175. [Google Scholar] [CrossRef]
- Suzuki, S.; Kuenen, J.G.; Schipper, K.; van der Velde, S.; Ishii, S.; Wu, A.; Sorokin, D.Y.; Tenney, A.; Meng, X.; Morrill, P.L.; et al. Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site. Nat. Commun. 2014, 5, 3900. [Google Scholar] [CrossRef] [Green Version]
- Roadcap, G.S.; Sanford, R.A.; Jin, Q.; Pardinas, J.R.; Bethke, C.M. Extremely alkaline (pH 12) ground water hosts diverse microbial community. Groundwana Res. 2006, 44, 511–517. [Google Scholar] [CrossRef]
- Auling, G.; Reh, M.; Lee, C.M.; Schlegel, H.G. Pseudomonas pseudoflava, a new species of hydrogen oxidizing bacteria: Its differentiation from Pseudomonas flaya and other yellow-pigmented, Gram-negative, hydrogen-oxidizing species. Int. J. Syst. Bacteriol. 1978, 28, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Willems, A.; Busse, J.; Goor, M.; Pot, B.; Falsen, E.; Jantzen, E.; Hoste, B.; Gillis, M.; Kersters, K.; Auling, G.; et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and ‘Pseudomonas carboxydoflava’) and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis). Int. J. Syst. Bacteriol. 1989, 39, 319–333. [Google Scholar] [CrossRef]
- Lee, E.M.; Jeon, C.O.; Choi, I.; Chang, K.S.; Kim, C.J. Silanimonas lenta gen. nov., sp. nov., a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 2005, 55, 385–389. [Google Scholar] [CrossRef] [Green Version]
- Tarhriz, V.; Theil, V.; Nematzadeh, G.; Hejazi, M.A.; Imhoff, J.F.; Hejazi, M.S. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugol Lake nearby Tabriz city, Iran. Antonie Van Leeuwenhoek 2013, 104, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Komagata, K.; Iino, T.; Yamada, Y. The family Acetobacteraceae. In The Prokaryotes-Alphaproteobacteria and Betaproteobacteria; Rosenberg, E., Long, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin, Germany, 2014; pp. 3–78. [Google Scholar]
- Qu, J.-H.; He, X.-B.; Li, H.-F.; Luo, Y.; Yin, Y.-L.; Zhai, H.-C.; Cai, J.-P. Sediminicoccus rosea gen. nov. sp. nov., isolated from the sediment of a eutrophic lake. J. Gen. Appl. Microbiol. 2013, 59, 463–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.M.; Xie, Y.R.; Sheu, D.S.; Tsai, J.M.; Sheu, S.Y. Rhodovarius crocodyli sp. nov., isolated from a crocodile pond. Int. J. Syst. Evol. Microbiol. 2020, 70, 5141–5148. [Google Scholar] [CrossRef] [PubMed]
- Nakai, R.; Abe, T.; Baba, T.; Imura, S.; Kagoshima, H.; Kanda, H.; Kanekiyo, A.; Kohara, Y.; Koi, A.; Nakamura, K.; et al. Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol. 2011, 35, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Eiler, A.; Bertilsson, S. Flavobacteria blooms in four eutrophic lakes: Linking population dynamics of freshwater bacterioplankton to resource availability. Appl. Environ. Microbiol. 2007, 73, 3511–3518. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.M.; Macalady, J.L.; Fulton, J.M.; Kump, L.R.; Schaperdoth, I.; Freeman, K.H. Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Geobiology 2011, 9, 321–329. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, Q.; Piceno, Y.M.; Desantis, T.Z.; Saunders, F.M.; Andersen, G.L.; Liu, W.T. Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis. FEMS Microbiol. Ecol. 2013, 86, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Rast, P.; Glöckner, I.; Boedeker, C.; Jeske, O.; Wiegand, S.; Reinhardt, R.; Schumann, P.; Rohde, M.; Spring, S.; Glöckner, F.O.; et al. Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen.nov. in the family Opitutaceae of the Verrucomicrobial subdivision 4. Front. Microbiol. 2017, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Longinelli, A.; Selmo, E. CO2 concentrations and δ13C(CO2) values in monthly sets of air samples from downtown Parma and the Parma and Taro river valleys, Emilia-Romagna, Italy. Isot. Environ. Health Stud. 2006, 42, 215–230. [Google Scholar] [CrossRef]
Parameter | Ler | Br | Creek Water Reference (Br) |
---|---|---|---|
pH | 11.2–11.3 | 11.2–11.5 | 8.45 |
Eh | −60 mV | +180–+230 mV | +370 mV |
Ca2+ | 34–43 mg L−1 | 33–47 mg L−1 | 19 mg L−1 |
Na+ | 8–10 mg L−1 | 23–25 mg L−1 | 14 mg L−1 |
K+ | 0.7–3.1 mg L−1 | 2.8–3.1 mg L−1 | 1.3 mg L−1 |
SO42− | 2.0–2.4 mg L−1 | 0.1–0.5 mg L−1 | 5.9 mg L−1 |
NO3− | 0.005–0.014 mg L−1 | 0.005–0.030 mg L−1 | 1.5 mg L−1 |
NH4+ | 0.03–0.04 mg L−1 | 0.03–0.12 mg L−1 | 0.01 mg L−1 |
H2S | 0.2–0.7 mg L−1 | 0.006–0.05 mg L−1 | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamran, A.; Sauter, K.; Reimer, A.; Wacker, T.; Reitner, J.; Hoppert, M. Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy. Microorganisms 2021, 9, 62. https://doi.org/10.3390/microorganisms9010062
Kamran A, Sauter K, Reimer A, Wacker T, Reitner J, Hoppert M. Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy. Microorganisms. 2021; 9(1):62. https://doi.org/10.3390/microorganisms9010062
Chicago/Turabian StyleKamran, Aysha, Kathrin Sauter, Andreas Reimer, Theresa Wacker, Joachim Reitner, and Michael Hoppert. 2021. "Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy" Microorganisms 9, no. 1: 62. https://doi.org/10.3390/microorganisms9010062
APA StyleKamran, A., Sauter, K., Reimer, A., Wacker, T., Reitner, J., & Hoppert, M. (2021). Cyanobacterial Mats in Calcite-Precipitating Serpentinite-Hosted Alkaline Springs of the Voltri Massif, Italy. Microorganisms, 9(1), 62. https://doi.org/10.3390/microorganisms9010062